Виды параллелизма. Процесс параллельной обработки данных

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Северо - Казахстанский государственный университет им. М. Козыбаева

Факультет информационных технологии

Кафедра Информационных систем

Процесс параллельной обработки данных

Выполнила: Махкамбаева А.С.

Проверил: Касимов И. Р.

Петропавловск, 2014

Введение

В однопроцессорных системах имеет место так называемый псевдопараллелизм - хотя в каждый момент времени процессор занят обработкой одной конкретной задачи на другую, достигается иллюзия параллельного исполнения нескольких задач. В многопроцессорных системах задача максимально эффективного использования каждого конкретного процессора также решается путем переключения между процессами, однако тут, наряду с псевдопараллелизмом, имеет место и действительный параллелизм, когда на разных процессорах в один и тот же момент времени исполняются разные процессы.

Идея распараллеливания обработки данных основана на том, что большинство задач может быть разделено на набор меньших задач, которые могут быть решены одновременно. Процессы, выполнение которых хотя бы частично перекрывается по времени, называются параллельными.

В 1967 году Джин Амдал сформулировал закон ограничения роста производительности при распараллеливании вычислений: «В случае, когда задача разделяется на несколько частей, суммарное время ее выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента». Согласно этому закону, ускорение выполнения программы за счет распараллеливания её инструкций ограничено временем, необходимым для выполнения её последовательных инструкций.

Классификация по Флинну

процесс синхронизация доступ планирование

В основе классификации лежат два понятия: потоки команд и потоки данных. Система с N процессорами имеет N счетчиков команд и, следовательно, N потоков команд.

Потоки команд

Потоки данных

Названия

SISD (Single Instruction, Single Data) -- архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя одним потоком данных. Для данного класса возможен только псевдопараллелизм.

SIMD (Single Instruction, Multiple Data) -- архитектура компьютера, позволяющая обеспечить параллелизм на уровне данных. Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию, созданную единственным блоком управления, относительно разных данных. В любой момент в каждом процессоре выполняется одна и та же команда, но обрабатываются различные данные. Реализуется синхронный параллельный вычислительный процесс.

MISD (Multiple Instruction, Simple Data) -- архитектура компьютера, где несколько функциональных модулей (два или более) выполняют различные операции над одними данными. Отказоустойчивые компьютеры, выполняющие одни и те же команды избыточно с целью обнаружения ошибок, как следует из определения, принадлежат к этому типу.

MIMD (Multiple Instruction, Multiple Data) -- архитектура компьютера, где несколько независимых процессоров работают как часть большой системы. Обработка разделена на несколько потоков (обеспечивается параллелизм), каждый с собственным аппаратным состоянием процессора, в рамках единственного определённого программным обеспечением процесса или в пределах множественных процессов.

Среди систем MIMD можно выделить два подкласса: системы с общей оперативной памятью и системы с распределенной памятью. Для систем первого типа характерно то, что любой процессор имеет непосредственный доступ к любой ячейке этой общей оперативной памяти. Системы с распределенной памятью представляют собою обычно объединение компьютерных узлов. Под узлом понимается самостоятельный процессор со своей локальной оперативной памятью. В данных системах любой процессор не может произвольно обращаться к памяти другого процессора.

OpenMP (Open Multi-Processing) -- открытый стандарт для распараллеливания программ на языках С, С++ и Фортран. Описывает совокупность команд, которые предназначены для программирования многопоточных приложений на многопроцессорных системах с общей памятью. OpenMP реализует параллельные вычисления с помощью многопоточности, в которой «главный» поток создает набор подчиненных потоков и задача распределяется между ними.

Задачи, выполняемые потоками параллельно, также как и данные, требуемые для выполнения этих задач, описываются с помощью специальных директив препроцессора соответствующего языка -- прагм. Программа на C должна включать файл "omp.h".

Следующий цикл складывает массивы «a» и «b» поэлементно. Все, что требуется для параллельного выполнения в этом случае - одна прагма, вставленная непосредственно перед циклом.

#pragma omp parallel for

for (i=0; i < numPixels; i++)

c[i] = a[i]+b[i];

В этом примере используется "распределение нагрузки" - общий термин, применяемый в OpenMP для описания распределения рабочей нагрузки между потоками. Если распределение нагрузки применяется с директивой for, как показано в примере, итерации цикла распределяются между несколькими потоками, так что каждая итерация цикла выполняется только один раз, параллельно одним или несколькими потоками. OpenMP определяет, сколько потоков следует создать, а также наилучший способ создания, синхронизации и уничтожения потоков. Все, что требуется от программиста - указать OpenMP, какой именно цикл следует распараллелить.

Баланс нагрузки (распределение рабочей нагрузки поровну между потоками) является одним из наиболее важных атрибутов параллельного выполнения приложения. Без него некоторые потоки могут завершить работу значительно раньше остальных, что приводит к простою вычислительных ресурсов и потере производительности.

