Классификация систем параллельной обработки данных. Параллельная обработка данных

Параллельная обработка

Параллельная обработка

Параллельная обработка - модель выполнения прикладного процесса одновременно группой процессоров. Различают три способа реализация параллелизма:
-1- способ SIMD работы с одним потоком команд и несколькими потоками данных, при котором все процессоры, работающие по одной программе, обрабатывают собственные массивы данных под управлением ведущего процессора;
-2- способ MIMD работы с несколькими потоками команд и несколькими потоками данных, при котором процессоры работают по своим программам независимо друг от друга, лишь эпизодически связываясь друг с другом;
-3- способ MISD работы с несколькими потоками команд и одним потоком данных.

По-английски: Parallel processing

Финансовый словарь Финам .


Смотреть что такое "Параллельная обработка" в других словарях:

    Параллельная обработка - Один из видов обработки информации, когда несколько операций могут выполняться одновременно. В отличие от осознанной обработки, которая обычно выполняется последовательно, этот вид обработки происходит без осознанных усилий. Например, читая эти… …

    - (parallel processing) Метод работы на компьютере, при котором две или несколько частей программы выполняются не последовательно, а параллельно. Строго говоря, применение данного метода возможно только на компьютерах, обладающих двумя и более… … Словарь бизнес-терминов

    параллельная обработка - — Тематики электросвязь, основные понятия EN parallel processing …

    параллельная обработка - lygiagretusis apdorojimas statusas T sritis automatika atitikmenys: angl. parallel processing vok. Parallelverarbeitung rus. параллельная обработка, f pranc. traitement en parallèle, m … Automatikos terminų žodynas

    параллельная обработка информации - модель обработки информации в мозге головном, согласно коей информация проходит ряд преобразований в определенных «функциональных блоках» мозга так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких… … Большая психологическая энциклопедия

    ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ИНФОРМАЦИИ - См. обработка информации, параллельная …

    Способ параллельной обработки данных большим числом процессоров, реализующий способ организации параллелизма MIMD. По английски: Massively Parallel Processing Синонимы английские: MPP См. также: Параллельная обработка Финансовый словарь Финам … Финансовый словарь

    ОБРАБОТКА, ПАРАЛЛЕЛЬНАЯ - Обработка информации, при которой более чем одна последовательность операций по обработке проводятся одновременно, или параллельно. Обработка может включать чрезвычайно низкий уровень, несимволические компоненты, такие, которые используются в… … Толковый словарь по психологии

    параллельная конвейерная обработка - lygiagretusis konvejerinis apdorojimas statusas T sritis radioelektronika atitikmenys: angl. parallel pipelining vok. Parallel Pipelineverarbeitung, f rus. параллельная конвейерная обработка, f pranc. traitement de pipeline parallèle, m … Radioelektronikos terminų žodynas

    одновременная обработка - параллельная обработка — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы параллельная обработка EN simultaneous processing … Справочник технического переводчика

Книги

  • Параллельная обработка данных
  • Параллельная обработка данных , А. О. Лацис. В учебном пособии дан углубленный систематический обзор технологий параллельной обработки данных. Основное внимание уделено традиционным программным технологиям параллельного программирования…

Пути повышения производительности ВС заложены в ее архитектуре. С одной стороны это совокупность процессоров, блоков памяти, устройств ввода/вывода ну и конечно способов их соединения, т.е. коммуникационной среды. С другой стороны, это собственно действия ВС по решению некоторой задачи, а это операции над командами и данными. Вот собственно и вся основная база для проведения параллельной обработки. Параллельная обработка, воплощая идею одновременного выполнения нескольких действий, имеет несколько разновидностей: суперскалярность, конвейеризация, SIMD – расширения, Hyper Threading , многоядерность. В основном эти виды параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть, пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут (параллельная обработка данных), да еще и с песнями (параллельная обработка команд).

Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых. Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций.

Суперскалярность. Как и в предыдущем примере, только при построении конвейера используют несколько программно-аппаратных реализаций функциональных устройств, например два или три АЛУ, три или четыре устройства выборки.

