Сделано в ссср. история развития отечественного компьютеростроения. Тест по истории развития вычислительной техники

Работа добавлена на сайт сайт: 2015-07-10

;text-decoration:underline">ДЕ 10. История информатики

">56. Первой машиной, автоматически выполнявшей все 10 команд, была...

;font-family:"Times New Roman";color:#000000"> ;font-family:"Times New Roman";color:#000000;background:#ffff00">

">57. Что представляет собой большая интегральная схема (БИС) ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">кристалл кремния,на котором размещаются от десятков до сотен тысяч логичеких элементов

">58. Основоположником отечественной вычислительной техники является... ;color:#000000;background:#ffff00"> машина Сергея Алексеевича Лебедева

">59. Какая из отечественных ЭВМ была лучшей в мире ЭВМ второго поколения? ;color:#000000;background:#ffff00">БЭСМ-6

">60. Первая ЭВМ в нашей стране появилась... "> ;color:#000000;background:#ffff00">МЭСМ

">61. Основной элементной базой ЭВМ четвертого поколения являются... ;background:#ffff00">СБИС

">62. Основной элементной базой ЭВМ третьего поколения являются... ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">интегральные микросхемы

">63. В каком поколении машин появились первые операционные системы ;color:#000000;background:#ffffff">в третьем поколении

;color:#000000;background:#ffffff">64. "> Для машин какого поколения потребовалась специальность "оператор ЭВМ" ;background:#ffff00">второе поколение

">65. В каком поколении машин появились первые программы? ;background:#ffff00">второе поколение

">66. Электронной базой ЭВМ второго поколения являются "> ;color:#000000;background:#ffffff">полупроводники

;color:#000000;background:#ffffff">67. "> Машины первого поколения были созданы на основе... ;color:#050505;background:#ffffff"> ;color:#050505;background:#ffffff">электровакуумные лампы

">68. Языки высокого уровня появились ;color:#000000;background:#ffffff">Конрадом Цузе между 1942 и 1946 годами для его компьютера «Z4»

">69. Первые ЭВМ были созданы ;background:#ffff00">в 40-годы

">70.Под термином "поколение ЭВМ" понимают ;color:#000000;background:#ffffff">все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах

;color:#000000;background:#ffffff">71. "> Основные принципы цифровых вычислительных машин были разработаны... ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">Чарльзом Беббиджем

"> ДЕ 2. Аппаратные реализации информационных процессов

">6. Понятие и принципы работы вычислительной системы

">72. В соответствии со своими функциями персональные компьютеры могут выступать в роли … ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">сервера, терминала, рабочей станции

;color:#000000;background:#ffffff">73.

;color:#000000;background:#ffffff">74. "> Какие критерии качества вычислительных систем являются обязательными ;color:#000000;background:#ffffff">надежность

;color:#000000;background:#ffffff">75. ;color:#000000;background:#fff1f5"> ">Этот принцип заключается в том, что программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности ;color:#000000;background:#fff1f5">Принцип программного управления

;color:#000000;background:#fff1f5">76. "> Совокупность ЭВМ и ее программного обеспечения называется ;color:#000000;background:#ffffff">вычислительным комплексом или Программно-аппаратный

;color:#000000;background:#ffffff">77. "> В любых приложениях связующими звеньями между компьютером и процессом служат ;color:#222222;background:#ffffff">датчики и исполнительные механизмы

;color:#222222;background:#ffffff">78. "> Этот принцип заключается в том, что программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными ;color:#000000;background:#fff1f5">Принцип однородности памяти

;color:#000000;background:#fff1f5">79. "> Этот принцип заключается в том, что структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка ;color:#000000;background:#fff1f5">Принцип адресности

;color:#000000;background:#fff1f5">80. "> Этот принцип заключается в том, что в ячейках памяти есть только двоичные цифры, но в зависимости от того, что (какой тип данных) хранится в ячейке, эти цифры будут разными ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">Принцип использования двоичной системы счисления

;color:#000000;background:#fff1f5">81. "> Согласно принципам фон Неймана в любом компьютере можно выделить следующие главные устройства

;color:#000000;background:#ffff00">Арифметически - логическое устройство, выполняющее арифметические и

;color:#000000;background:#ffff00">логические операции.

;color:#000000;background:#ffff00">Устройство управления, которое организует процесс выполнения программы.

;color:#000000;background:#ffff00">Запоминающее устройство, или память, для хранения программы и данных.

;color:#000000;background:#ffff00">Внешние устройства для ввода и вывода информации

">7. Состав и назначение основных элементов ПК

">82. К основным характеристикам процессора относятся

;color:#000000;background:#ffffff">Быстродействие, тактовая частота, разрядность процессора

1 Эволюция ЭВМ

Механические вычислительные машины

Первая счетная машина с хранимой программой была построена французским ученым Блезом Паскалем в 1642 г. Она была механической с ручным приводом и могла выполнять операции сложения и вычитания.