По умолчанию, OpenMP предполагает, что все итерации цикла занимают одинаковое время. В результате OpenMP распределяет итерации цикла между потоками примерно поровну и таким образом, чтобы минимизировать вероятность возникновения конфликтов памяти вследствие ее неправильного совместного использования.

#pragma omp parallel for

for (i=2; i < 10; i++)

factorial[i] = i * factorial;

Если цикл соответствует всем ограничениям и компилятор распараллелил цикл, это не гарантирует правильной работы, поскольку может существовать зависимость данных.

Зависимость данных существует, если различные итерации цикла (точнее говоря, итерация, которая выполняется в другом потоке) выполняют чтение или запись общей памяти.

MPI (Message Passing Interface) -- программный интерфейс для передачи информации, который позволяет обмениваться сообщениями между процессами, выполняющими одну задачу. В первую очередь MPI ориентирован на системы с распределенной памятью. Существуют реализации для языков Фортран, С и С++.

В первой версии MPI количество процессов (ветвей) задается в момент запуска программы, т.е. не существует возможности порождать ветви динамически. В версии 2.0 эта возможность появилась.

При запуске приложения все его порожденные ветви образуют группу ветвей (упорядоченное множество ветвей). С каждой группой связано «коммуникационное поле», описывающее всех участников обмена данными и общие для всех участников данные. Для описания коммуникационного поля служат коммутаторы. Все операции обмена данными могут происходить только внутри одного коммуникационного поля (это обеспечивается с помощью проверки коммутаторов).

Для C, общий формат имеет вид

rc = MPI_Xxxxx(parameter, ...);

Заметим, что регистр здесь важен. Например, MPI должно быть заглавным, так же как и первая буква после подчеркивания. Все последующие символы долны быть в нижнем регистре. Переменная rc - есть некий код возврата, имеющий целый тип. В случае успеха, он устанавливается в MPI_SUCCESS. Программа на C должна включать файл "mpi.h".

Сообщения MPI состоят из двух основных частей: отправляемые/получаемые данные, и сопроводительная информация (записи на конверте /оболочке/), которая помогает отправить данные по определенному маршруту.

Данным соответствует старт буфера, число, тип данных. Буфер - это просто память, которую компилятор выделил для переменной (часто массива) в вашей программе. Старт буфера - адрес, где данные начинаются. Например, начало массива в вашей программе. Число - количество элементов (не байтов!) данных в сообщении. Тип данных определяет размер одного элемента.

К информации «на обложке» относятся ранг в коммуникаторе - идентификатор процесса в коммуникационном поле, тег - произвольное число, которое помогает различать сообщения и сам коммуникатор, проверка которого обеспечивает передачу внутри одного коммуникационного поля.

Параллельная обработка данных

Существует несколько способов разделения обязанностей между процессами:

* делегирование («управляющий-рабочий»);

* сеть с равноправными узлами;

* конвейер;

* «изготовитель-потребитель».

Каждая модель характеризуется собственной декомпозицией работ, которая определяет, кто отвечает за создание потоков и при каких условиях они создаются.

В модели делегирования один поток («управляющий») создает потоки («рабочие») и назначает каждому из них задачу. Управляющему потоку нужно ожидать до тех пор, пока все потоки не завершат выполнение своих задач. Управляющий поток делегирует задачу, которую каждый рабочий поток должен выполнить, путем задания некоторой функции. Вместе с задачей на рабочий поток возлагается и ответственность за ее выполнение и получение результатов. Кроме того, на этапе получения результатов возможна синхронизация действий с управляющим (или другим) потоком.

Если в модели делегирования есть управляющий поток, который делегирует задачи рабочим потокам, то в модели с равноправными узлами все потоки имеют одинаковый рабочий статус. Несмотря на существование одного потока, который изначально создает все потоки, необходимые для выполнения всех задач, этот поток считается рабочим потоком, но он не выполняет никаких функций по делегированию задач. В этой модели нет никакого централизованного потока, но на рабочие потоки возлагается большая ответственность. Все равноправные потоки могут обрабатывать запросы из одного входного потока данных, либо каждый рабочий поток может иметь собственный входной поток данных, за который он отвечает. Рабочие потоки могут нуждаться во взаимодействии и разделении ресурсов.

Модель конвейера подобна ленте сборочного конвейера в том, что она предполагает наличие потока элементов, которые обрабатываются поэтапно. На каждом этапе отдельный поток выполняет некоторые операции над определенной совокупностью входных данных. Когда эта совокупность данных пройдет все этапы, обработка всего входного потока данных будет завершена. Этот подход позволяет обрабатывать несколько входных потоков одновременно. Каждый поток отвечает за получение промежуточных результатов, делая их доступными для следующего этапа (или следующего потока) конвейера Последний этап (или поток) генерирует результаты работы конвейера в целом.