Hyper Threading . Перспективное направление развитие современных микропроцессоров, основанное на многонитевой архитектуре. Основное препятствие на пути повышения производительности за счет увеличения функциональных устройств – это организация эффективной загрузки этих устройств. Если сегодняшние программные коды не в состоянии загрузить работой все функциональные устройства, то можно разрешить процессору выполнять более чем одну задачу (нить), чтобы дополнительные нити загрузили – таки все ФИУ (очень похоже на многозадачность).

Многоядерность . Можно, конечно, реализовать мультипроцессирование на уровне микросхем, т.е. разместить на одном кристалле несколько процессоров (Power 4). Но если взять микропроцессор вместе с памятью как ядра системы, то несколько таких ядер на одном кристалле создадут многоядерную структуру. При этом в кристалле интегрируются функции (например, интерфейсы сетевых и телекоммуникационных систем) для выполнения которых обычно используются наборы микросхем (процессоры Motorola MPC8260, Power 4).

Реализация высокопроизводительной вычислительной техники в настоящее время идёт по четырем основным направлениям.

1. Векторно-конвейерные компьютеры . Конвейерные функциональные устройства и набор векторных команд - это две особенности таких машин. В отличие от традиционного подхода, векторные команды оперируют целыми массивами независимых данных, что позволяет эффективно загружать доступные конвейеры, т.е. команда вида A=B+C может означать сложение двух массивов, а не двух чисел. Характерным представителем данного направления является семейство векторно-конвейерных компьютеров CRAY куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте 2000 года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).

2. Массивно-параллельные компьютеры с распределенной памятью. Идея построения компьютеров этого класса тривиальна: возьмем серийные микропроцессоры, снабдим каждый своей локальной памятью, соединим посредством некоторой коммуникационной среды - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить еще процессоров, если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию и т.п.

Однако есть и решающий "минус", сводящий многие "плюсы" на нет. Дело в том, что самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти сформируем вычислительный узел. Если полученной вычислительной мощности не достаточно, то объединим несколько узлов высокоскоростными каналами. Подобную архитектуру называют кластерной SV1 , HP Exemplar , Sun StarFire , NEC SX-5 , последние модели IBM SP2

3. Параллельные компьютеры с общей памятью . Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые - число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим. В данное направление входят многие современные многопроцессорные SMP-компьютеры или, например, отдельные узлы компьютеров HP Exemplar и Sun StarFire .

4. Кластерные системы. Последнее направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти сформируем вычислительный узел. Если полученной вычислительной мощности не достаточно, то объединим несколько узлов высокоскоростными каналами. Подобную архитектуру называют кластерной , и по такому принципу построены CRAY SV1 , HP Exemplar , Sun StarFire , NEC SX-5 , последние модели IBM SP2 и другие. Именно это направление является в настоящее время наиболее перспективным для конструирования компьютеров с рекордными показателями производительности.

На протяжении всей истории развития вычислительной техники делались попытки найти какую-то общую классификацию, под которую подпадали бы все возможные направления развития компьютерных архитектур. Ни одна из таких классификаций не могла охватить все разнообразие разрабатываемых архитектурных решений и не выдерживала испытания временем. Тем не менее в научный оборот попали и широко используются ряд терминов, которые полезно знать не только разработчикам, но и пользователям компьютеров.

Любая вычислительная система (будь то супер-ЭВМ или персональный компьютер) достигает своей наивысшей производительности благодаря использованию высокоскоростных элементов и параллельному выполнению большого числа операций. Именно возможность параллельной работы различных устройств системы (работы с перекрытием) является основой ускорения основных операций.

Параллельные ЭВМ часто подразделяются по классификации Флинна на машины типа SIMD (Single Instruction Multiple Data - с одним потоком команд при множественном потоке данных) и MIMD (Multiple Instruction Multiple Data - с множественным потоком команд при множественном потоке данных). Как и любая другая, приведенная выше классификация несовершенна: существуют машины прямо в нее не попадающие, имеются также важные признаки, которые в этой классификации не учтены. В частности, к машинам типа SIMD часто относят векторные процессоры, хотя их высокая производительность зависит от другой формы параллелизма - конвейерной организации машины. Многопроцессорные векторные системы, типа Cray Y-MP, состоят из нескольких векторных процессоров и поэтому могут быть названы MSIMD (Multiple SIMD).