В 1672 г. Готфрид Лейбниц построил механическую машину, которая могла делать также операции умножения и деления.

Впервые машину, работающую по программе, разработал в 1834 г. английский ученый Чарльз Беббидж. Она содержала запоминающее устройство, вычислительное устройство, устройство ввода с перфокарты и печатающее устройство. Все устройства машины Беббиджа, включая память, были механическими и содержали тысячи шестеренок, при изготовлении которых требовалась точность недоступная в XIX в. Машина реализовывала любые программы, записанные на перфокарте, поэтому впервые для написания таких программ потребовался программист. Первым программистом была англичанка Ада Ловлейс, в честь которой уже в наше время был назван язык программирования Ada.

В начале XIXвека компьютером называлась профессия человека занимающегося расчетами, вычислениями.

Электронные вычислительные машины

В развитии ЭВМ выделяют пять поколений.

Под поколением понимают все типы и модели ЭВМ, разработанные различными конструкторско-техническими коллективами, но построенных на одних и тех же научных и технических принципах.

Появление каждого нового поколения определялось тем, что появлялись новые базовые элементы , технология изготовления которых принципиально отличалась от предыдущего поколения.

Первое поколение . (1946 – середина 50-х гг.).В 1943 г. профессор Гарвардского университета Эйкен создал вычислительную перфорационную машину «Марк -1» на электромагнитных реле. В 1946 г. была создана ламповая вычислительная машина учеными Пенсильванского университета под руководством Джона Моучли ENIAC (Electronic Numeral Integrator And Computer – электронный числовой интегратор и компьютер), которая содержала 18 900 ламп, потребляла 150 кВт электроэнергии и выполняла 5 тыс. операций сложения в секунду. Так появились компьютеры первого поколения.

Особенности:

Элементная база электронно-вакуумные лампы;

Габариты – в виде шкафов и занимали машинные залы;

Программирование осуществлялось в машинных командах, а отладка за пультом управления;

Данные вводились с помощью перфокарт и магнитных лент с хранимыми программами;

Быстродействие – 10 – 100 тыс. оп./с.;

Они были очень громоздки и применялись в основном в крупных научных центрах.

Основоположником отечественной вычислительной техники стал электротехник Сергей Лебедев. Под его руководством в 1950 г. была создана самая быстродействующая малая электронная машина.

Второе поколение (средина 50 – середина 60 г.г.). В 1949 г. американские физики Уолтер Браттейн и Джон Бардин изобрели транзистор, а в 1954 г. Гордон Тил применил кремний для изготовления транзистора. Транзисторы заменили электронные лампы и с 1955 г. стали выпускаться компьютеры на транзисторах, это стали компьютеры второго поколения.

Особенности:

    элементная база – транзисторы;

    быстродействие – сотни тысяч – 1 млн. оп./с;

    понижено энергопотребление;

    повысилась надежность;

    появилась память на магнитных дисках;

    появились первые операционные системы;

    программирование осуществлялось с использованием языков высокого уровня (фортран, бейсик, алгол и д.р.);

    структура эвм – микропрограммный способ управления;

    эксплуатация – упростилась.

Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение (60 – 70 г.г.). В 1958 г. Джек Килби изобрел первую интегральную схему, а Роберт Нойс – первую промышленную интегральную схему (Chip).

ИС - это кремниевый кристалл, площадь которого примерно 10 мм 2 . Одна интегральная система способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Особенности:

    элементная база – интегральные схемы, большие интегральные схемы (ИС, БИС);

    габариты – однотипные стойки, требующие машинный зал;

    единая архитектура, то есть программно совместимые;

    быстродействие – сотни тысяч – миллионы оп./с;

    эксплуатация – оперативно производится ремонт;

    программирование – подобен II поколению;

    обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ;

    структура ЭВМ – принцип модульности и магистральности;

    появились дисплеи, магнитные диски;

    задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов. В конце 60-х появились мини-компьютеры.

Четвертое поколение (70 – по н/в)В 1971 г. был создан первый микропроцессор Intel 4004. Он состоял из 2300 транзисторов на площади 15 мм кв. и с тактовой частотой 108 КГц мог выполнять 45 различных команд и обладал такой вычислительной мощью как первый электронный компьютер, занимавший целую комнату.

В середине 70-х гг. были разработаны компьютеры четвертого поколения на больших и сверх больших ИС (до миллиона компонентов на кристалл). Также появились первые персональные компьютеры. В 1974 г. на основе процессора Intel 8080 был создан первый такой компьютер MITS Altair 8800. В 1977 г. компания Apple выпустила свой компьютер Apple II с графическими возможностями, цветным монитором и звуком. И наконец, 1981 г. появился компьютер IBM PC. Он был на базе процессора Intel 8088 c тактовой частотой 4,77 МГц, работающий под управлением операционной системы PC Dos 1.0, лицензия на которую принадлежала Биллу Гейтсу. Базовая цена 1565 долларов. Удачная конструкция этого компьютера стала использоваться в качестве стандарта ПК в конце XX века.