В модели «изготовитель-потребитель» существует поток-«изготовитель», который готовит данные, потребляемые потоком-«потребителем». Данные сохраняются в блоке памяти, разделяемом между потоками «изготовителем» и «потребителем». Поток-изготовитель» должен сначала приготовить данные, которые затем поток-потребитель» получит. Такому процессу необходима синхронизация. Если поток-изготовитель» будет поставлять данные гораздо быстрее, чем поток-«потребитель» сможет их потреблять, поток-«изготовитель» несколько раз перезапишет результаты, полученные им ранее, прежде чем поток-«потребитель» успеет их обработать. Но если поток-«потребитель» будет принимать данные гораздо быстрее, чем поток-изготовитель» сможет их поставлять, поток-«потребитель» будет либо снова обрабатывать уже обработанные им данные, либо попытается принять еще не подготовленные данные.

Синхронные и асинхронные процессы

Синхронные процессы - процессы с перемежающимся выполнением, когда один процесс приостанавливает свое выполнение до тех пор, пока не завершится другой. Например, процесс А, родительский, при выполнении создает процесс В, сыновний. Процесс А приостанавливает свое выполнение до тех пор, пока не завершится процесс В. После завершения процесса В его выходной код помещается в таблицу процессов. Тем самым процесс А уведомляется о завершении процесса В. Процесс А может продолжить выполнение, а затем завершиться или завершиться немедленно.

Асинхронные процессы выполняются независимо один от другого. Это означает, что процесс А будет выполняться до конца безотносительно к процессу В. Между асинхронными процессами могут быть прямые родственные («родитель-сын») отношения, а могут и не быть. Если процесс А создает процесс В, они оба могут выполняться независимо, но в некоторый момент родитель должен получить статус завершения сыновнего процесса. Если между процессами нет прямых родственных отношений, у них может быть общий родитель.

Асинхронные процессы могут совместно использовать такие ресурсы, как файлы или память. Это может потребовать (или не потребовать) синхронизации или взаимодействия при разделении ресурсов.

Синхронизация процессов -- приведение нескольких процессов к такому их протеканию, когда определённые стадии разных процессов совершаются в определённом порядке, либо одновременно.

Синхронизация необходима в любых случаях, когда параллельно протекающим процессам необходимо взаимодействовать. Для её организации используются средства межпроцессного взаимодействия. Среди наиболее часто используемых средств -- сигналы и сообщения, семафоры и мьютексы, каналы, совместно используемая память.

Межпроцессное взаимодействие

Одним из решений проблем синхронизации доступа к критическим ресурсам является запрет всех прерываний непосредственно после входа процесса в критическую секцию и разрешение их перед самым выходом из нее. Если прерывания запрещены, то переключение процессов не происходит, так как передача управления планировщику может быть реализована только с использованием прерываний.

Этот подход, однако, имеет ряд существенных недостатков. Нет никаких гарантий, что процесс, запретивший прерывания, не зациклится в своей критической секции, тем самым приведя систему в полностью неработоспособное состояние. Кроме того, этот метод не годится для многопроцессорной системы, так как запрещение прерываний на одном из процессоров никак не влияет на исполнение процессов на других процессорах ВС, и эти процессоры по-прежнему имеют доступ к разделяемому ресурсу.

Сообщение - метод взаимодействия, когда один процесс посылает сообщение второму, а тот получает его. Если сообщение не пришло - второй процесс блокируется (ожидает сообщения) или сразу возвращает код ошибки.

С системами передачи сообщения связано большое количество проблем. Например, сообщение может потеряться. Чтобы избежать потери, получатель отсылает обратно сообщение с подтверждением приема. Если отправитель не получает подтверждения через некоторое время, он отсылает сообщение еще раз.

Теперь представим, что сообщение получено, а подтверждение до отправителя не дошло. Отправитель пошлет его еще раз и до получателя оно дойдет дважды. Крайне важно, чтобы получатель мог отличить копию предыдущего сообщения от нового. Это легко решается с помощью внедрения номера сообщения в его тело.

Семафор -- объект, позволяющий войти в заданный участок кода (обычно - критическую секцию) не более чем n процессам.

С семафором возможны три операции:

1) init(n); - инициализация счетчика (число, переданное счетчику, является количеством процессов, которые могут одновременно обращаться к критической секции)

2) wait(); - ждать пока счётчик станет больше 0; после этого уменьшить счётчик на единицу.

3) leave(); - увеличить счетчик на единицу.

Перед обращением процесса к критической секции необходимо вызвать метод wait(), после выполнения которого гарантировано, что количество процессов, одновременно обращающихся к ней не превышает n-1. Тогда процесс может продолжить работу и выполнить метод leave() после работы с критической секцией, тем самым дав знать остальным процессам, что “место освободилось”.