Классификация Флинна не делает различия по другим важным для вычислительных моделей характеристикам, например, по уровню "зернистости" параллельных вычислений и методам синхронизации.

Можно выделить четыре основных типа архитектуры систем параллельной обработки:

1) Конвейерная и векторная обработка.

Основу конвейерной обработки составляет раздельное выполнение некоторой операции в несколько этапов (за несколько ступеней) с передачей данных одного этапа следующему. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько операций. Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых операндов соответствует максимальной производительности конвейера. Если происходит задержка, то параллельно будет выполняться меньше операций и суммарная производительность снизится. Векторные операции обеспечивают идеальную возможность полной загрузки вычислительного конвейера.



При выполнении векторной команды одна и та же операция применяется ко всем элементам вектора (или чаще всего к соответствующим элементам пары векторов). Для настройки конвейера на выполнение конкретной операции может потребоваться некоторое установочное время, однако затем операнды могут поступать в конвейер с максимальной скоростью, допускаемой возможностями памяти. При этом не возникает пауз ни в связи с выборкой новой команды, ни в связи с определением ветви вычислений при условном переходе. Таким образом, главный принцип вычислений на векторной машине состоит в выполнении некоторой элементарной операции или комбинации из нескольких элементарных операций, которые должны повторно применяться к некоторому блоку данных. Таким операциям в исходной программе соответствуют небольшие компактные циклы.

2) Машины типа SIMD. Машины типа SIMD состоят из большого числа идентичных процессорных элементов, имеющих собственную память. Все процессорные элементы в такой машине выполняют одну и ту же программу. Очевидно, что такая машина, составленная из большого числа процессоров, может обеспечить очень высокую производительность только на тех задачах, при решении которых все процессоры могут делать одну и ту же работу. Модель вычислений для машины SIMD очень похожа на модель вычислений для векторного процессора: одиночная операция выполняется над большим блоком данных.

В отличие от ограниченного конвейерного функционирования векторного процессора, матричный процессор (синоним для большинства SIMD-машин) может быть значительно более гибким. Обрабатывающие элементы таких процессоров - это универсальные программируемые ЭВМ, так что задача, решаемая параллельно, может быть достаточно сложной и содержать ветвления. Обычное проявление этой вычислительной модели в исходной программе примерно такое же, как и в случае векторных операций: циклы на элементах массива, в которых значения, вырабатываемые на одной итерации цикла, не используются на другой итерации цикла.

Модели вычислений на векторных и матричных ЭВМ настолько схожи, что эти ЭВМ часто обсуждаются как эквивалентные.

3) Машины типа MIMD. Термин "мультипроцессор" покрывает большинство машин типа MIMD и (подобно тому, как термин "матричный процессор" применяется к машинам типа SIMD) часто используется в качестве синонима для машин типа MIMD. В мультипроцессорной системе каждый процессорный элемент (ПЭ) выполняет свою программу достаточно независимо от других процессорных элементов. Процессорные элементы, конечно, должны как-то связываться друг с другом, что делает необходимым более подробную классификацию машин типа MIMD. В мультипроцессорах с общей памятью (сильносвязанных мультипроцессорах) имеется память данных и команд, доступная всем ПЭ. С общей памятью ПЭ связываются с помощью общей шины или сети обмена. В противоположность этому варианту в слабосвязанных многопроцессорных системах (машинах с локальной памятью) вся память делится между процессорными элементами и каждый блок памяти доступен только связанному с ним процессору. Сеть обмена связывает процессорные элементы друг с другом.

Базовой моделью вычислений на MIMD-мультипроцессоре является совокупность независимых процессов, эпизодически обращающихся к разделяемым данным. Существует большое количество вариантов этой модели. На одном конце спектра - модель распределенных вычислений, в которой программа делится на довольно большое число параллельных задач, состоящих из множества подпрограмм. На другом конце спектра - модель потоковых вычислений, в которых каждая операция в программе может рассматриваться как отдельный процесс. Такая операция ждет своих входных данных (операндов), которые должны быть переданы ей другими процессами. По их получении операция выполняется, и полученное значение передается тем процессам, которые в нем нуждаются. В потоковых моделях вычислений с большим и средним уровнем гранулярности, процессы содержат большое число операций и выполняются в потоковой манере.

