Integrarea funcțiilor iraționale pentru manechine. Integrale din rădăcini. Metode și soluții tipice

Sub iraţionalînțelegeți o expresie în care variabila independentă %%x%% sau polinomul %%P_n(x)%% de gradul %%n \in \mathbb(N)%% este inclusă sub semn radical(din latină radix- rădăcină), adică ridicat la o putere fracționată. Unele clase de integranți care sunt iraționale în ceea ce privește %%x%% pot fi reduse la expresii rationale variabilă relativ nouă.

Conceptul de funcție rațională a unei variabile poate fi extins la mai multe argumente. Dacă pentru fiecare argument %%u, v, \dotsc, w%% la calcularea valorii unei funcții sunt furnizate doar operații aritmetice și creșterea la o putere întreagă, atunci vorbim de o funcție rațională a acestor argumente, care este de obicei notat %%R(u, v, \ dotsc, w)%%. Argumentele unei astfel de funcții pot fi ele însele funcții ale variabilei independente %%x%%, inclusiv radicali de forma %%\sqrt[n](x), n \in \mathbb(N)%%. De exemplu, funcția rațională $$ R(u,v,w) = \frac(u + v^2)(w) $$ cu %%u = x, v = \sqrt(x)%% și %% w = \sqrt(x^2 + 1)%% este o funcție rațională a lui $$ R\left(x, \sqrt(x), \sqrt(x^2+1)\right) = \frac(x + \sqrt(x ^2))(\sqrt(x^2 + 1)) = f(x) $$ din %%x%% și radicalii %%\sqrt(x)%% și %%\sqrt(x ^2 + 1 )%%, în timp ce funcția %%f(x)%% va fi o funcție irațională (algebrică) a unei variabile independente %%x%%.

Să considerăm integralele de forma %%\int R(x, \sqrt[n](x)) \mathrm(d)x%%. Astfel de integrale sunt raționalizate prin înlocuirea variabilei %%t = \sqrt[n](x)%%, apoi %%x = t^n, \mathrm(d)x = nt^(n-1)%%.

Exemplul 1

Găsiți %%\displaystyle\int \frac(\mathrm(d)x)(\sqrt(x) + \sqrt(x))%%.

Integrandul argumentului dorit se scrie in functie de radicali de gradul %%2%% si %%3%%. Deoarece cel mai mic multiplu comun al %%2%% și %%3%% este %%6%%, această integrală este o integrală de tip %%\int R(x, \sqrt(x)) \mathrm(d) x %% și poate fi raționalizat prin înlocuirea %%\sqrt(x) = t%%. Atunci %%x = t^6, \mathrm(d)x = 6t \mathrm(d)t, \sqrt(x) = t^3, \sqrt(x) =t^2%%. Prin urmare, $$ \int \frac(\mathrm(d)x)(\sqrt(x) + \sqrt(x)) = \int \frac(6t^5 \mathrm(d)t)(t^3 + t^2) = 6\int\frac(t^3)(t+1)\mathrm(d)t. $$ Să luăm %%t + 1 = z, \mathrm(d)t = \mathrm(d)z, z = t + 1 = \sqrt(x) + 1%% și $$ \begin(array)( ll ) \int \frac(\mathrm(d)x)(\sqrt(x) + \sqrt(x)) &= 6\int\frac((z-1)^3)(z) \mathrm(d ) t = \\ &= 6\int z^2 dz -18 \int z \mathrm(d)z + 18\int \mathrm(d)z -6\int\frac(\mathrm(d)z)( z ) = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt(x) + 1\right)^3 - 9 \left(\sqrt(x) + 1\right)^2 + \\ &+~ 18 \left( \sqrt(x) + 1\dreapta) - 6 \ln\left|\sqrt(x) + 1\right| + C \end(matrice) $$

Integrale de forma %%\int R(x, \sqrt[n](x)) \mathrm(d)x%% sunt un caz special de iraționalități liniare fracționale, i.e. integrale de forma %%\displaystyle\int R\left(x, \sqrt[n](\dfrac(ax+b)(cd+d))\right) \mathrm(d)x%%, unde %% ad - bc \neq 0%%, care poate fi raționalizat prin înlocuirea variabilei %%t = \sqrt[n](\dfrac(ax+b)(cd+d))%%, apoi %%x = \dfrac (dt^n - b)(a - ct^n)%%. Atunci $$ \mathrm(d)x = \frac(n t^(n-1)(ad - bc))(\left(a - ct^n\right)^2)\mathrm(d)t. $$

Exemplul 2

Găsiți %%\displaystyle\int \sqrt(\dfrac(1 -x)(1 + x))\dfrac(\mathrm(d)x)(x + 1)%%.

Să luăm %%t = \sqrt(\dfrac(1 -x)(1 + x))%%, apoi %%x = \dfrac(1 - t^2)(1 + t^2)%%, $ $ \begin(array)(l) \mathrm(d)x = -\frac(4t\mathrm(d)t)(\left(1 + t^2\right)^2), \\ 1 + x = \ frac(2)(1 + t^2), \\ \frac(1)(x + 1) = \frac(1 + t^2)(2). \end(array) $$ Prin urmare, $$ \begin(array)(l) \int \sqrt(\dfrac(1 -x)(1 + x))\frac(\mathrm(d)x)(x + 1) = \\ = \frac(t(1 + t^2))(2)\left(-\frac(4t \mathrm(d)t)(\left(1 + t^2\right)^2 )\right) = \\ = -2\int \frac(t^2\mathrm(d)t)(1 + t^2) = \\ = -2\int \mathrm(d)t + 2\int \frac(\mathrm(d)t)(1 + t^2) = \\ = -2t + \text(arctg)~t + C = \\ = -2\sqrt(\dfrac(1 -x)( 1 + x)) + \text(arctg)~\sqrt(\dfrac(1 -x)(1 + x)) + C. \end(array) $$

Să considerăm integralele de forma %%\int R\left(x, \sqrt(ax^2 + bx + c)\right) \mathrm(d)x%%. În cele mai simple cazuri, astfel de integrale se reduc la integrale tabelare dacă, după izolarea pătratului complet, se face o schimbare de variabile.