Быстродействие таких машин составляет тысячи миллионов операций в секунду. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Пятое поколение . В настоящее время ведутся работы по созданию ЭВМ пятого поколения. Программа разработки, таких ЭВМ была принята в Японии в 1982 г.

Разработка новых поколений компьютеров производится на основе БИС повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текстов, человеческого голоса, с бланков, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний.

Архитектура компьютера будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок так называемый интеллектуальный интерфейс. Эго задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещенных на одном кристалле полупроводника. Обработка знаний - использование и обработка компьютером знаний, которыми владеет человек для решения проблем и принятия решений.

Четвертое поколение(1980- настоящее время) Элементной базой машин четвертого поколения стали больше интегральные схемы (БИС) и сверхбольшие схемы. В 70 – х годах было налажено промышленное производство таких СБИС, в которых на поверхности кристалла кремния располагалось несколько десятков тысяч электронных компонентов. В результате резко сократились размеры машин, быстродействие возросло до десятки и сотни млн. оп/с, объем оперативной памяти стал измеряться в мегабайтах.

Третье поколение (70 –79 –е годы).Характеризуется рождением промышленной технологии создания интегральных схем (ИС). Удалось на поверхности кремниевой пластинки размером около 1 см создать электронную схему. ИС составили основу элементной базы машин третьего поколения. Быстродействие повысилось до 1 млн. оп/с, а оперативная память в отдельных ЭВМ расширилась до нескольких мегабайт.

Машины Фон-Неймановского типа.

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман (американец венгерского происхождения), который подготовил доклад об этой машине. В отчете фон Неймана и его коллег Г.Голдстайна и А.Беркса (июнь 1946 г) были четко сформулированы требования к структуре компьютеров. Отметим важнейшие из них:

- Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов.

- Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

- Принцип однородности памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти – число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

- Принцип адресности. Структурно основная память состоит их пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

Создание ЭНИАК положило начало развитию ЭВМ первого поколения (50 - е годы), элементной базой которых были вакуумные лампы. Быстродействие машин первого поколения имело порядок 10-20 тыс. оп/с. Но даже эти ЭВМ работали в тыс. раз быстрее, чем настольные клавишные вычислительные машины. Но надежность работы ламповых устройств была низкой.

Оперативная память изготавливалась из блоков ферритовых сердечников. Программы писались на языке машинных кодов, программист сам распределял ячейки памяти под программу, входные данные и получаемые результаты. Для ввода программ были использованы бумажные перфоленты.


Второе поколение. Начало 60 –х годов характеризуется внедрением новой элементной базы ЭВМ, полупроводников, транзисторов , которые пришли на смену электронных ламп. Быстродействие машин второго поколения имело порядок 100-500 тыс. оп/с. Сложнее стала архитектура ЭВМ, появились НМД и дисплей. Появилась возможность общаться с машиной в мультипрограммном режиме и режиме разделения времени. Произошел переход от написания программ на машинном языке к написанию их на алгоритмических языках. Но в то же время продолжался конфликт между медленно работающими устройствами ввода – вывода и быстродействием ЦП.

Общение с машиной организуется сразу с нескольких терминалов, широко используются дисплейные терминальные устройства. С машинами третьего поколения – пользователь получил возможность при общении с ЭВМ пользоваться как цифрой, так и графической информацией.

Первые ЭВМ были слишком дорогими, громоздкими и поэтому не имели массового применения. Они использовались только в крупных научных центрах, в космосе, обороне, в метеорологии.

Одним из революционных достижений в области вычислительной техники явилось создание персональных ЭВМ, которые можно отнести к отдельному классу машин четвертого поколения.

В 1981 IBM представила свой первый персональный компьютер – IBM PC. В то же время компания Microsoft начинает выпуск программного обеспечения для IBM PC.

  • 5-е поколение, настоящее время: компьютеры с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; компьютеры на сверхсложных микропроцессорах с парал­лельно-векторной структурой, одновременно выполняющих десятки последо­вательных инструкций программы.
  • 6-е и последующие поколения: оптоэлектронные компьютеры с массовым па­раллелизмом и нейронной структурой, с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Развитие ЭВМ в СССР тесно связано с именем академика С.А. Лебедева, под руководством которого были созданы первые отечественные ЭВМ: в 1951 г. в Киеве (Украинская академия наук 1949г-?) – МЭСМ (Малая электронная вычислительная машина) и 1952 г. в Москве БЭСМ (Быстродействующая электронная - вычислительная машина). Лебедев руководил и созданием БЭСМ – 6 – лучшей в мире ЭВМ второго поколения (1967г), уровень которой по мнению экспертов, на несколько лет опередил уровень зарубежных аналогов. Обладая высоким быстродействием (1 мил. оп/с) она по своей архитектуре была ближе к ЭВМ третьего поколения и выпускались серийно до 1981 года. БЭСМ – 6 являлась самой распространенной ЭВМ для научных расчетов.