4) Многопроцессорные машины с SIMD-процессорами.

Многие современные супер-ЭВМ представляют собой многопроцессорные системы, в которых в качестве процессоров используются векторные процессоры или процессоры типа SIMD. Такие машины относятся к машинам класса MSIMD.

Языки программирования и соответствующие компиляторы для машин типа MSIMD обычно обеспечивают языковые конструкции, которые позволяют программисту описывать "крупнозернистый" параллелизм. В пределах каждой задачи компилятор автоматически векторизует подходящие циклы. Машины типа MSIMD, как можно себе представить, дают возможность использовать лучший из этих двух принципов декомпозиции: векторные операции ("мелкозернистый" параллелизм) для тех частей программы, которые подходят для этого, и гибкие возможности MIMD-архитектуры для других частей программы.

Многопроцессорные системы за годы развития вычислительной техники претерпели ряд этапов своего развития. Исторически первой стала осваиваться технология SIMD. Однако в настоящее время наметился устойчивый интерес к архитектурам MIMD. Этот интерес главным образом определяется двумя факторами:

  1. Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей.
  2. Архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах.

Одной из отличительных особенностей многопроцессорной вычислительной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью. Модель обмена настолько важна для многопроцессорной системы, что многие характеристики производительности и другие оценки выражаются отношением времени обработки к времени обмена, соответствующим решаемым задачам. Существуют две основные модели межпроцессорного обмена: одна основана на передаче сообщений, другая - на использовании общей памяти. В многопроцессорной системе с общей памятью один процессор осуществляет запись в конкретную ячейку, а другой процессор производит считывание из этой ячейки памяти. Чтобы обеспечить согласованность данных и синхронизацию процессов, обмен часто реализуется по принципу взаимно исключающего доступа к общей памяти методом "почтового ящика".

В архитектурах с локальной памятью непосредственное разделение памяти невозможно. Вместо этого процессоры получают доступ к совместно используемым данным посредством передачи сообщений по сети обмена. Эффективность схемы коммуникаций зависит от протоколов обмена, основных сетей обмена и пропускной способности памяти и каналов обмена.

Часто, и притом необосновано, в машинах с общей памятью и векторных машинах затраты на обмен не учитываются, так как проблемы обмена в значительной степени скрыты от программиста. Однако накладные расходы на обмен в этих машинах имеются и определяются конфликтами шин, памяти и процессоров. Чем больше процессоров добавляется в систему, тем больше процессов соперничают при использовании одних и тех же данных и шины, что приводит к состоянию насыщения. Модель системы с общей памятью очень удобна для программирования и иногда рассматривается как высокоуровневое средство оценки влияния обмена на работу системы, даже если основная система в действительности реализована с применением локальной памяти и принципа передачи сообщений.

В сетях с коммутацией каналов и в сетях с коммутацией пакетов по мере возрастания требований к обмену следует учитывать возможность перегрузки сети. Здесь межпроцессорный обмен связывает сетевые ресурсы: каналы, процессоры, буферы сообщений. Объем передаваемой информации может быть сокращен за счет тщательной функциональной декомпозиции задачи и тщательного диспетчирования выполняемых функций.

Таким образом, существующие MIMD-машины распадаются на два основных класса в зависимости от количества объединяемых процессоров, которое определяет и способ организации памяти и методику их межсоединений.

К первой группе относятся машины с общей (разделяемой) основной памятью, объединяющие до нескольких десятков (обычно менее 32) процессоров. Сравнительно небольшое количество процессоров в таких машинах позволяет иметь одну централизованную общую память и объединить процессоры и память с помощью одной шины. При наличии у процессоров кэш-памяти достаточного объема высокопроизводительная шина и общая память могут удовлетворить обращения к памяти, поступающие от нескольких процессоров. Поскольку имеется единственная память с одним и тем же временем доступа, эти машины иногда называются UMA (Uniform Memory Access). Такой способ организации со сравнительно небольшой разделяемой памятью в настоящее время является наиболее популярным. Структура подобной системы представлена на рис. 10.1.

Рис. 10.1. Типовая архитектура мультипроцессорной системы с общей памятью.