Exemplul 3

Găsiți integrala %%\displaystyle\int \dfrac(\mathrm(d)x)(\sqrt(x^2 + 4x + 5))%%.

Având în vedere că %%x^2 + 4x + 5 = (x+2)^2 + 1%%, luăm %%t = x + 2, \mathrm(d)x = \mathrm(d)t%%, atunci $$ \begin(array)(ll) \int \frac(\mathrm(d)x)(\sqrt(x^2 + 4x + 5)) &= \int \frac(\mathrm(d)t) (\sqrt(t^2 + 1)) = \\ &= \ln\left|t + \sqrt(t^2 + 1)\right| + C = \\ &= \ln\left|x + 2 + \sqrt(x^2 + 4x + 5)\right| + C. \end(array) $$

În cazuri mai complexe, pentru a găsi integrale de forma %%\int R\left(x, \sqrt(ax^2 + bx + c)\right) \mathrm(d)x%% sunt folosite

Definiția 1

Ansamblul tuturor antiderivatelor funcţie dată$y=f(x)$ definit pe un anumit segment se numeste integrala nedefinita a unei functii date $y=f(x)$. Integrala nedefinită se notează cu simbolul $\int f(x)dx $.

cometariu

Definiția 2 poate fi scrisă după cum urmează:

\[\int f(x)dx =F(x)+C.\]

Nu orice funcție irațională poate fi exprimată ca o integrală în termeni de functii elementare. Cu toate acestea, majoritatea acestor integrale pot fi reduse folosind substituții la integrale ale funcțiilor raționale, care pot fi exprimate în termeni de funcții elementare.

    $\int R\left(x,x^(m/n) ,...,x^(r/s) \right)dx $;

    $\int R\left(x,\left(\frac(ax+b)(cx+d) \right)^(m/n) ,...,\left(\frac(ax+b)(cx +d) \right)^(r/s) \right)dx $;

    $\int R\left(x,\sqrt(ax^(2) +bx+c) \right)dx $.

eu

La găsirea unei integrale de forma $\int R\left(x,x^(m/n) ,...,x^(r/s) \right)dx $ este necesar să se efectueze următoarea înlocuire:

Cu această înlocuire, fiecare putere fracționată al variabilei $x$ se exprimă printr-o putere întreagă a variabilei $t$. Ca urmare, funcția integrand este transformată într-o funcție rațională a variabilei $t$.

Exemplul 1

Efectuați integrarea:

\[\int \frac(x^(1/2) dx)(x^(3/4) +1) .\]

Soluţie:

$k=4$ este numitorul comun al fracțiilor $\frac(1)(2) ,\, \, \frac(3)(4) $.

\ \[\begin(array)(l) (\int \frac(x^(1/2) dx)(x^(3/4) +1) =4\int \frac(t^(2) ) (t^(3) +1) \cdot t^(3) dt =4\int \frac(t^(5) )(t^(3) +1) dt =4\int \left(t^( 2) -\frac(t^(2) )(t^(3) +1) \right)dt =4\int t^(2) dt -4\int \frac(t^(2) )(t ^(3) +1) dt =\frac(4)(3) \cdot t^(3) -) \\ (-\frac(4)(3) \cdot \ln |t^(3) +1 |+C)\end(matrice)\]

\[\int \frac(x^(1/2) dx)(x^(3/4) +1) =\frac(4)(3) \cdot \left+C\]

II

Când găsiți o integrală de forma $\int R\left(x,\left(\frac(ax+b)(cx+d) \right)^(m/n) ,...,\left(\frac (ax+ b)(cx+d) \right)^(r/s) \right)dx $ este necesar să se efectueze următoarea înlocuire:

unde $k$ este numitorul comun al fracțiilor $\frac(m)(n) ,...,\frac(r)(s) $.

Ca urmare a acestei substituții, funcția integrand este transformată într-o funcție rațională a variabilei $t$.

Exemplul 2

Efectuați integrarea:

\[\int \frac(\sqrt(x+4) )(x) dx .\]

Soluţie:

Să facem următoarea înlocuire:

\ \[\int \frac(\sqrt(x+4) )(x) dx =\int \frac(t^(2) )(t^(2) -4) dt =2\int \left(1 +\frac(4)(t^(2) -4) \right)dt =2\int dt +8\int \frac(dt)(t^(2) -4) =2t+2\ln \left |\frac(t-2)(t+2) \dreapta|+C\]

După efectuarea înlocuirii inverse, obținem rezultatul final:

\[\int \frac(\sqrt(x+4) )(x) dx =2\sqrt(x+4) +2\ln \left|\frac(\sqrt(x+4) -2)(\ sqrt(x+4) +2) \dreapta|+C.\]

III

La găsirea unei integrale de forma $\int R\left(x,\sqrt(ax^(2) +bx+c) \right)dx $, se realizează așa-numita substituție Euler (una dintre cele trei substituții posibile este folosit).