В 1970-х годах одна машина БЭСМ-6 стоила один миллион рублей (в то время на эти деньги можно было купить 200 автомобилей Жигулей).

В 1960 – 70 годы в мире уже была создана индустрия по производству ЭВМ. Ведущие позиции здесь заняли такие фирмы как IBM (International Business Machines), DEC, CDC и т.д. Персональные ЭВМ начали выпускаться в середине 70 – х годов. Термин «персональный» означает, что ЭВМ предназначается для индивидуального пользователя. ПК – это небольшой комплекс взаимосвязанных устройств, каждому из которых поручена определенная функция.

Огромную роль в популяризации ПК сыграли компьютерные журналы. Такие издания как “Radio Electronics”, “Popular Electronics” разжигали интерес к потенциалу микрокомпьютеров. По всей территории США возникли клубы любителей. Самым примечательным был компьютерный клуб Homebrew, образованный в марте 1975 года в Менло-Парке (штат Калифорния). В состав его первых членов входили Стив Джобс и Стив Возняк, позднее основавшие компанию Apple Macintosh.

Поэтому, когда появился первый микрокомпьютер, на него сразу же возник огромный спрос среди тысячи любителей, интерес которых подпитывался ежемесячно появившимися статьями в журналах.

Этим первым микрокомпьютером был “Altair -8800”, созданный в 1974 году небольшой компанией в Альбукерке (штат Нью-Мексико). В конце 1975 года Пол Ален и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это тоже способствовало популярности ПК.

В 1976 г. был выпучен первый компьютер фирмы Apple под названием Macintosh.

В настоящее время ПЭВМ наиболее широко применяются в следующих областях:

· научно – исследовательская и инженерно – конструкторская работа (научная сфера)

· управление хозяйственно – экономической деятельностью (деловая сфера)

· образование

· бытовая сфера.

В 1980 году IBM решила попробовать свои силы на рынке персональных компьютеров. При этом она сразу сориентировалась не на 8 разрядный микропроцессор Intel – 8080, а на новый 16 разрядный Intel – 8088. Это позволило увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а при работе с его предшественниками приходилось втискивать все программы в 64 Кбайта. В августе 1981 года новый компьютер под названием IBM PC с операционной системой и трансляторами фирмы Microsoft был официально представлен публике, и вскоре после этого он приобрел большую популярность у пользователей. За каких-то пол года IBM продала 50 тыс. машин, а через два года обогнала Apple по объему продаж.

Однако вы должны знать следующее:

Кроме фирмы IBM, компьютеры этого типа выпускают сотни производители во всем мире.

Создано множество разновидностей ПК этого типа, которые различаются между собой производительностью, емкостью внутренней и внешней памяти и рядом функциональных возможностей.

Существуют ПК других типов, например, всемирно известные компьютеры Macintosh фирмы Apple – родоначальника ПК.

Вопросы для самоконтроля

1. Расскажите об информационных революциях в истории развития цивилизации.

2. Какие основные этапы прошла в своем развитии вычислительная техника?

3. Назовите основной элемент машин первого поколения?

4. Кто является основоположником отечественной ВТ?

5. Какие принципы заложены в основу работы компьютера?

6. Какая идея фон Неймана используется для организации работы компьютера?

7. В чем заключается вклад Ч.Бэббиджа в разработку идеи компьютера?

а) комплекс аппаратных и программных средств для обработки информации;

б) комплекс технических средств, предназначенных для автоматической обработки информации;

в) модель, устанавливающая состав, порядок и прин­ципы взаимодействия входящих в нее компонен­тов.

2. По принципу действия вычислительные машины делятся на три больших класса:

а) аналоговые (АВМ), цифровые (ЦВМ), электрон­ные (ЭВМ);

б) аналоговые (АВМ), цифровые (ЦВМ), гибридные (ГВМ);

в) ламповые (ЛВМ), транзисторные (ТВМ), микро­процессорные (МВМ).

3. Цифровые вычислительные машины работают с информа­цией, представленной:

а) в виде электрического напряжения;

б) в символьном виде;

в) в цифровой форме.

4. Установите соответствие между этапами создания и исполь­зуемой элементной базой и поколениями ЭВМ :

1. ЭВМ на транзисторах; а) 1-е поколение;

2. ЭВМ на полупроводниковых интегральных схемах; б) 2-е поколение;

3. ЭВМ на электронных вакуумных лампах в) 3-е поколение;

4. ЭВМ на больших и сверхбольших ИС г) 4-е поколение;

5. ЭВМ на сверхсложных микропроцессорах. д) 5-е поколение.

В вопросах № 5-6 укажите все правильные ответы.

5. Изобретатель часов для счета

а) В. Лейбниц

в) В. Шиккард

6. Впервые предложил и применил способ считывания информации с бумажного носителя с помощью электричества

А) А. Тьюринг

Б) Г. Холлерит

В) Ч. Бебидж

7. Персональный компьютер- это:

а) ЭВМ для индивидуального покупателя;

б) настольная или персональная ЭВМ, удовлетворя­ющая требованиям общедоступности и универсаль­ности;

в) ЭВМ, обеспечивающая диалог с пользователем.