Вторую группу машин составляют крупномасштабные системы с распределенной памятью. Для того чтобы поддерживать большое количество процессоров приходится распределять основную память между ними, в противном случае полосы пропускания памяти просто может не хватить для удовлетворения запросов, поступающих от очень большого числа процессоров. Естественно при таком подходе также требуется реализовать связь процессоров между собой. На рис. 10.2 показана структура такой системы.

С ростом числа процессоров просто невозможно обойти необходимость реализации модели распределенной памяти с высокоскоростной сетью для связи процессоров. С быстрым ростом производительности процессоров и связанным с этим ужесточением требования увеличения полосы пропускания памяти, масштаб систем (т.е. число процессоров в системе), для которых требуется организация распределенной памяти, уменьшается, также как и уменьшается число процессоров, которые удается поддерживать на одной разделяемой шине и общей памяти.

Распределение памяти между отдельными узлами системы имеет два главных преимущества. Во-первых, это эффективный с точки зрения стоимости способ увеличения полосы пропускания памяти, поскольку большинство обращений могут выполняться параллельно к локальной памяти в каждом узле. Во-вторых, это уменьшает задержку обращения (время доступа) к локальной памяти. Эти два преимущества еще больше сокращают количество процессоров, для которых архитектура с распределенной памятью имеет смысл.

Обычно устройства ввода/вывода, также как и память, распределяются по узлам и в действительности узлы могут состоять из небольшого числа (2-8) процессоров, соединенных между собой другим способом. Хотя такая кластеризация нескольких процессоров с памятью и сетевой интерфейс могут быть достаточно полезными с точки зрения эффективности в стоимостном выражении, это не очень существенно для понимания того, как такая машина работает, поэтому мы пока остановимся на системах с одним процессором на узел. Основная разница в архитектуре, которую следует выделить в машинах с распределенной памятью заключается в том, как осуществляется связь и какова логическая модель памяти.

Рис. 10.2. Типовая архитектура машины с распределенной памятью.

«Параллелизм как способ параллельной обработки данных»

Котовск2010

Введение

Стремительное развитие науки и проникновение человеческой мысли во все новые области вместе с решением поставленных прежде проблем постоянно порождает поток вопросов и ставит новые, как правило, более сложные, задачи. Во времена первых компьютеров казалось, что увеличение их быстродействия в 100 раз позволит решить большинство проблем, однако гигафлопная производительность современных суперЭВМ сегодня является явно недостаточной для многих ученых. Электро и гидродинамика, сейсморазведка и прогноз погоды, моделирование химических соединений, исследование виртуальной реальности – вот далеко не полный список областей науки, исследователи которых используют каждую возможность ускорить выполнение своих программ.

Наиболее перспективным и динамичным направлением увеличения скорости решения прикладных задач является широкое внедрение идей параллелизма в работу вычислительных систем. К настоящему времени спроектированы и опробованы сотни различных компьютеров, использующих в своей архитектуре тот или иной вид параллельной обработки данных. В научной литературе и технической документации можно найти более десятка различных названий, характеризующих лишь общие принципы функционирования параллельных машин: векторно-конвейерные, массивно-параллельные, компьютеры с широким командным словом, систолические массивы, гиперкубы, спецпроцессоры и мультипроцессоры, иерархические и кластерные компьютеры, dataflow, матричные ЭВМ и многие другие. Если же к подобным названиям для полноты описания добавить еще и данные о таких важных параметрах, как, например, организация памяти, топология связи между процессорами, синхронность работы отдельных устройств или способ исполнения арифметических операций, то число различных архитектур станет и вовсе необозримым.

Попытки систематизировать все множество архитектур начались после опубликования М. Флинном первого варианта классификации вычислительных систем в конце 60-х годов и непрерывно продолжаются по сей день. Классификация очень важна для лучшего понимания исследуемой предметной области, однако нахождение удачной классификации может иметь целый ряд существенных следствий.

Основной вопрос классификации – что заложить в её основу, может решаться по-разному, в зависимости от того, для кого данная классификация создается и на решение какой задачи направлена. Так, часто используемое деление компьютеров на персональные ЭВМ, рабочие станции, мини–ЭВМ, большие универсальные ЭВМ, минисупер-ЭВМ и супер-ЭВМ, позволяет, быть может, примерно прикинуть стоимость компьютера. Однако она не приближает пользователя к пониманию того, что от него потребуется для написания программы, работающий на пределе производительности параллельного компьютера, т.е. того, ради чего он и решился его использовать.