Если количество вызовов методов wait() и leave() не совпадает, то работа системы будет не корректной так же, как и в случае взаимной блокировки процессов - ситуации, при которой несколько процессов находятся в состоянии бесконечного ожидания ресурсов, занятых самими этими процессами:

Процесс 1

Процесс 2

Хочет захватить A и B, начинает с A

Хочет захватить A и B, начинает с B

Захватывает ресурс A

Захватывает ресурс B

Ожидает освобождения ресурса B

Ожидает освобождения ресурса A

Взаимная блокировка

Отладка взаимных блокировок, как и других ошибок синхронизации, усложняется тем, что для их возникновения нужны специфические условия одновременного выполнения нескольких процессов (в вышеописанном примере если бы процесс 1 успел захватить ресурс B до процесса 2, то ошибка не произошла бы).

Мьютексы -- это простейшие двоичные семафоры, которые могут находиться в одном из двух состояний -- отмеченном или неотмеченном (открыт и закрыт соответственно). Когда какой-либо поток, принадлежащий любому процессу, становится владельцем объекта mutex, последний переводится в неотмеченное состояние. Если задача освобождает мьютекс, его состояние становится отмеченным.

Задача мьютекса -- защита объекта от доступа к нему других потоков, отличных от того, который завладел мьютексом. В каждый конкретный момент только один поток может владеть объектом, защищённым мьютексом. Если другому потоку будет нужен доступ к переменной, защищённой мьютексом, то этот поток засыпает до тех пор, пока мьютекс не будет освобождён.

Test-and-set -- простая неразрывная (атомарная) процессорная инструкция, которая копирует значение переменной в регистр, и устанавливает некое новое значение. Во время исполнения данной инструкции процессор не может прервать её выполнение и переключится на выполнение другого потока. Если используется многопроцессорная архитектура, то пока один процессор выполняет эту инструкцию с ячейкой памяти, то другие процессоры не могут получить доступ к этой ячейке.

Алгоритм Деккера - первое известное корректное решение проблемы взаимного исключения в конкурентном программировании. Он позволяет двум потокам выполнения совместно использовать неразделяемый ресурс без возникновения конфликтов, используя только общую память для коммуникации.

Если два процесса пытаются перейти в критическую секцию одновременно, алгоритм позволит это только одному из них, основываясь на том, чья в этот момент очередь. Если один процесс уже вошёл в критическую секцию, другой будет ждать, пока первый покинет её. Это реализуется при помощи использования двух флагов (индикаторов "намерения" войти в критическую секцию) и переменной turn (показывающей, очередь какого из процессов наступила).

Одним из преимуществ алгоритма является то, что он не требует специальных Test-and-set инструкций и вследствие этого он легко переносим на разные языки программирования и архитектуры компьютеров. Недостатками можно назвать его применимость к случаю только с двумя процессами и использование Busy waiting вместо приостановки процесса (использование busy waiting предполагает, что процессы должны проводить минимальное количество времени внутри критической секции).

Алгоритм Петерсона -- программный алгоритм взаимного исключения потоков исполнения кода. Хотя изначально был сформулирован для 2-х поточного случая, алгоритм может быть обобщён для произвольного количества потоков. Алгоритм условно называется программным, так как не основан на использовании специальных команд процессора для запрета прерываний, блокировки шины памяти и т. д., используются только общие переменные памяти и цикл для ожидания входа в критическую секцию исполняемого кода.

Перед тем как начать исполнение критической секции, поток должен вызвать специальную процедуру (назовем ее EnterRegion) со своим номером в качестве параметра. Она должна организовать ожидание потока своей очереди входа в критическую секцию. После исполнения критической секции и выхода из нее, поток вызывает другую процедуру (назовем ее LeaveRegion), после чего уже другие потоки смогут войти в критическую область.

Общий принцип алгоритмом Петерсона для 2-х потоков:

Размещено на http://www.allbest.ru/

Планирование процессов

Планирование - обеспечение поочередного доступа процессов к одному процессору.

Планировщик - отвечающая за это часть операционной системы.

Алгоритм планирования без вытеснения (неприоритетный) - не требует прерывание по аппаратному таймеру, процесс останавливается только когда блокируется или завершает работу.

Алгоритм планирования с вытеснением (приоритетный) - требует прерывание по аппаратному таймеру, процесс работает только отведенный период времени, после этого он приостанавливается по таймеру, чтобы передать управление планировщику.

Процессы размещаются в приоритетных очередях в соответствии со стратегией Планирования. В системах UNIX/Linux используются две стратегии планирования: FIFO (сокр. от First In First Out, т.е. первым прибыл, первым обслужен) и RR (сокр. От round-robin, т.е. циклическая).