8. ПЭВМ четвертого поколения используют:

а) Большие интегральные схемы;

б) вакуумные лампы;

в) Транзисторы.

9. По конструктивным особенностям ПЭВМ делятся на:

а) портативные и карманные;

б) стационарные (настольные) и переносные;

в) блокноты и электронные записные книжки.

10. Механическое устройство, позволяющее складывать числа, изобрел:

а) П. Нортон;

б) Б. Паскаль;

в) Г. Лейбниц.

11. Идею механической машины с идеей программного управ­ления соединил:

а) Ч. Беббидж (середина XIX в.);

б) Дж. Атанасов (30-е гг. XX в.);

в) К. Берри (XX в.).

12. Первым программистом мира является:

а) Г. Лейбниц;

б) А. Лавлейс;

в) Дж. фон Нейман.

13. Первая ЭВМ, реализующая принципы программного управ­ления, была создана :

б) в Кембридже;

в) в Германии.

14. Основоположником отечественной вычислительной техни­ки является:

а) М.В. Ломоносов;

б) С.В. Королев;

в) С.А. Лебедев.

15. Первая отечественная ЭВМ была создана:

а) в Киеве;

б) в Москве;

в) в Санкт-Петербурге.

16. Первая отечественная ЭВМ называлась :

а) МЭСМ (малая электронная счетная машина);

б) БЭСМ (большая электронная счетная машина);

в) «Стрела».

17. Кто руководил работой над созданием первых отечественных выч.машин МЭСМ и БЭСМ

А) П.Л. Чебышев

Б) В.Я.Буняковский

В) С.А.Лебедев

18.К ЭВМ на электронных вакуумных лампах относятся маши­ны типа:

а) «Урал»;

в) «Минск-22».

19. В качестве языка программирования в машинах первого поколения использовался :

а) машинный код;

б) Ассемблер;

в) Бейсик.

20. Средством связи пользователя с ЭВМ второго поколения являлись:

а) перфокарты;

б) магнитные жетоны;

в) терминал.

21. Первым инструментом для счета были:

а) рука человека;

б) камешки;

в) палочки.

22. Абак - это:

а) устройство, похожее на музыкальный автомат;

б) устройство, похожее на счеты;

в) устройство для работы по заданной программе.

Устройство персонального компьютера. Архитектура компьютера. ММП построения ПК.

Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным .

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Портами также называют устройства стандартного интерфейса : последовательный, параллельный и игровой порты (или интерфейсы).

К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы .

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard ). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения , называемых также слотами расширения (англ. slot - щель По характеру области применения средства вычислитель­ной техники разделяют на универсальные и специализиро­ванные.

По принципам действия средства вычислительной техники подразделяют на цифровые и аналоговые.

По производительности :

    марка процессора

    частота (МГц)

    объем ОЗУ (Мб)

    объем жесткого диска (Гб)

    объем памяти на видеокарте (Мб)

    наличие звуковой и сетевой платы

Что означает строкаP - IV 2.2/64 Mb / 120 Gb / SVGA 128 Mb /50 X ACER

Сергей Алексеевич Лебедев

Основоположник отечественной вычислительной техники

После войны выделились три важных области, каждая из которых стала знаменем научно-технической революции. По каждому из этих направлений выдвинулись крупные ученые-организаторы. Их имена теперь известны всем. Курчатов возглавил ядерную программу, академик Королев - ракетно-космическую, академик Лебедев стал генеральным конструктором первых вычислительных машин.

М. А. Лаврентьев

Сергей Алексеевич Лебедев

В нашей стране у истоков развития и становления отечественной вычислительной техники стоял выдающийся ученый, академик Сергей Алексеевич Лебедев. Как пишет один из его учеников, академик В. А. Мельников, "жизненный путь Сергея Алексеевича Лебедева ярок и многогранен. Кроме создания первых машин и первых фундаментальных разработок, он выполнил важные работы по созданию многомашинных и многопроцессорных комплексов. Им были заложены основы вычислительных сетей. Среди перспективных направлений следует отметить работы в области операционных систем и систем программирования. Структурнопрограммные операционные системы, алгоритмические языки программирования, новые алгоритмы для больших, трудоемких задач - важный этап научного творчества Лебедева. Ряд его работ, к сожалению, остался незаконченным. По главным направлениям, намеченным С. А. Лебедевым, работают его ученики и целые научные коллективы. Созданная им научная школа - лучший памятник ученому".

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Говоря о наследии С. А. Лебедева, нельзя не сказать об атмосфере взаимопонимания и творческого воодушевления, которую умел создать вокруг себя Сергей Алексеевич. Он умел поощрять творческую инициативу, оставаясь при этом принципиальным и требовательным. Лебедев считал, что лучшая школа для специалиста - участие в конкретных разработках, и не боялся привлекать к работе над серьезными проектами молодых ученых.