Классификация должна помогать разобраться с тем, что представляет собой каждая архитектура, как они взаимосвязаны между собой, что необходимо учитывать для написания действительно эффективных программ или же на какой класс архитектур следует ориентироваться для решения требуемого класса задач. Одновременно удачная классификация могла бы подсказать возможные пути совершенствования компьютеров и в этом смысле она должна быть достаточно содержательной. Трудно рассчитывать на нахождение нетривиальных «белых пятен», например, в классификации по стоимости, однако размышления о возможной систематике с точки зрения простоты и технологичности программирования могут оказаться чрезвычайно полезными для определения направлений поиска новых архитектур.

1. Параллельные вычислительные системы

Параллельные вычислительные системы – это физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.

Идея распараллеливания вычислений основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Обычно параллельные вычисления требуют координации действий. Параллельные вычисления существуют в нескольких формах: параллелизм на уровне битов, параллелизм на уровне инструкций, параллелизм данных, параллелизм задач. Параллельные вычисления использовались много лет в основном в высокопроизводительных вычислениях, но в последнее время к ним возрос интерес вследствие существования физических ограничений на рост тактовой частоты процессоров. Параллельные вычисления стали доминирующей парадигмой в архитектуре компьютеров, в основном в форме многоядерных процессоров.

Писать программы для параллельных систем сложнее, чем для последовательных, так как конкуренция за ресурсы представляет новый класс потенциальных ошибок в программном обеспечении (багов), среди которых состояние гонки является самой распространённой. Взаимодействие и синхронизация между процессами представляют большой барьер для получения высокой производительности параллельных систем. В последние годы также стали рассматривать вопрос о потреблении электроэнергии параллельными компьютерами. Характер увеличения скорости программы в результате распараллеливания объясняется законом Амдала.

Если при вычислении не применяются циклические (повторяющиеся) действия, то N вычислительных модулей никогда не выполнят работу в N раз быстрее, чем один единственный вычислительный модуль.

Например, для быстрой сортировки массива на двухпроцессорной машине можно разделить массив пополам и сортировать каждую половину на отдельном процессоре. Сортировка каждой половины может занять разное время, поэтому необходима синхронизация.

2. Типы параллелизма

2.1 Параллелизм на уровне битов

Эта форма параллелизма основана на увеличении размера машинного слова. Увеличение размера машинного слова уменьшает количество операций, необходимых процессору для выполнения действий над переменными, чей размер превышает размер машинного слова. К примеру: на 8-битном процессоре нужно сложить два 16-битных целых числа. Для этого вначале нужно сложить нижние 8 бит чисел, затем сложить верхние 8 бит и к результату их сложения прибавить значение флага переноса. Итого 3 инструкции. С 16-битным процессором можно выполнить эту операцию одной инструкцией.

Исторически 4-битные микропроцессоры были заменены 8-битными, затем появились 16-битные и 32-битные. 32-битные процессоры долгое время были стандартом в повседневных вычислениях. С появлением технологии x86–64 для этих целей стали использовать 64-битные процессоры.

2.2 Параллелизм на уровне инструкций

Компьютерная программа – это, по существу, поток инструкций, выполняемых процессором. Но можно изменить порядок этих инструкций, распределить их по группам, которые будут выполняться параллельно, без изменения результата работы всей программы. Данный приём известен как параллелизм на уровне инструкций. Продвижения в развитии параллелизма на уровне инструкций в архитектуре компьютеров происходили с середины 1980-х до середины 1990-х.

Современные процессоры имеют многоступенчатый конвейер команд. Каждой ступени конвейера соответствует определённое действие, выполняемое процессором в этой инструкции на этом этапе. Процессор с N ступенями конвейера может иметь одновременно до N различных инструкций на разном уровне законченности. Классический пример процессора с конвейером – это RISC-процессор с 5-ю ступенями: выборка инструкции из памяти (IF), декодирование инструкции (ID), выполнение инструкции (EX), доступ к памяти (MEM), запись результата в регистры (WB). Процессор Pentium 4 имеет 35-тиступенчатый конвейер.