При использовании стратегии FIFO процессы назначаются процессору в соответствии со временем поступления в очередь.

RR-планирование совпадает с FIFO-планированием с одним исключением: после истечения кванта времени процесс помещается в конец своей приоритетной очереди, и процессору назначается следующий (по очереди) процесс.

Для обеспечения параллельной работы процессов может подойти приоритетное планирование. Каждому процессу присваивается приоритет, и управление передается процессу с самым высоким приоритетом. Приоритет может быть динамический и статический. Динамический приоритет может устанавливаться так: П=1/Т, где Т- часть использованного в последний раз кванта (если использовано 1/50 кванта, то приоритет 50. Если использован весь квант, то приоритет 1).

Часто процессы объединяют по приоритетам в группы, и используют приоритетное планирование среди групп, но внутри группы используют циклическое планирование.

Размещено на Allbest.ur

Подобные документы

    Структура, специфика и архитектура многопроцессорных систем; классификация Флинна. Организация взаимного исключения для синхронизации доступа к разделяемым ресурсам. Запрещение прерываний; семафоры с драйверами устройств. Кластеры распределения нагрузки.

    курсовая работа , добавлен 07.06.2014

    Управление основной и вторичной памятью компьютера. Доступ пользователей к различным общим сетевым ресурсам. Система поддержки командного интерпретатора. Распределение ресурсов между пользователями, программами и процессами, работающими одновременно.

    презентация , добавлен 24.01.2014

    Улучшение параметров модулей памяти. Функционирование и взаимодействие операционной системы с оперативной памятью. Анализ основных типов, параметров оперативной памяти. Программная часть с обработкой выполнения команд и размещением в оперативной памяти.

    курсовая работа , добавлен 02.12.2009

    Основные функции и процессы подсистемы управления процессами. Диспетчеризация процессов (потоков). Алгоритмы планирования выполнения потоков. Назначение и разновидности приоритетов в операционных системах. Функции подсистемы управления основной памятью.

    презентация , добавлен 20.12.2013

    Абстрактные модели и способы параллельной обработки данных, допустимая погрешность вычислений. Понятие параллельного процесса, их синхронизация и гранулы распараллеливания, определение закона Амдаля. Архитектура многопроцессорных вычислительных систем.

    дипломная работа , добавлен 09.09.2010

    Написание программы, реализующей работу мультипроцессорной системы с общей памятью, которая обрабатывает очереди заявок переменной длины. Анализ типовой архитектуры мультипроцессорной системы. Описание процедур и переменных, используемых в программе.

    курсовая работа , добавлен 21.06.2013

    Достоинства многопроцессорных систем. Создание программы, реализующей работу мультипроцессорной системы с общей памятью по обработке различного количества заявок, а также различного количества процессоров. Модели вычислений на векторных и матричных ЭВМ.

    курсовая работа , добавлен 21.06.2013

    Управление процессами - часть операционной системы, влияющая на функционирование вычислительной машины. Контекст дескриптор процесса и алгоритм его планирования. Средства синхронизации и взаимодействия процессов. Критическая секция, тупики и нити.

    лекция , добавлен 05.02.2009

    Сущность и содержание основных понятий операционных систем: процессы, память, файлы. Классификация по различным признакам и типы процессов, направления взаимосвязи. Принципы планирования работы процессора. Порядок управления невиртуальной памятью.

    презентация , добавлен 24.07.2013

    Классификация параллельных ВС. Системы с общей и распределенной памятью. Конвейеры операций. Производительность идеального конвейера. Суперскалярные архитектуры. VLIW-архитектура. Предсказание переходов. Матричные процессоры. Законы Амдала и Густафсона.

суперкомпьютер - это очень мощная ЭВМ с производительностью свыше 10 MFLOPS . Сегодня этот результат перекрывают уже не только рабочие станции, но, по пиковой производительности , и ПК. В начале 1990-х годов границу проводили уже около отметки в 300 MFLOPS . В 2001 году специалисты двух ведущих "суперкомпьютерных" стран, США и Японии, договорились о подъеме планки до 5 GFLOPS .

Таким образом, основные признаки, характеризующие супер-ЭВМ , следующие:

  • самая высокая производительность;
  • самый современный технологический уровень (например, GaAs -технология);
  • специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами);
  • цена, обычно свыше 1-2 млн. долларов.

Какой из факторов является решающим в достижении современных фантастических показателей производительности? Обратимся к историческим фактам. На одном из самых первых компьютеров EDSAC (1949 г.), имевшем время такта 2 мкс, можно было выполнить в среднем 100 арифметических операций в секунду. А пиковая производительность суперкомпьютера CRAY C90 с временем такта порядка 4 нс - около 1 миллиарда арифметических операций в секунду. Таким образом, производительность компьютеров за этот период возросла примерно в 10 миллионов раз, а время такта уменьшилось лишь в 500 раз. Следовательно, увеличение производительности происходило и за счет других факторов, важнейшим среди которых является использование новых архитектурных решений, в частности - принципа параллельной обработки данных .

Имеет две разновидности: конвейерность и параллельность.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции , причем так, чтобы каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Выигрыш в скорости обработки данных получается за счет совмещения прежде разнесенных во времени операций.

Параллельная обработка данных предполагает наличие нескольких функционально независимых устройств.

Закон Амдала

Закон Амдала

S<= 1/

где S - ускорение, f - доля операций, которые нужно выполнить последовательно, p - число процессоров.

Следствие из закона Амдала : для того чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее чем в q раз и не менее чем (1-1/q) -ую часть программы. Следовательно, если нужно ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение на не менее чем 99,99 % кода!

История появления параллелизма в архитектуре ЭВМ

Все современные процессоры используют тот или иной вид

  • 1974 г. - ALLIAC: матричные процессоры (УУ + матрица из 64 процессоров).
  • 1976 г. - CRAY1: векторно-конвейерные процессоры. Введение векторных команд, работающих с целыми массивами независимых данных.
  • Увеличение производительности ЭВМ, за счет чего?

    А почему суперкомпьютеры считают так быстро? Вариантов ответа может быть несколько, среди которых два имеют явное преимущество: развитие элементной базы и использование новых решений в архитектуре компьютеров.

    Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира - EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2*10-6 секунды), можно было выполнить 2*n арифметических операций за 18*n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1.8 наносекунды (1.8*10-9 секунд), а пиковая производительность около 77 миллиардов арифметических операций в секунду.

    Что же получается? За полвека производительность компьютеров выросла более, чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1.8 наносекунд, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден -- использование новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.

    Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность. Оба вида параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения.

    Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

    Кстати, пионером в параллельной обработке потоков данных был академик А.А.Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу, посадив несколько десятков барышень с арифмометрами за столы. Барышни передавали данные друг другу просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была расчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Это, можно сказать, и была первая параллельная система. Хотя расчеты водородной бомбы были мастерски проведены, точность их была очень низкая, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.



    Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

    Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

    Казалось бы конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! В чем же дело? Ответ прост, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых (1) в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и (2) сделать это за то же время, что машина прежде находилась на конвейере. Представили себестоимость такого автомобиля? Нет? Согласен, трудно, разве что Ламборгини приходит на ум, но потому и возникла конвейерная обработка...

      Сообщения

    • Параллельная и конвейерная обработка

      В параллельной обработке данных, воплощается идея одновременного выполнения нескольких действий, таких как конвейерность и параллельность .

      Параллельная обработка

      При выполнении устройством одной операции за единицу времени, можно сказать, что тысячу операций устройство выполнит за тысячу единиц. Если предположить, что есть пять независимых устройств, работающих одновременно, то ту же тысячу операций такая система устройств может выполнить уже за двести единиц времени. По аналогии система из N устройств ту же работу выполнит за 1000/N единиц времени. К реальной жизни это также применимо, например:

      огород может быть вскопан одним солдатом за 10 часов, а рота солдат количеством 50 человек с такими же способностями при одновременной работе выкопают его уже за 12 минут — действие принципа параллельности в действии .

      Самарский А.А., выполнявший в начале 50-х годов расчеты для моделирования ядерных взрывов был пионером в параллельной обработке потоков данных. Самарский интересным способом рассчитал эволюцию взрывной волны — он посадил несколько десятков человек с арифмометрами за столы, заставив их передавать данные друг другу просто на словах и откладывать необходимые цифры на арифмометрах. Можно сказать, что это
      и была первая параллельная система. Не смотря на то, что расчеты водородной бомбы были мастерски проведены, их точность была довольно низка, потому что используемая сетка имела мало узлов, а время счета было слишком большим.

      Конвейерная обработка

      Для сложения двух вещественных чисел, представленных в форме с плавающей запятой, необходимо проделать великое множество мелких операций — сравнить порядки, выровнять порядки, сложить мантиссы, нормализовать и т.п. Все эти «микрооперации» для каждой пары аргументов процессоры первых компьютеров осуществляли последовательно одну за другой, до тех пор, пока не доходили до окончательного результата, и лишь затем обрабатывалась следующая пара
      слагаемых.

      Суть конвейерной обработки состоит в выделении отдельных этапов выполнения общей операции. Каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию данных. Совмещение прежде разрозненных во времени операций определенно положительно влияет на скорость обработки. Например, в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени.
      Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обрабатывает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находиться первые пять пар аргументов, а весь набор из ста пар будет обработан за 104 (5+99) единицы времени — ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

      Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, достаточно просто продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, 5 устройств за 100 единиц времени обрабатывают 100 пар аргументов, что быстрее времени работы конвейерного устройства. Если увеличить в пять раз число устройств, объем аппаратуры и ее стоимость значительно возрастут. Например, рассмотрим ситуацию, когда убирается конвейер на автозаводе, при этом темпы выпуска автомобилей необходимо сохранить, соответственно потребуется тысяча бригад, каждая из которых может от начала до конца собрать автомобиль, проделав сотни различных операций, причем за довольно короткое время.

      Стоимость автомобиля будет колоссальной. Поэтому и возникла конвейерная обработка .

      Современные параллельные системы

      В настоящее время выделяют четыре направления в развитии высокопроизводительной вычислительной техники.

      Векторно-конвейерные компьютеры

      Особенности таких машин заключаются в наборе векторных команд и конвейерных функциональных устройствах. В отличие от традиционного подхода, векторные команды способны оперировать целыми массивами независимых данных, а значит появляется возможность эффективно загружать доступные конвейеры, т.е. команда вида А=В+С может означать не сложение двух чисел, а двух массивов. Характерный представитель данного направления — семейство векторно-конвейерных компьютеров CRAY.

      Массивно-параллельные компьютеры с распределенной памятью.

      Построение компьютеров этого класса отличается простой идеей: каждый серийный микропроцессор, оборудуются своей локальной памятью, затем соединяются посредством некоторой коммуникативной среды. У такой архитектуры имеется масса достоинств: для увеличения производительности достаточно увеличить количество процессоров, оптимальная конфигурация легко подбирается в случае, если известна требуемая вычислительная мощность.

      Однако, существует значительный минус, превосходящий многие плюсы. В данных компьютерах межпроцессорное взаимодействие идет намного медленнее, чем происходит локальная обработка данных самими процессорами. В связи с этим, очень сложно написать эффективную программу для таких компьютеров, для некоторых алгоритмов иногда просто невозможно. Примеры таких компьютеров: Intel Paragon, IBM SP1, Parsytec, в некоторой степени IBM SP2 и CRAY T3D/T3E, хотя влияние указанного минуса в этих компьютерах значительно меньше. Сети компьютеров, которые все чаще рассматривают как достаточно дешевую альтернативу крайне дорогим компьютерам, так же можно отнести к этому же классу.

      Параллельные компьютеры с общей памятью

      Вся оперативная память данных компьютеров разделяется несколькими одинаковыми процессорами. Проблемы предыдущего класса решены, но добавились новые — нельзя по технически причинам сделать большим число процессоров, которые имели бы доступ к общей памяти. Примерами данного направления многие многопроцессорные SMP-компьютеры или, например, отдельные узлы компьютеров HP Exemplar и Sun StarFire.

      Комбинированные системы

      Последнее направление скорее не самостоятельное, а просто комбинация предыдущих трех. Сформируем вычислительный узел из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти. При нехватке вычислительной мощности, можно объединить несколько узлов высокоскоростными каналами. Подобная архитектура называется кластерной. По данному принципу построены Sun StarFire, NEC SX-5, CRAY SV1, HP Exemplar, последние модели IBM SP2 и другие.

      Данное направление является в настоящий момент наиболее перспективным для конструирования компьютеров с рекордными показателями производительности .

      Уровни параллелизма

      В зависимости от того, на каком уровне должен обеспечиваться параллелизм, используются те или иные методы и средства реализации. Различают следующие уровни параллелизма.

      Микроуровень . Выполнение команды разделено на фазы, а фазы нескольких соседних команд могут быть перекрыты за счет конвейеризации. Достичь данный уровень возможно на ВС с одним процессором.

      Уровень потоков . Задачи разбиваются на части, которые могут выполняться параллельно (потоки). Данный уровень достигается на параллельных ВС.

      Уровень команд . Несколько команд выполняются параллельно, в процессоре размещаются сразу несколько конвейеров. Характерен для суперскалярных процессоров.

      Уровень заданий . Независимые задания одновременно выполняются на разных процессорах, взаимодействие друг с другом практически не происходит. Уровень характерен для многопроцессорных и многомашинных ВС.

      Понятие уровня параллелизма тесно связано с понятием гранулярности. Гранулярность — мера отношения объема вычислений, выполненных в параллельной задаче, к объему коммуникаций (для обмена сообщениями). Степень гранулярности варьируется от мелкозернистой до крупнозернистой. Закон Амдала ориентирован на крупнозернистый
      параллелизм.

      Крупнозернистый параллелизм заключается в том, что каждое параллельное вычисление достаточно независимо от остальных, к тому же отдельные вычисления требуют относительно редкий обмен информацией между собой. Единицами распараллеливания являются большие и независимые программы, включающие тысячи команд. Операционная система обеспечивает данный уровень параллелизма.

      Для эффективного параллельного исполнения необходимо балансировать между степенью гранулярности программ и величиной коммуникационной задержки, которая возникает между разными гранулами. Для минимальной коммуникационной задержки лучше всего подходит мелкоструктурное разбиение программы. В таком случае действует параллелизм данных. Если коммуникационная задержка большая, то лучше использовать крупнозернистое разбиение программ .

      Литература

      1. Баденко В.Л. Высокопроизводительные вычисления. Учебное пособие. - СПб.: Изд-во Политехн. ун-та, 2010. — 180 с.
      2. Барский А.Б. Параллельные информационные технологии: Учебное пособие/А.Б. Барский.-М.: Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2007.-503 с.: ил.,таб.-(серия «Основы информационных технологий»)- с.20-28, с.56-58.
      3. Корнеев В.В. Вычислительные системы.-М.:Гелиос APB, 2004.-512с., ил.- с. 34-46
      4. Лацис А.О. Параллельная обработка данных. М.: Академия, 2010. - 336 с.
      5. Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. Учебник для вузов. - СПб.: Питер, 2004. - 668 с.
    • Сообщения

    Пути повышения производительности ВС заложены в ее архитектуре. С одной стороны это совокупность процессоров, блоков памяти, устройств ввода/вывода ну и конечно способов их соединения, т.е. коммуникационной среды. С другой стороны, это собственно действия ВС по решению некоторой задачи, а это операции над командами и данными. Вот собственно и вся основная база для проведения параллельной обработки. Параллельная обработка, воплощая идею одновременного выполнения нескольких действий, имеет несколько разновидностей: суперскалярность, конвейеризация, SIMD – расширения, Hyper Threading , многоядерность. В основном эти виды параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть, пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут (параллельная обработка данных), да еще и с песнями (параллельная обработка команд).

    Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых. Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций.

    Суперскалярность. Как и в предыдущем примере, только при построении конвейера используют несколько программно-аппаратных реализаций функциональных устройств, например два или три АЛУ, три или четыре устройства выборки.

    Hyper Threading . Перспективное направление развитие современных микропроцессоров, основанное на многонитевой архитектуре. Основное препятствие на пути повышения производительности за счет увеличения функциональных устройств – это организация эффективной загрузки этих устройств. Если сегодняшние программные коды не в состоянии загрузить работой все функциональные устройства, то можно разрешить процессору выполнять более чем одну задачу (нить), чтобы дополнительные нити загрузили – таки все ФИУ (очень похоже на многозадачность).

    Многоядерность . Можно, конечно, реализовать мультипроцессирование на уровне микросхем, т.е. разместить на одном кристалле несколько процессоров (Power 4). Но если взять микропроцессор вместе с памятью как ядра системы, то несколько таких ядер на одном кристалле создадут многоядерную структуру. При этом в кристалле интегрируются функции (например, интерфейсы сетевых и телекоммуникационных систем) для выполнения которых обычно используются наборы микросхем (процессоры Motorola MPC8260, Power 4).

    Реализация высокопроизводительной вычислительной техники в настоящее время идёт по четырем основным направлениям.

    1. Векторно-конвейерные компьютеры . Конвейерные функциональные устройства и набор векторных команд - это две особенности таких машин. В отличие от традиционного подхода, векторные команды оперируют целыми массивами независимых данных, что позволяет эффективно загружать доступные конвейеры, т.е. команда вида A=B+C может означать сложение двух массивов, а не двух чисел. Характерным представителем данного направления является семейство векторно-конвейерных компьютеров CRAY куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте 2000 года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).

    2. Массивно-параллельные компьютеры с распределенной памятью. Идея построения компьютеров этого класса тривиальна: возьмем серийные микропроцессоры, снабдим каждый своей локальной памятью, соединим посредством некоторой коммуникационной среды - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить еще процессоров, если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию и т.п.

    Однако есть и решающий "минус", сводящий многие "плюсы" на нет. Дело в том, что самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти сформируем вычислительный узел. Если полученной вычислительной мощности не достаточно, то объединим несколько узлов высокоскоростными каналами. Подобную архитектуру называют кластерной SV1 , HP Exemplar , Sun StarFire , NEC SX-5 , последние модели IBM SP2

    3. Параллельные компьютеры с общей памятью . Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые - число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим. В данное направление входят многие современные многопроцессорные SMP-компьютеры или, например, отдельные узлы компьютеров HP Exemplar и Sun StarFire .

    4. Кластерные системы. Последнее направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти сформируем вычислительный узел. Если полученной вычислительной мощности не достаточно, то объединим несколько узлов высокоскоростными каналами. Подобную архитектуру называют кластерной , и по такому принципу построены CRAY SV1 , HP Exemplar , Sun StarFire , NEC SX-5 , последние модели IBM SP2 и другие. Именно это направление является в настоящее время наиболее перспективным для конструирования компьютеров с рекордными показателями производительности.