Он родился 2 ноября 1902 года в Нижнем Новгороде. Отец Алексей Иванович и мать Анастасия Петровна были учителями.

В 1921 году С. А. Лебедев поступил в Московское высшее техническое училище им. Н. Э. Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники профессора К. А. Круг, Л. И. Сиротинский и А. А. Глазунов. Все они принимали активное участие в разработке знаменитого плана электрификации СССР - плана ГОЭЛРО. Для разработки этого плана и, главное, для его успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Из всех возникших при этом проблем С. А. Лебедев, еще будучи студентом, основное внимание уделял проблеме устойчивости параллельной работы электростанций. И следует сказать, что он не ошибся в выборе - весь дальнейший отечественный и зарубежный опыт создания высоковольтных энергообъединений определил проблему устойчивости как одну из центральных, от решения которой зависит эффективность дальних электропередач и энергосистем переменного тока.

Первые результаты по проблеме устойчивости, полученные Лебедевым, были отражены в его дипломном проекте, который выполнялся под руководством профессора К. А. Круга. В апреле 1928 года, получив диплом инженера-электрика, Лебедев становится одновременно преподавателем МВТУ им. Н. Э. Баумана и младшим научным сотрудником Всесоюзного электротехнического института (ВЭИ). Продолжая работать над проблемой устойчивости, С. А. Лебедев организует в ВЭИ группу, которая затем оформилась в лабораторию электрических сетей. Постепенно тематика лаборатории расширяется, и в круг ее интересов начинают попадать проблемы автоматического регулирования. Это привело к тому, что на базе этой лаборатории в 1936 году был создан отдел автоматики, руководство которым поручается С. А. Лебедеву.

К этому времени С. А. Лебедев уже стал профессором и автором (совместно с П. С. Ждановым) широко известной среди специалистов-электротехников монографии "Устойчивость параллельной работы электрических систем".

Примечательной чертой научной деятельности Лебедева, проявившейся с самого ее начала, было органическое сочетание большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он становится активным участником подготовки сооружения Куйбышевского гидроузла, а в 1939–1940 годах С. А. Лебедев в "Теплоэлектропроекте" руководит разработкой проектного задания для магистральной линии электропередачи.

Проблемы автоматики интересуют С. А. Лебедева не только применительно к конкретным приложениям в электротехнике, он один из активных инициаторов работ по автоматизации научных исследований и математических расчетов. В 1936–1937 годах в его отделе начались работы по созданию дифференциального анализатора для решения дифференциальных уравнений. Уже тогда С. А. Лебедев задумывался над принципами создания цифровых вычислительных машин, в основе которых лежала бы двоичная система счисления.

Во время войны возглавляемый Лебедевым отдел автоматики полностью переключается на оборонную тематику.

В феврале 1945 года С. А. Лебедев избирается действительным членом Академии Наук УССР, а в мае 1946 года назначается директором Института энергетики АН УССР. В 1947 году после разделения этого института С. А. Лебедев становится директором Института электротехники АН УССР. Здесь он продолжает свои работы по проблемам автоматизации энергосистем. В 1950 году за разработку и внедрение устройств компаундирования генераторов электростанций для повышения устойчивости энергосистем С. А. Лебедев совместно с Л. В. Цукерником был удостоен Государственной премии СССР.

В 1947 году в Институте электротехники организуется лаборатория моделирования и вычислительной техники, где под руководством С. А. Лебедева была создана машина МЭСМ (малая электронная счетная машина) - первая отечественная вычислительная машина.

Вычислительная машина МЭСМ

Интересно привести основные этапы разработки и пуска первого отечественного компьютера:

? Октябрь - ноябрь 1948 года. Разработка общих принципов построения электронной цифровой вычислительной машины.

? Январь - март 1949 года. Обсуждение характеристик вычислительной машины и мер сотрудничества при ее создании на научных семинарах с участием представителей Института математики и Института физики АН УССР.

? Октябрь - декабрь 1949 года. Создание принципиальной блок-схемы и общей компоновки макета МЭСМ.

? 6 ноября 1950 года. Первый пробный пуск макета и начало решения на нем простейших практических и тестовых задач.

? Ноябрь - декабрь 1950 года. Увеличение количества блоков запоминающих устройств, отработка алгоритмов операций сложения, вычитания, умножения и сравнения, завершение отладки макета.

? 4–5 января 1951 года. Демонстрация действующего макета приемной комиссии в составе Н. Н. Доброхотова, А. Ю. Ишлинского, С. Г. Крейна, С. А. Лебедева, Ф. Д. Овчаренко, И. Т. Швеца. Составление акта об окончании в 1950 году разработки, изготовления и наладки макета, выработка рекомендаций о дальнейшем его совершенствовании.