Некоторые процессоры, дополнительно к использованию конвейеров, обладают возможностью выполнять несколько инструкций одновременно, что даёт дополнительный параллелизм на уровне инструкций. Возможна реализация данного метода при помощи суперскалярности, когда инструкции могут быть сгруппированы вместе для параллельного выполнения (если в них нет зависимости между данными). Также возможны реализации с использованием явного параллелизма на уровне инструкций: VLIW и EPIC.

2.3 Параллелизм данных

Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Различные фрагменты такого массива обрабатываются на векторном процессоре или на разных процессорах параллельной машины. Распределением данных между процессорами занимается программа. Векторизация или распараллеливание в этом случае чаще всего выполняется уже на этапе компиляции – перевода исходного текста программы в машинные команды. Роль программиста в этом случае обычно сводится к заданию настроек векторной или параллельной оптимизации компилятору, директив параллельной компиляции, использованию специализированных языков для параллельных вычислений.

2.4 Параллелизм задач (многопоточность)

Стиль программирования, основанный на параллелизме задач, подразумевает, что вычислительная задача разбивается на несколько относительно самостоятельных подзадач и каждый процессор загружается своей собственной подзадачей.

2.5 Распределенные операционные системы

Распределённая ОС, динамически и автоматически распределяя работы по различным машинам системы для обработки, заставляет набор сетевых машин работать как виртуальный унипроцессор. Пользователь распределённой ОС, вообще говоря, не имеет сведений о том, на какой машине выполняется его работа.

Распределённая ОС существует как единая операционная система в масштабах вычислительной системы. Каждый компьютер сети, работающей под управлением распределённой ОС, выполняет часть функций этой глобальной ОС. Распределённая ОС объединяет все компьютеры сети в том смысле, что они работают в тесной кооперации друг с другом для эффективного использования всех ресурсов компьютерной сети.

Министерство образования и науки Российской Федерации

ФГБОУ ВПО «Брянская государственная инженерно-технологическая

академия»

Кафедра информационных технологий

Последовательная и параллельная обработка информации

Расчётно-графическая работа № 1

по дисциплине

«Технологии обработки информации»

Вариант № 16

РГР-02068025.230400.084

Брянск 2015

Введение 3

Параллельная обработка информации 4

Системы с разделением памяти 6

Параллельная SQL-обработка 7

Последовательная обработка информации 9

Простые пакетные системы 10

Список литературы 13

Введение

В данной расчетно-графической рассматривается последовательная и параллельная обработка информации. Приведены примеры для каждой из них.

Последовательная обработка информации – это поочередное прохождение информации от входа до выхода через ряд преобразований (этапов), так что в каждый отрезок времени (специфический для данного блока) преобразование осуществляется лишь в одном функциональном блоке, а информация к нему поступает только от предыдущего блока.

Параллельная обработка информации – модель обработки информации, согласно которой информация проходит ряд преобразований в определенных функциональных блоках – так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких блоках.

Параллельная обработка информации

Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и параллельность.

Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! Так, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и сделать это за то же время, что машина прежде находилась на конвейере.

Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки. В ядре Pentium 4 на разных стадиях выполнения может одновременно находиться до 126 микроопераций. Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.

Функционирование многих приложений, работающих в однопроцессорных компьютерных системах, может заметно улучшиться при использовании средств параллельной обработки информации. Далее представлены основные концепции параллельной обработки и архитектуры многопроцессорных компьютеров.

Когда несколько приложений запрашивают обработку своих заданий на однопроцессорном компьютере, весь объем работы приходится выполнять его единственному процессору. Целью параллельной обработки обычно является повышение производительности приложений. Когда приложение выдает запрос на выполнение задания для многопроцессорного компьютера, компьютер разбивает это задание на логические подзадачи, а затем обрабатывает их с помощью нескольких процессоров параллельно, что уменьшает время выполнения задания. Число подзадач, получаемых в результате разбиения одного большого задания, называется степенью параллельности. Уменьшение времени обработки информации, необходимого для выполнения задачи, прямо пропорционально степени параллельности. Быстродействие систем с параллельной обработкой стараются повышать так, чтобы обеспечить максимальную производительность каждого процессора системы.