Prima înlocuire a lui Euler

Pentru cazul $a>

Luând semnul „+” în fața lui $\sqrt(a) $, obținem

Exemplul 3

Efectuați integrarea:

\[\int \frac(dx)(\sqrt(x^(2) +c) ) .\]

Soluţie:

Să facem următoarea înlocuire (cazul $a=1>0$):

\[\sqrt(x^(2) +c) =-x+t,\, \, x=\frac(t^(2) -c)(2t) ,\, \, dx=\frac(t) ^(2) +c)(2t^(2) ) dt,\, \, \sqrt(x^(2) +c) =-\frac(t^(2) -c)(2t) +t= \frac(t^(2) +c)(2t) .\] \[\int \frac(dx)(\sqrt(x^(2) +c) ) =\int \frac(\frac(t^ (2) +c)(2t^(2) ) dt)(\frac(t^(2) +c)(2t) ) =\int \frac(dt)(t) =\ln |t|+C \]

După efectuarea înlocuirii inverse, obținem rezultatul final:

\[\int \frac(dx)(\sqrt(x^(2) +c) ) =\ln |\sqrt(x^(2) +c) +x|+C.\]

A doua înlocuire a lui Euler

Pentru cazul $c>0$ este necesar să se efectueze următoarea înlocuire:

Luând semnul „+” în fața lui $\sqrt(c) $, obținem

Exemplul 4

Efectuați integrarea:

\[\int \frac((1-\sqrt(1+x+x^(2) ))^(2) )(x^(2) \sqrt(1+x+x^(2) ) ) dx .\]

Soluţie:

Să facem următoarea înlocuire:

\[\sqrt(1+x+x^(2) ) =xt+1.\]

\ \[\sqrt(1+x+x^(2) ) =xt+1=\frac(t^(2) -t+1)(1-t^(2) ) \] \

$\int \frac((1-\sqrt(1+x+x^(2) ))^(2) )(x^(2) \sqrt(1+x+x^(2) ) ) dx = \int \frac((-2t^(2) +t)^(2) (1-t)^(2) (1-t^(2))(2t^(2) -2t+2))( (1-t^(2))^(2) (2t-1)^(2) (t^(2) -t+1)(1-t^(2))^(2) ) dt =\ int \frac(t^(2) )(1-t^(2) ) dt =-2t+\ln \left|\frac(1+t)(1-t) \right|+C$ După ce am făcut invers înlocuire, obținem rezultatul final:

\[\begin(array)(l) (\int \frac((1-\sqrt(1+x+x^(2) ))^(2) )(x^(2) \sqrt(1+x) +x^(2) ) dx =-2\cdot \frac(\sqrt(1+x+x^(2) ) -1)(x) +\ln \left|\frac(x+\sqrt(1 + x+x^(2) ) -1)(x-\sqrt(1+x+x^(2) ) +1) \right|+C=-2\cdot \frac(\sqrt(1+x + x^(2) ) -1)(x) +) \\ (+\ln \left|2x+2\sqrt(1+x+x^(2) ) +1\right|+C) \end ( matrice)\]

A treia înlocuire a lui Euler

O funcție irațională a unei variabile este o funcție care este formată dintr-o variabilă și constante arbitrare folosind un număr finit de operații de adunare, scădere, înmulțire (creștere la o putere întreagă), împărțire și rădăcini. O funcție irațională diferă de una rațională prin aceea că funcția irațională conține operații pentru extragerea rădăcinilor.

Există trei tipuri principale funcții iraționale, ale căror integrale nedefinite sunt reduse la integrale ale funcțiilor raționale. Acestea sunt integrale care conțin rădăcini de puteri întregi arbitrare din fracțional funcție liniară(rădăcinile pot fi de grade diferite, dar din aceeași funcție fracțională liniară); integrale ale unui binom diferențial și integrale cu rădăcină pătrată dintr-un trinom pătratic.

Notă importantă. Rădăcinile au mai multe semnificații!

Când se calculează integrale care conțin rădăcini, sunt adesea întâlnite expresii ale formei, unde este o funcție a variabila de integrare. Trebuie avut în vedere faptul că. Adică la t > 0 , |t| = t. La or< 0 , |t| = - t . Prin urmare, atunci când se calculează astfel de integrale, este necesar să se ia în considerare separat cazurile t > 0 Si t< 0 . Acest lucru se poate face scriind semne sau oriunde este necesar. Presupunând că semnul de sus se referă la cazul t > 0 , iar cea inferioară - la cazul t< 0 . Odată cu transformarea ulterioară, aceste semne, de regulă, se anulează reciproc.

Este posibilă și o a doua abordare, în care integrandu-ul și rezultatul integrării pot fi considerate ca funcții cuprinzătoare din variabile complexe. Atunci nu trebuie să acordați atenție semnelor din expresiile radicale. Această abordare este aplicabilă dacă integrandul este analitic, adică o funcție diferențiabilă a unei variabile complexe. În acest caz, atât integrandul, cât și integrala sa sunt funcții cu mai multe valori. Prin urmare, după integrare, la înlocuirea valorilor numerice, este necesar să se selecteze o ramură cu o singură valoare (suprafața Riemann) a integrandului și pentru aceasta să se selecteze ramura corespunzătoare a rezultatului integrării.

Iraționalitate liniară fracțională

Acestea sunt integrale cu rădăcini din aceeași funcție liniară fracțională:
,
unde R este o funcție rațională, sunt numere raționale, m 1, n 1, ..., m s, n s sunt numere întregi, α, β, γ, δ - numere reale.
Astfel de integrale se reduc la integrala raționalului funcții de substituție:
, unde n este numitorul comun al numerelor r 1, ..., r s.

Rădăcinile pot să nu provină neapărat dintr-o funcție fracțională liniară, ci și dintr-o funcție liniară (γ = 0, δ = 1), sau pe variabila de integrare x (α = 1, β = 0, γ = 0, δ = 1).

Iată exemple de astfel de integrale:
, .

Integrale din binoame diferențiale

Integralele din binoamele diferențiale au forma:
,
unde m, n, p sunt numere raționale, a, b sunt numere reale.
Astfel de integrale se reduc la integrale ale funcțiilor raționale în trei cazuri.

1) Dacă p este un număr întreg. Înlocuirea x = t N, unde N este numitorul comun al fracțiilor m și n.
2) Dacă - un număr întreg. Înlocuirea a x n + b = t M, unde M este numitorul numărului p.
3) Dacă - un număr întreg. Înlocuirea a + b x - n = t M, unde M este numitorul numărului p.

În alte cazuri, astfel de integrale nu sunt exprimate prin funcții elementare.

Uneori, astfel de integrale pot fi simplificate folosind formule de reducere:
;
.

Integrale care conțin rădăcina pătrată a unui trinom pătrat

Astfel de integrale au forma:
,
unde R este o funcție rațională. Pentru fiecare astfel de integrală există mai multe metode de rezolvare.
1) Utilizarea transformărilor conduce la integrale mai simple.
2) Aplicați substituții trigonometrice sau hiperbolice.
3) Aplicați substituții Euler.

Să ne uităm la aceste metode mai detaliat.

1) Transformarea funcției integrand

Aplicând formula și efectuând transformări algebrice, reducem funcția integrand la forma:
,
unde φ(x), ω(x) sunt funcții raționale.

Tipul I

Integrala formei:
,
unde P n (x) este un polinom de grad n.

Astfel de integrale se găsesc prin metoda coeficienților nedeterminați folosind identitatea:

.
Diferențiând această ecuație și echivalând laturile stângă și dreaptă, găsim coeficienții A i.

Tipul II

Integrala formei:
,
unde P m (x) este un polinom de gradul m.

Înlocuirea t = (x - α) -1 această integrală este redusă la tipul anterior. Dacă m ≥ n, atunci fracția ar trebui să aibă o parte întreagă.

tipul III

Aici facem înlocuirea:
.
După care integrala va lua forma:
.
În continuare, constantele α, β trebuie alese astfel încât coeficienții lui t din numitor să devină zero:
B = 0, B 1 = 0.
Apoi integrala se descompune în suma de integrale de două tipuri:
,
,
care sunt integrate prin substituții:
u 2 = A 1 t 2 + C 1,
v 2 = A 1 + C 1 t -2 .

2) Substituții trigonometrice și hiperbolice

Pentru integralele de forma , a > 0 ,
avem trei substituții principale:
;
;
;

Pentru integrale, a > 0 ,
avem următoarele înlocuiri:
;
;
;

Și în sfârșit, pentru integrale, a > 0 ,
înlocuirile sunt după cum urmează:
;
;
;

3) Substituții Euler

De asemenea, integralele pot fi reduse la integrale ale funcțiilor raționale ale uneia dintre cele trei substituții Euler:
, pentru a > 0;
, pentru c > 0;
, unde x 1 este rădăcina ecuației a x 2 + b x + c = 0. Dacă această ecuație are rădăcini reale.

Integrale eliptice

În concluzie, luați în considerare integralele de forma:
,
unde R este o funcție rațională, . Astfel de integrale se numesc eliptice. ÎN vedere generala nu se exprimă prin funcţii elementare. Există însă cazuri când există relații între coeficienții A, B, C, D, E, în care astfel de integrale sunt exprimate prin funcții elementare.

Mai jos este un exemplu legat de polinoamele reflexive. Astfel de integrale sunt calculate folosind substituții:
.

Exemplu

Calculați integrala:
.

Soluţie

Să facem o înlocuire.

.
Aici la x > 0 (u> 0 ) ia semnul superior ′+ ′. La x< 0 (u< 0 ) - inferior '- '.


.

Răspuns

Referinte:
N.M. Gunther, R.O. Kuzmin, Culegere de probleme de matematică superioară, „Lan”, 2003.

Să ne amintim anii noștri fericiți de școală. Pionierii lecțiilor de matematică, atunci când au început să studieze rădăcinile, în primul rând s-au familiarizat cu rădăcina pătrată. Vom merge pe aceeași cale.

Exemplul 1

Găsi integrală nedefinită

Analizând integrandul, ajungi la concluzia tristă că nu seamănă deloc cu integralele de tabel. Acum, dacă toate aceste lucruri ar fi la numărător, ar fi simplu. Sau nu ar fi nicio rădăcină dedesubt. Sau un polinom. Nici unul metode de integrare a fracțiilor Nici ei nu ajută. Ce să fac?

Tehnica principală de rezolvare a integralelor iraționale este o schimbare a variabilei, care ne va scăpa de TOATE rădăcinile din integrand.

Rețineți că această înlocuire este puțin ciudată implementare tehnică diferă de metoda de înlocuire „clasică”, care a fost discutată în lecție Metoda înlocuirii în integrală nedefinită.

În acest exemplu, trebuie să înlocuiți X = t 2, adică în loc de „X” de sub rădăcină vom avea t 2. De ce înlocuirea? Pentru că, și ca urmare a înlocuirii, rădăcina va dispărea.

Dacă în loc de rădăcina pătrată am avut-o în integrand, atunci am fi făcut înlocuirea. Dacă ar fi fost acolo, l-ar fi executat și așa mai departe.

Bine, ne vom transforma în. Ce se întâmplă cu polinomul? Nu există dificultăți: dacă , atunci .

Rămâne de văzut în ce se va transforma diferența. Acest lucru se face astfel:

Ne luăm înlocuitorul și agățăm diferențiale pe ambele părți:

(o vom descrie cât mai detaliat posibil).

Formatul soluției ar trebui să arate cam așa:

.

Să înlocuim: .

.

(1) Efectuăm înlocuirea după înlocuire (cum, ce și unde este deja luat în considerare).

(2) Luăm constanta în afara integralei. Numătorul și numitorul sunt reduse cu t.

(3) Integrala rezultată este tabelară o pregătim pentru integrare selectând pătratul.

(4) Integrați peste tabel folosind formula

.

(5) Efectuăm înlocuirea inversă. Cum se face? Ne amintim de ce am dansat: dacă, atunci.

Exemplul 2

Aflați integrala nedefinită

Acesta este un exemplu pentru decizie independentă. Soluție completăși răspunsul la sfârșitul lecției.

Cumva s-a dovedit că în exemplele 1, 2 există un numărător „gol” cu o diferenţială singuratică. Să reparăm situația.

Exemplul 3

Aflați integrala nedefinită

O analiză preliminară a integrandului arată din nou că nu există o cale ușoară. Și, prin urmare, trebuie să scapi de rădăcină.

Să înlocuim: .

In spate sub rădăcină notăm ÎNTREAGA expresie. Înlocuirea din exemplele anterioare nu este potrivită aici (mai precis, se poate face, dar nu va scăpa de rădăcină).

Agățăm diferențe pe ambele părți:

Am rezolvat numărătorul. Cu ce ​​să faci la numitor?

Luăm înlocuitorul nostru și exprimăm din el: .

Daca atunci.

(1) Efectuăm înlocuirea în conformitate cu înlocuirea efectuată.

(2) Pieptene numărătorul. Aici am ales să nu scot constanta din semnul integral (poți face acest lucru, nu va fi o eroare)

(3) Extindem numărătorul într-o sumă. Încă o dată, vă recomandăm insistent să citiți primul paragraf al lecției Integrarea unor fracții. Gimp cu extinderea numărătorului într-o sumă în integrale iraţionale vor fi destule, este foarte important să exersezi această tehnică.

(4) Împărțiți numărătorul la numitor termen cu termen.

(5) Folosim proprietățile de liniaritate ale integralei nedefinite. În a doua integrală selectăm un pătrat pentru integrarea ulterioară conform tabelului.

(6) Integram conform tabelului. Prima integrală este destul de simplă, în a doua o folosim formulă tabelară logaritm ridicat .

(7) Efectuăm înlocuirea inversă. Dacă am efectuat o înlocuire, atunci înapoi: .

Exemplul 4

Aflați integrala nedefinită

Acesta este un exemplu pe care să-l rezolvi singur dacă nu ai lucrat cu atenție exemplele anterioare, vei face o greșeală! Soluție completă și răspuns la sfârșitul lecției.

În principiu, integrale cu mai multe identic rădăcini, de exemplu

etc. Ce să faci dacă integrandul are rădăcini diferit?

Exemplul 5

Aflați integrala nedefinită

Aici vine socoteala pentru numătorii goli. Când o astfel de integrală este întâlnită, de obicei devine înfricoșătoare. Însă temerile sunt în zadar după ce se face o înlocuire potrivită, integrandu-ul devine mai simplu. Sarcina este următoarea: să efectuați o înlocuire cu succes pentru a scăpa imediat de TOATE rădăcinile.

Atunci când se administrează rădăcini diferite, este convenabil să adere la o anumită schemă de soluții.

Mai întâi, scriem funcția integrand pe o schiță și prezentăm toate rădăcinile sub forma:

Vom fi interesați numitori grade:

Integrale complexe

Acest articol încheie subiectul integralelor nedefinite și include integrale pe care le consider destul de complexe. Lecția a fost creată la solicitările repetate ale vizitatorilor care și-au exprimat dorința ca pe site să fie analizate exemple mai dificile.

Se presupune că cititorul acestui text este bine pregătit și știe să aplice tehnicile de integrare de bază. Manichinii și oamenii care nu sunt foarte încrezători în integrale ar trebui să se refere la prima lecție - Integrală nedefinită. Exemple de soluții, unde poți stăpâni subiectul aproape de la zero. Studenții mai experimentați se pot familiariza cu tehnici și metode de integrare care nu au fost încă întâlnite în articolele mele.

Ce integrale vor fi luate în considerare?

Mai întâi vom lua în considerare integralele cu rădăcini, pentru soluția cărora o folosim succesiv înlocuire variabilăȘi integrare pe părți. Adică, într-un exemplu, două tehnici sunt combinate simultan. Și încă mai mult.

Apoi ne vom familiariza cu interesante și originale metoda de reducere a integralei la sine. Destul de multe integrale sunt rezolvate astfel.

Al treilea număr al programului va fi integrale ale fracțiilor complexe, care au trecut peste casa de casă în articolele anterioare.

În al patrulea rând, vor fi analizate integrale suplimentare din funcțiile trigonometrice. În special, există metode care evită înlocuirea trigonometrică universală consumatoare de timp.

(2) În integrand, împărțim numărătorul la numitor termen cu termen.

(3) Folosim proprietatea de liniaritate a integralei nedefinite. În ultima integrală imediat puneți funcția sub semnul diferențial.

(4) Luăm integralele rămase. Rețineți că într-un logaritm puteți folosi paranteze mai degrabă decât un modul, deoarece .

(5) Efectuăm o înlocuire inversă, exprimând „te” din înlocuirea directă:

Studenții masochiști pot diferenția răspunsul și pot obține integrandul original, așa cum tocmai am făcut eu. Nu, nu, am făcut verificarea în sensul corect =)

După cum puteți vedea, în timpul soluției a trebuit să folosim chiar mai mult de două metode de soluție, așa că pentru a face față unor astfel de integrale aveți nevoie de abilități de integrare încrezătoare și destul de multă experiență.

În practică, desigur, rădăcina pătrată este mai comună, iată trei exemple pentru a o rezolva singur:

Exemplul 2

Aflați integrala nedefinită

Exemplul 3

Aflați integrala nedefinită

Exemplul 4

Aflați integrala nedefinită

Aceste exemple sunt de același tip, astfel încât soluția completă de la sfârșitul articolului va fi doar pentru Exemplul 2. Exemplele 3-4 au aceleași răspunsuri; Ce înlocuitor să folosiți la începutul deciziilor cred că este evident. De ce am ales exemple de același tip? Deseori găsite în rolul lor. Mai des, poate, doar ceva de genul .

Dar nu întotdeauna, când sub funcțiile arctangente, sinus, cosinus, exponențial și alte funcții există o rădăcină a unei funcții liniare, trebuie să utilizați mai multe metode simultan. Într-un număr de cazuri, este posibil să „coborâți ușor”, adică imediat după înlocuire, se obține o integrală simplă, care poate fi luată cu ușurință. Cea mai ușoară dintre sarcinile propuse mai sus este Exemplul 4, în care, după înlocuire, se obține o integrală relativ simplă.

Prin reducerea integralei la sine

O metodă inteligentă și frumoasă. Să aruncăm o privire la clasicii genului:

Exemplul 5

Aflați integrala nedefinită

Sub rădăcină este un binom pătratic, iar când se încearcă integrarea acest exemplu ibricul poate suferi ore întregi. O astfel de integrală este luată în părți și redusă la sine. În principiu, nu este dificil. Dacă știi cum.

Să notăm integrala luată în considerare Literă latină si sa incepem sa rezolvam:

Să integrăm pe părți:

(1) Pregătiți funcția integrand pentru împărțirea termen cu termen.

(2) Împărțim termenul funcției integrand cu termen. Poate că nu este clar pentru toată lumea, dar o voi descrie mai detaliat:

(3) Folosim proprietatea de liniaritate a integralei nedefinite.

(4) Luați ultima integrală (logaritmul „lung”).

Acum să ne uităm la începutul soluției:

Si pana la final:

Ce s-a întâmplat? Ca urmare a manipulărilor noastre, integrala a fost redusă la sine!

Să echivalăm începutul și sfârșitul:

Deplasați-vă în partea stângă cu o schimbare de semn:

Și luăm deuce la partea dreapta. Ca urmare:

Constanta, strict vorbind, ar fi trebuit adăugată mai devreme, dar am adăugat-o la sfârșit. Recomand cu tărie să citiți care este rigoarea aici:

Notă: Mai strict, etapa finală a soluției arată astfel:

Prin urmare:

Constanta poate fi redesemnată prin . De ce poate fi redenumit? Pentru că încă o acceptă orice valori, iar în acest sens nu există nicio diferență între constante și.
Ca urmare:

Un truc similar cu renotare constantă este utilizat pe scară largă în ecuatii diferentiale. Și acolo voi fi strict. Și aici permit o astfel de libertate doar pentru a nu vă încurca cu lucruri inutile și pentru a concentra atenția tocmai asupra metodei de integrare în sine.

Exemplul 6

Aflați integrala nedefinită

O altă integrală tipică pentru soluție independentă. Soluție completă și răspuns la sfârșitul lecției. Va fi o diferență cu răspunsul din exemplul anterior!

Dacă sub rădăcina pătrată există un trinom pătrat, atunci soluția se rezumă în orice caz la două exemple analizate.

De exemplu, luați în considerare integrala . Tot ce trebuie să faci este mai întâi selectați un pătrat complet:
.
În continuare, se efectuează o înlocuire liniară, care face „fără consecințe”:
, rezultând integrala . Ceva familiar, nu?

Sau acest exemplu, cu un binom pătratic:
Selectați un pătrat complet:
Și, după înlocuirea liniară, obținem integrala, care se rezolvă și folosind algoritmul deja discutat.

Să ne uităm la două exemple tipice despre cum să reduceți o integrală la sine:
– integrală a exponenţialului înmulţit cu sinus;
– integrală a exponenţialului înmulţit cu cosinus.

În integralele enumerate pe părți va trebui să integrați de două ori:

Exemplul 7

Aflați integrala nedefinită

Integrandul este exponențialul înmulțit cu sinusul.

Integram de două ori pe părți și reducem integrala la sine:


Ca urmare a dublei integrări pe părți, integrala a fost redusă la sine. Echivalăm începutul și sfârșitul soluției:

O mutam în partea stângă cu o schimbare de semn și ne exprimăm integrala:

Gata. În același timp, este indicat să pieptănați partea dreaptă, adică. scoateți exponentul din paranteze și puneți sinusul și cosinusul între paranteze într-o ordine „frumoasă”.

Acum să revenim la începutul exemplului, sau mai precis, la integrarea pe părți:

Am desemnat exponentul ca. Se pune întrebarea: este exponentul care trebuie notat întotdeauna cu? Nu este necesar. De fapt, în integrala considerată fundamental nu contează, ce înțelegem prin , am fi putut merge în altă direcție:

De ce este posibil acest lucru? Deoarece exponențialul se transformă în sine (atât în ​​timpul diferențierii, cât și în timpul integrării), sinusul și cosinusul se transformă reciproc unul în celălalt (din nou, atât în ​​timpul diferențierii, cât și în timpul integrării).

Adică putem desemna și o funcție trigonometrică. Dar, în exemplul luat în considerare, acest lucru este mai puțin rațional, deoarece vor apărea fracții. Dacă doriți, puteți încerca să rezolvați acest exemplu folosind a doua metodă, răspunsurile trebuie să se potrivească.

Exemplul 8

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Înainte de a vă decide, gândiți-vă ce este mai avantajos în acest caz să desemnați ca , o funcție exponențială sau o funcție trigonometrică? Soluție completă și răspuns la sfârșitul lecției.

Și, desigur, nu uitați că majoritatea răspunsurilor această lecție Este destul de ușor de verificat prin diferențiere!

Exemplele luate în considerare nu au fost cele mai complexe. În practică, integralele sunt mai frecvente acolo unde constanta este atât în ​​exponent, cât și în argumentul funcției trigonometrice, de exemplu: . Mulți oameni se vor încurca într-o astfel de integrală, iar eu deseori mă confund. Faptul este că există o mare probabilitate de apariție a fracțiilor în soluție și este foarte ușor să pierzi ceva prin nepăsare. În plus, există o probabilitate mare de eroare în semne, rețineți că exponentul are semnul minus, iar acest lucru introduce o dificultate suplimentară.

În etapa finală, rezultatul este adesea cam așa:

Chiar și la sfârșitul soluției, ar trebui să fii extrem de atent și să înțelegi corect fracțiile:

Integrarea fracțiilor complexe

Ne apropiem încet de ecuatorul lecției și începem să luăm în considerare integralele fracțiilor. Din nou, nu toate sunt super complexe, doar că dintr-un motiv sau altul exemplele au fost puțin „în afara subiectului” în alte articole.

Continuând tema rădăcinilor

Exemplul 9

Aflați integrala nedefinită

În numitorul de sub rădăcină există un trinom pătrat plus un „apendice” sub forma unui „X” în afara rădăcinii. O integrală de acest tip poate fi rezolvată folosind o substituție standard.

Noi decidem:

Înlocuirea aici este simplă:

Să ne uităm la viața după înlocuire:

(1) După înlocuire, reducem termenii de sub rădăcină la un numitor comun.
(2) O scoatem de sub rădăcină.
(3) Numătorul și numitorul se reduc cu . În același timp, sub rădăcină, am rearanjat termenii în comanda convenabila. Cu o oarecare experiență, pașii (1), (2) pot fi săriți prin efectuarea orală a acțiunilor comentate.
(4) Integrala rezultată, după cum vă amintiți din lecție Integrarea unor fracții, se decide metoda de extracție a pătratului complet. Selectați un pătrat complet.
(5) Prin integrare obținem un logaritm „lung” obișnuit.
(6) Efectuăm înlocuirea inversă. Dacă inițial , apoi înapoi: .
(7) Acțiunea finală are drept scop îndreptarea rezultatului: sub rădăcină aducem din nou termenii la un numitor comun și îi scoatem de sub rădăcină.

Exemplul 10

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Aici se adaugă o constantă la singurul „X”, iar înlocuirea este aproape aceeași:

Singurul lucru pe care trebuie să-l faceți în plus este să exprimați „x” de la înlocuirea care se efectuează:

Soluție completă și răspuns la sfârșitul lecției.

Uneori, într-o astfel de integrală poate exista un binom pătratic sub rădăcină, acest lucru nu schimbă metoda de soluție, va fi și mai simplu. Simte diferenta:

Exemplul 11

Aflați integrala nedefinită

Exemplul 12

Aflați integrala nedefinită

Scurte soluții și răspunsuri la sfârșitul lecției. Trebuie remarcat faptul că Exemplul 11 ​​este exact integrală binomială, a cărui metodă de rezolvare a fost discutată la clasă Integrale ale funcțiilor iraționale.

Integrală a unui polinom necompunebil de gradul 2 la putere

(polinom la numitor)

Mai rar, dar totuși găsit în exemple practice tip de integrală.

Exemplul 13

Aflați integrala nedefinită

Dar să revenim la exemplul cu numar norocos 13 (sincer, nu am ghicit corect). Această integrală este, de asemenea, una dintre cele care pot fi destul de frustrante dacă nu știi cum să rezolvi.

Soluția începe cu o transformare artificială:

Cred că toată lumea înțelege deja cum se împarte numărătorul la numitor termen cu termen.

Integrala rezultată este luată în părți:

Pentru o integrală de forma ( – număr natural) derivăm recurent formula de reducere:
, Unde – integrală cu un grad mai mic.

Să verificăm validitatea acestei formule pentru integrala rezolvată.
În acest caz: , , folosim formula:

După cum puteți vedea, răspunsurile sunt aceleași.

Exemplul 14

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Soluția eșantion utilizează formula de mai sus de două ori consecutiv.

Dacă sub gradul este indivizibil trinom pătrat, atunci soluția este redusă la un binom prin izolarea pătratului perfect, de exemplu:

Ce se întâmplă dacă există un polinom suplimentar în numărător? În acest caz, se utilizează metoda coeficienților nedeterminați, iar funcția integrand este extinsă într-o sumă de fracții. Dar în practica mea există un astfel de exemplu niciodată întâlnit, așa că am ratat acest caz în articol Integrale ale funcțiilor fracționale-raționale, îl voi omite acum. Dacă încă întâlniți o astfel de integrală, uitați-vă la manual - totul este simplu acolo. Nu cred că este indicat să includem materiale (chiar simple), probabilitatea de întâlnire care tinde spre zero.

Integrarea funcțiilor trigonometrice complexe

Adjectivul „complex” pentru majoritatea exemplelor este din nou în mare măsură condiționat. Să începem cu tangente și cotangente în grade înalte. Din punctul de vedere al metodelor de rezolvare folosite, tangenta și cotangenta sunt aproape același lucru, așa că voi vorbi mai mult despre tangentă, ceea ce înseamnă că metoda demonstrată de rezolvare a integralei este valabilă și pentru cotangente.

În lecția de mai sus ne-am uitat substituție trigonometrică universală pentru a rezolva un anumit tip de integrale din funcții trigonometrice. Dezavantajul substituției trigonometrice universale este că utilizarea sa duce adesea la integrale greoaie cu calcule dificile. Și în unele cazuri, înlocuirea trigonometrică universală poate fi evitată!

Să luăm în considerare un alt exemplu canonic, integrala unuia împărțită la sinus:

Exemplul 17

Aflați integrala nedefinită

Aici puteți folosi substituția trigonometrică universală și puteți obține răspunsul, dar există o modalitate mai rațională. Voi oferi soluția completă cu comentarii pentru fiecare pas:

(1) Folosim formula trigonometrică pentru sinusul unui unghi dublu.
(2) Efectuăm o transformare artificială: Împărțim la numitor și înmulțim cu .
(3) Folosind formula binecunoscută la numitor, transformăm fracția într-o tangentă.
(4) Aducem funcția sub semnul diferențial.
(5) Luați integrala.

Pereche exemple simple pentru soluție independentă:

Exemplul 18

Aflați integrala nedefinită

Notă: primul pas ar trebui să fie utilizarea formulei de reducere și efectuați cu atenție acțiuni similare cu exemplul anterior.

Exemplul 19

Aflați integrala nedefinită

Ei bine, acesta este un exemplu foarte simplu.

Soluții complete și răspunsuri la sfârșitul lecției.

Cred că acum nimeni nu va avea probleme cu integralele:
și așa mai departe.

Care este ideea metodei? Ideea este de a folosi transformări și formule trigonometrice pentru a organiza doar tangente și derivata tangentă în integrand. Acesta este, despre care vorbim despre inlocuire: . În exemplele 17-19 am folosit de fapt acest înlocuitor, dar integralele erau atât de simple încât problema a fost tratată printr-o acțiune echivalentă - subsumând funcția sub semnul diferențial.

Raționament similar, așa cum am menționat deja, poate fi efectuat pentru cotangentă.

Există, de asemenea, o condiție prealabilă formală pentru aplicarea înlocuirii de mai sus:

Suma puterilor cosinusului și sinusului este un număr întreg negativ PAR, De exemplu:

pentru integrală – un număr întreg negativ PAR.

! Notă : dacă integrandul conține DOAR un sinus sau DOAR un cosinus, atunci integrala este luată și pentru un grad impar negativ (cele mai simple cazuri sunt în Exemplele nr. 17, 18).

Să ne uităm la câteva sarcini mai semnificative bazate pe această regulă:

Exemplul 20

Aflați integrala nedefinită

Suma puterilor sinusului și cosinusului: 2 – 6 = –4 este un număr întreg negativ PAR, ceea ce înseamnă că integrala poate fi redusă la tangente și derivata ei:

(1) Să transformăm numitorul.
(2) Folosind formula binecunoscută, obținem .
(3) Să transformăm numitorul.
(4) Folosim formula .
(5) Aducem funcția sub semnul diferențial.
(6) Efectuăm înlocuirea. Este posibil ca studenții mai experimentați să nu efectueze înlocuirea, dar este totuși mai bine să înlocuiți tangenta cu o singură literă - există mai puțin risc de confuzie.

Exemplul 21

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur.

Stai acolo, rundele campionatului sunt pe cale să înceapă =)

Adesea, integrandul conține un „mezul”:

Exemplul 22

Aflați integrala nedefinită

Această integrală conține inițial o tangentă, care duce imediat la un gând deja familiar:

Voi lăsa transformarea artificială chiar de la început și pașii rămași fără comentarii, deoarece totul a fost deja discutat mai sus.

Câteva exemple creative pentru propria dvs. soluție:

Exemplul 23

Aflați integrala nedefinită

Exemplul 24

Aflați integrala nedefinită

Da, în ele, desigur, puteți reduce puterile sinusului și cosinusului și puteți utiliza o substituție trigonometrică universală, dar soluția va fi mult mai eficientă și mai scurtă dacă este efectuată prin tangente. Soluție completă și răspunsuri la sfârșitul lecției