? 10–11 мая 1951 года. Демонстрация работы машины в Киеве в присутствии известных ученых СССР Ю. Я. Базилевского, Н. Н. Боголюбова, В. М. Келдыша, К. А. Семендяева, А. Н. Тихонова и др.

? Август - сентябрь 1951 года. Переделка блоков запоминания с целью повышения их надежности. Окончание переделки конструкции действующего макета, завершение новой компоновки МЭСМ и ее опробование.

? 12 января 1952 года. Составление акта о введении МЭСМ в эксплуатацию с декабря 1951 года.

Функционально-структурная организация МЭСМ была предложена Лебедевым в 1947 году. МЭСМ работала в двоичной системе, с трехадресной системой команд, причем программа вычислений хранилась в оперативной памяти. Машина Лебедева с параллельной обработкой слов представляла собой принципиально новое решение. Она была одной из первых в мире и первой на европейском континенте машиной с хранимой в памяти программой.

В 1948 году в Москве создается Институт точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, куда приглашается на работу С. А. Лебедев, а в 1950 году, когда основные работы по МЭСМ подходили к концу, Лебедев принимает это предложение.

В ИТМ и ВТ он создает специальную лабораторию для разработки БЭСМ-1 (быстродействующая электронная счетная машина-1), в которой получили дальнейшее развитие идеи Лебедева по структурной реализации методов обработки информации.

С. А. Лебедев и В. А. Мельников за наладкой БЭСМ-1

Вспоминает академик В. А. Мельников: "На опыте создания БЭСМ-1 можно видеть широту его научных и конструкторских разработок. В процессоре машины были использованы лампы, серийно выпускаемые нашей промышленностью. Лебедев указал несколько направлений по созданию оперативной памяти ЭВМ. Велись работы по созданию оперативного запоминающего устройства (ОЗУ): на электроакустических ртутных линиях задержек; ОЗУ параллельного действия на электронно-лучевых трубках; ОЗУ на ферритовых сердечниках. Создавались внешние запоминающие устройства на магнитных лентах и магнитных барабанах, устройства ввода и вывода на перфокартах и перфолентах, быстродействующие печатные устройства. В БЭСМ-1 было впервые применено постоянное запоминающее устройство на сменных перфокартах, что позволило решать задачи по мере готовности того или иного запоминающего устройства. Поэтому ее реальное использование началось уже с 1952 года с ОЗУ на электроакустических ртутных трубках. Правда, быстродействие ее было в десять раз ниже запланированного, но зато, помимо решения задач, появилась возможность получить первый опыт по эксплуатации и отладке программ".

Следует отметить, что БЭСМ-1 сдавалась дважды: первый раз - с ОЗУ на электронно-акустических ртутных трубках со средним быстродействием 1000 операций в секунду и второй раз - с ОЗУ на электронно-лучевых трубках с быстродействием около 10 тыс. операций в секунду. И оба раза она была успешно принята Государственной комиссией. Правда, в дальнейшем еще были испытания, когда на БЭСМ-1 проверялась оперативная память на ферритовых сердечниках, но этот вид памяти уже был окончательно внедрен на серийной машине БЭСМ-2. БЭСМ-1 была первой отечественной быстродействующей машиной (8-10 тыс. операций в секунду), самой производительной машиной в Европе и одной из лучших в мире.

Первой задачей, решенной на БЭСМ-1 и имевшей большое народнохозяйственное значение, был расчет оптимального уклона скоса канала. В программе решения этой задачи задавались параметры сыпучести грунта, глубины канала и некоторые другие. Крутой уклон экономит объем земляных работ, но может привести к быстрому осыпанию, поэтому важно найти математически обоснованный компромисс, который бы экономил объем работ при сохранении качества сооружения. Работа по созданию алгоритма и программы, потребовавшая серьезных математических исследований, была выполнена под руководством С. А. Лебедева, который в 1953 году был избран действительным членом АН СССР.

В структуре БЭСМ-1 уже тогда были реализованы основные решения, характерные для современных машин. Принцип ее работы был параллельного действия, что потребовало увеличения аппаратуры; и это было смелым по тем временам решением, например одна триггерная ячейка содержала четыре электронные лампы, надежность которых была мала, срок службы составлял всего 500-1000 часов, а в БЭСМ-1 было более 50 тыс. таких ламп.

Важной особенностью этой машины и большим структурным достижением являлись операции над числами с плавающей точкой, когда машина может производить операции над числами в диапазоне 2 -32 -2 32 автоматически, не требуя специальных операций масштабирования. Эти операции в машинах с фиксированной точкой составляют около 80 % от общего числа операций и увеличивают время решения задач. Одновременно БЭСМ-1 обеспечивала хорошую точность вычислений (около 10 десятичных знаков), а при решении некоторых задач могла работать хотя и с меньшим быстродействием, но с удвоенной точностью.

После БЭСМ-1 под руководством Лебедева были созданы и внедрены в производство еще две ламповые - БЭСМ-2 и М-20. Их характерной особенностью, пишет В. А. Мельников, было то, что они разрабатывались в тесном контакте с промышленностью, особенно М-20. Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип хорош тем, что улучшается качество документации, т. к. в ней учитываются технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры БЭСМ-1, но конструкция ее стала более технологичной и удобной для серийного выпуска.

В машине М-20 был сделан еще один новый шаг в развитии отечественной вычислительной техники. Во многом повторяя структуру БЭСМ-1, М-20 обладала производительностью 20 тыс. операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций.

В шестидесятых годах наша промышленность начала массовый выпуск полупроводниковых приборов, что позволило перейти на новую элементную базу. Разработка полупроводниковых машин, которой руководил С. А. Лебедев, развивалась по двум основным направлениям. Первое - перевод наиболее совершенных ламповых машин на полупроводниковую элементную базу с сохранением структуры и быстродействия, но с повышением надежности, уменьшением размеров и энергопотребления. Ламповая машина М-20 стала в полупроводниковом варианте БЭСМ-ЗМ, БЭСМ-4 и М-220.

Второе направление развития полупроводниковых машин - это максимальное использование возможностей новой элементной базы с целью повышения производительности, надежности и совершенствования структуры машин. Яркий пример развития этого направления - БЭСМ-6, созданная под руководством С. А. Лебедева. Трудно переоценить значение и влияние на развитие вычислительной техники разработки этой высокопроизводительной, оригинальной по архитектуре и структуре машины. Макет БЭСМ-6 был запущен в опытную эксплуатацию в 1965 году, а уже в середине 1967 года был предъявлен на испытания первый образец машины. Тогда же были изготовлены три серийных образца. Машина БЭСМ-6 сдавалась вместе с необходимым математическим обеспечением, и государственная комиссия под председательством академика М. В. Келдыша, в то время президента АН СССР, дала ей высокую оценку. Вычислительная машина БЭСМ-6 - универсальная машина с быстродействием миллион операций в секунду, работала в диапазоне чисел от 2 -63 до 2 +63 и могла обеспечить точность вычислений 12 десятичных знаков. Она содержала 60 тыс. транзисторов и 180 тыс. полупроводников-диодов.

Вычислительная машина БЭСМ-6

Как пишут Л. Н. Королев и В. А. Мельников, машина БЭСМ-6 имела следующие принципиальные особенности:

Магистральный, или, как в свое время (1964 год) назвал его академик С. А. Лебедев, "водопроводный" принцип организации управления, с помощью которого достигается глубокий внутренний параллелизм обработки потоков команд и операндов;

Впервые осуществленный в БЭСМ-6 принцип использования ассоциативной памяти на сверхбыстрых регистрах с логикой управления, позволяющей аппаратно экономить число обращений к ферритовой памяти и тем самым осуществлять локальную оптимизацию в динамике счета;

Аппаратный механизм преобразования математического, виртуального адреса в физический адрес, что дало возможность осуществить динамическое распределение оперативной памяти в процессе вычислений средствами операционной системы;

Расслоение оперативной памяти, что позволяет осуществить одновременное обращение к блокам памяти по нескольким направлениям;

Принцип полистовой организации виртуальной памяти и разработанные на его основе механизмы защиты по числам и командам, сочетающие простоту и эффективность;

Развитая индексация, позволившая использовать индексные регистры для базирования, модификации адресов и в качестве указателей уровней вложенности процедур (дисплеев), что позволило строить свободно перемещаемые программы и рентерабельные процедуры;

Развитая система прерываний и индикации состояния внешних и внутренних устройств машины, контроль обмена между оперативной памятью и центральным устройством машины, позволившие достаточно хорошо вести диагностику в режиме мультипрограммирования;

Возможность одновременной работы парка устройств ввода-вывода и внешних запоминающих устройств на фоне работы центрального процессора.

С 1967 года все крупные вычислительные центры страны стали оснащаться компьютерами БЭСМ-6. И даже через многие годы, в 1983 году, на заседании отделения информатики, вычислительной техники и автоматизации Академии наук, академик Е. П. Велихов сказал, что "создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии. Даже сейчас подавляющее большинство крупных народно-хозяйственных задач и проектов разрабатывается с помощью БЭСМ-6 и ее модификаций".

В начале 70-х годов Сергей Алексеевич Лебедев уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 году тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома. Суперкомпьютер "Эльбрус" - это последняя машина, принципиальные положения которой были разработаны академиком Лебедевым и его учениками. Он был ярым противником начавшегося в начале 70-х годов копирования американской системы IBM/360, которая в отечественном вари- анте стала называться ЕС ЭВМ. Он понимал, к каким последствиям это приведет, но уже был не в силах воспрепятствовать этому процессу.

Велики заслуги академика С. А. Лебедева перед отечественной наукой. Его деяния отмечены многими наградами и государственными премиями. Институт точной механики и вычислительной техники РАН носит его имя. В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: "В этом здании в Институте электротехники АН УССР в 1946–1951 гг. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев".