1959 год интегральная схема. Большая интегральная схема

В этой статье мы поговорим о микросхемах, какие типы бывают, как устроены и где используются. Вообще, в современной электронной технике трудно найти устройство, в котором бы не использовались микросхемы. Даже самые дешёвые китайские игрушки задействуют различные планарные, залитые компаундом чипы, на которые возложена функция управления. Причём с каждым годом они становятся всё более сложными внутри, но более простыми в эксплуатации и меньшими по размерам, снаружи. Можно сказать, что идёт постоянная эволюция микросхем.

Микросхема представляет собой электронное устройство или его часть способную выполнять ту или иную задачу. Если бы потребовалось решить такую задачу, которую решают многие микросхемы, на дискретных элементах, на транзисторах, то устройство, вместо маленького прямоугольника размерами 1 сантиметр на 5 сантиметров, занимало бы целый шкаф, и было бы намного менее надежным. А ведь так выглядели вычислительные машины ещё пол-сотни лет назад!

Электронный шкаф управления - фото

Конечно, для работы микросхемы недостаточно просто подать питание на неё, необходим еще так называемый "обвес ”, то есть те вспомогательные детали на плате, вместе с которыми микросхема сможет выполнять свою функцию.

Обвес микросхемы - рисунок

На рисунке выше красным выделена сама микросхема все остальные детали - это её "обвес ”. Очень часто микросхемы при своей работе нагреваются, это могут быть микросхемы стабилизаторов, микропроцессоров и других устройств. В таком случае чтобы микросхема не сгорела её нужно прикрепить на радиатор. Микросхемы, которые при работе должны нагреваться, проектируются сразу со специальной теплоотводящей пластиной - поверхностью, находящейся обычно с обратной стороны микросхемы, которая должна плотно прилегать к радиатору.

Но в соединении даже у тщательно отшлифованных радиатора и пластины, все равно будут микроскопические зазоры, в результате которых тепло от микросхемы будет менее эффективно передаваться радиатору. Для того чтобы заполнить эти зазоры применяют теплопроводящую пасту. Ту самую, которую мы наносим на процессор компьютера, перед тем как закрепить на нем сверху радиатор. Одна из наиболее широко применяемых паст, это КПТ–8 .

Усилители на микросхемах можно спаять буквально за 1-2 вечера, и они начинают работать сразу, не нуждаясь в сложной настройке и высокой квалификации настраивающего. Отдельно хочу сказать про микросхемы автомобильных усилителей, из обвеса там иногда бывает буквально 4-5 деталей. Чтобы собрать такой усилитель, при определенной аккуратности, не требуется даже печатная плата (хотя она желательна) и можно собрать все навесным монтажем, прямо на выводах микросхемы.

Правда, такой усилитель после сборки лучше сразу поместить в корпус, потому, что такая конструкция ненадежна, и в случае случайного замыкания проводов можно легко спалить микросхему. Поэтому рекомендую всем начинающим, пусть потратить немного больше времени, но сделать печатную плату.

Регулируемые блоки питания на микросхемах - стабилизаторах даже проще в изготовлении, чем аналогичные на транзисторах. Посмотрите, сколько деталей заменяет простейшая микросхема LM317:


Микросхемы на печатных платах в электронных устройствах могут быть припаяны как непосредственно, к дорожкам печати, так и посажены в специальные панельки.

Панелька под дип микросхему - фото

Разница заключается в том, что в первом случае для того чтобы нам заменить микросхему нам придется её предварительно выпаять. А во втором случае, когда мы посадили микросхему в панельку, нам достаточно достать микросхему из панельки, и её можно с легкостью заменить на другую. Типичный пример замены микропроцессора в компьютере.

Также, к примеру, если вы собираете устройство на микроконтроллере на печатной плате, и не предусмотрели внутрисхемное программирование, вы сможете, если впаяли в плату не саму микросхему, а панельку, в которую она вставляется, то микросхему можно достать и подключить к специальной плате программатора.

В таких платах уже впаяны панельки под разные корпуса микроконтроллеров для программирования.

Аналоговые и цифровые микросхемы

Микросхемы выпускаются различных типов, они могут быть как аналоговыми так и цифровыми. Первые, как становится ясно из названия, работают с аналоговой формой сигнала, вторые же работают с цифровой формой сигнала. Аналоговый сигнал может принимать различную форму.

Цифровой сигнал это последовательность единиц и нулей, высокого и низкого уровня сигналов. Высокий уровень обеспечивается подачей на вывод 5 вольт или напряжения близкого к этому, низкий уровень это отсутствие напряжения или 0 вольт.

Существуют также микросхемы АЦП (аналогово - цифровой преобразователь ) и ЦАП (цифро - аналоговый преобразователь ) которые осуществляет преобразование сигнала из аналогового в цифровой, и наоборот. Типичный пример АЦП используется в мультиметре, для преобразования измеряемых электрических величин и отображения их на экране мультиметра. На рисунке ниже АЦП - это черная капля, к которой со всех сторон подходят дорожки.

Микроконтроллеры

Сравнительно недавно, по сравнению с выпуском транзисторов и микросхем, был налажен выпуск микроконтроллеров. Что же такое микроконтроллер?

Это специальная микросхема, может выпускаться как в Dip так и в SMD исполнении, в память которой может быть записана программа, так называемый Hex файл . Это файл откомпилированной прошивки, которая пишется в специальном редакторе программного кода. Но мало написать прошивку, нужно перенести, прошить, её в память микроконтроллера.

Программатор - фото

Для этой цели служит программатор . Как многим известно, есть много разных типов микронтроллеров - AVR , PIC и другие, для разных типов нам требуются разные программаторы. Также существует и , каждый сможет найти и изготовить себе подходящий по уровню знаний и возможностей. Если нет желания делать программатор самому, то можно купить готовый в интернет магазине или заказать с Китая.

На рисунке выше изображен микроконтроллер в SMD корпусе. Какие же плюсы есть в использовании микроконтроллеров? Если раньше, проектируя и собирая устройство на дискретных элементах или микросхемах, мы задавали работу устройства путем определенного, часто сложного соединения на печатной плате с использованием множества деталей. То теперь нам достаточно написать программу для микроконтроллера, которая будет делать тоже самое программным путем, зачастую быстрее и надежнее, чем схема без применения микроконтроллеров. Микроконтроллер представляет собой целый компьютер, с портами ввода - вывода, возможностью подключения дисплея и датчиков, а также управление другими устройствами.

Конечно усовершенствование микросхем на этом не остановится, и можно предположить, что лет через 10 возникнут действительно микросхемы от слова "микро " - невидимые глазу, которые будут содержать миллиарды транзисторов и других элементов, размерами в несколько атомов - вот тогда действительно создание сложнейших электронных устройств станет доступно даже не слишком опытным радиолюбителям! Наш краткий обзор подошёл к концу, с вами был AKV .

Обсудить статью МИКРОСХЕМЫ

ИНТЕГРАЛЬНАЯ CXEMA (ИС, интегральная микросхема, микросхема), функционально законченное микроэлектронное изделие, представляющее собой совокупность электрически связанных между собой элементов (транзисторов и др.), сформированных в полупроводниковой монокристаллической пластине. ИС являются элементной базой всех современных радиоэлектронных устройств, устройств вычислительной техники, информационных и телекоммуникационных систем.

Историческая справка. ИС изобретена в 1958 Дж. Килби (Нобелевская премия, 2000), который, не разделяя германиевую монокристаллическую пластину на отдельные сформированные в ней транзисторы, соединил их между собой тончайшими проволоками, так что полученное устройство стало законченной радиоэлектронной схемой. Спустя полгода американский физик Р. Нойс реализовал так называемую планарную кремниевую ИС, в которой при каждой области биполярных транзисторов (эмиттере, базе и коллекторе) на поверхности кремниевой пластины создавались металлизированные участки (так называемые контактные площадки), а соединения между ними осуществлялись тонкоплёночными проводниками. В 1959 году в США начался промышленный выпуск кремниевых ИС; массовое производство ИС в СССР организовано в середине 1960-х годов в г. Зеленоград под руководством К. А. Валиева.

Технология ИС. Структура полупроводниковой ИС показана на рисунке. Транзисторы и другие элементы формируются в очень тонком (до нескольких мкм) приповерхностном слое кремниевой пластины; сверху создаётся многоуровневая система межэлементных соединений. С увеличением числа элементов ИС количество уровней растёт и может достигать 10 и более. Межэлементные соединения должны обладать низким электрическим сопротивлением. Этому требованию удовлетворяет, например, медь. Между слоями проводников размещаются изолирующие (диэлектрические) слои (SiO 2 и др.). На одной ПП пластине одновременно формируется до нескольких сотен ИС, после чего пластину разделяют на отдельные кристаллы (чипы).

Технологический цикл изготовления ИС включает несколько сотен операций, важнейшей из которых является фотолитография (ФЛ). Транзистор содержит десятки деталей, контуры которых формируются в результате ФЛ, определяющей также конфигурацию межсоединений в каждом слое и положение проводящих областей (контактов) между слоями. В технологическом цикле ФЛ повторяется несколько десятков раз. За каждой операцией ФЛ следуют операции изготовления деталей транзисторов, например осаждение диэлектрической, ПП и металлической тонких плёнок, травление, легирование методом имплантации ионов в кремний и др. Фотолитография определяет минимальный размер (МР) отдельных деталей. Главным инструментом ФЛ являются оптические проекционные степперы-сканеры, с помощью которых выполняется пошаговое (от чипа к чипу) экспонирование изображения (освещение чипа, на поверхность которого нанесён фоточувствительный слой - фоторезист, через маску, называемую фотошаблоном) с уменьшением (4:1) размеров изображения по отношению к размерам маски и со сканированием светового пятна в пределах одного чипа. МР прямо пропорционален длине волны источника излучения. Первоначально в установках ФЛ использовались g- и i-линии (436 и 365 нм соответственно) спектра излучения ртутной лампы. На смену ртутной лампе пришли эксимерные лазеры на молекулах KrF (248 нм) и ArF (193 нм). Совершенствование оптической системы, применение фоторезистов с высокими контрастом и чувствительностью, а также специальной техники высокого разрешения при проектировании фотошаблонов и степперов-сканеров с источником света длиной волны 193 нм позволяют достичь МР, равных 30 нм и менее, на больших чипах (площадью 1-4 см 2) с производительностью до 100 пластин (диаметром 300 мм) в час. Продвижение в область меньших (30-10 нм) МР возможно при использовании мягкого рентгеновского излучения или экстремального ультрафиолета (ЭУФ) с длиной волны 13,5 нм. Из-за интенсивного поглощения излучения материалами на этой длине волны не может быть применена преломляющая оптика. Поэтому в ЭУФ-степперах используют отражающую оптику на рентгеновских зеркалах. Шаблоны также должны быть отражающими. ЭУФ-литография является аналогом проекционной оптической, не требует создания новой инфраструктуры и обеспечивает высокую производительность. Таким образом, технология ИС к 2000 преодолела рубеж 100 нм (МР) и стала нанотехнологией.

Структура интегральной схемы: 1- пассивирующий (защитный) слой; 2 - верхний слой проводника; 3 - слой диэлектрика; 4 - межуровневые соединения; 5 - контактная площадка; 6 - МОП-транзисторы; 7 - кремниевая пластина (подложка).

Направления развития. ИС разделяют на цифровые и аналоговые. Основную долю цифровых (логических) микросхем составляют ИС процессоров и ИС памяти, которые могут объединяться на одном кристалле (чипе), образуя «систему-на-кристалле». Сложность ИС характеризуется степенью интеграции, определяемой числом транзисторов на чипе. До 1970 степень интеграции цифровых ИС увеличивалась вдвое каждые 12 месяцев. Эта закономерность (на неё впервые обратил внимание американский учёный Г. Мур в 1965) получила название закона Мура. Позднее Мур уточнил свой закон: удвоение сложности схем памяти происходит через каждые 18 месяцев, а процессорных схем - через 24 месяца. По мере увеличения степени интеграции ИС вводились новые термины: большая ИС (БИС, с числом транзисторов до 10 тысяч), сверх-большая (СБИС - до 1 миллиона), ультрабольшая ИС (УБИС - до 1 миллиарда) и гигантская БИС (ГБИС - более 1 миллиарда).

Различают цифровые ИС на биполярных (Би) и на МОП (металл - оксид - полупроводник) транзисторах, в том числе в конфигурации КМОП (комплементарные МОП, т. е. взаимодополняющие р-МОП и w-МОП транзисторы, включённые последовательно в цепи «источник питания - точка с нулевым потенциалом»), а также БиКМОП (на биполярных транзисторах и КМОП-транзисторах в одном чипе).

Увеличение степени интеграции достигается уменьшением размеров транзисторов и увеличением размеров чипа; при этом уменьшается время переключения логического элемента. По мере уменьшения размеров уменьшались потребляемая мощность и энергия (произведение мощности на время переключения), затраченная на каждую операцию переключения. К 2005 году быстродействие ИС улучшилось на 4 порядка и достигло долей наносекунды; число транзисторов на одном чипе составило до 100 миллионов штук.

Основную долю (до 90%) в мировом производстве с 1980 составляют цифровые КМОП ИС. Преимущество таких схем заключается в том, что в любом из двух статических состояний («0» или «1») один из транзисторов закрыт, и ток в цепи определяется током транзистора в выключенном состоянии I BЫKЛ. Это означает, что, если I BЫKЛ пренебрежимо мал, ток от источника питания потребляется только в режиме переключения, а потребляемая мощность пропорциональна частоте переключения и может быть оценена соотношением Ρ Σ ≈C Σ ·Ν·f·U 2 , где C Σ - суммарная ёмкость нагрузки на выходе логического элемента, N - число логических элементов на чипе, f - частота переключения, U - напряжение питания. Практически вся потребляемая мощность выделяется в виде джоулева тепла, которое должно быть отведено от кристалла. При этом к мощности, потребляемой в режиме переключения, добавляется мощность, потребляемая в статическом режиме (определяется токами I BЫKЛ и токами утечки). С уменьшением размеров транзисторов статическая мощность может стать сравнимой с динамической и достигать по порядку величины 1 кВт на 1 см 2 кристалла. Проблема большого энерговыделения вынуждает ограничивать максимальную частоту переключений высокопроизводительных КМОП ИС диапазоном 1-10 ГГц. Поэтому для увеличения производительности «систем-на-кристалле» используют дополнительно архитектурные (так называемые многоядерные процессоры) и алгоритмические методы.

При длинах канала МОП-транзисторов порядка 10 нм на характеристики транзистора начинают влиять квантовые эффекты, такие как продольное квантование (электрон распространяется в канале как волна де Бройля) и поперечное квантование (в силу узости канала), прямое туннелирование электронов через канал. Последний эффект ограничивает возможности применения КМОП-элементов в ИС, так как вносит большой вклад в суммарный ток утечки. Это становится существенным при длине канала 5 нм. На смену КМОП ИС придут квантовые приборы, молекулярные электронные приборы и др.

Аналоговые ИС составляют широкий класс схем, выполняющих функции усилителей, генераторов, аттенюаторов, цифроаналоговых и аналого-цифровых преобразователей, компараторов, фазовращателей и т.д., в том числе низкочастотные (НЧ), высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) ИС. СВЧ ИС - схемы относительно небольшой степени интеграции, которые могут включать не только транзисторы, но и плёночные катушки индуктивности, конденсаторы, резисторы. Для создания СВЧ ИС используется не только ставшая традиционной кремниевая технология, но и технология гетеропереходных ИС на твёрдых растворах Si - Ge, соединениях A III B V (например, арсениде и нитриде галлия, фосфиде индия) и др. Это позволяет достичь рабочих частот 10-20 ГГц для Si - Ge и 10-50 ГГц и выше для СВЧ ИС на соединениях A III B V . Аналоговые ИС часто используют вместе с сенсорными и микромеханическими устройствами, биочипами и др., которые обеспечивают взаимодействие микроэлектронных устройств с человеком и окружающей средой, и могут быть заключены с ними в один корпус. Такие конструкции называются многокристальными или «системами-в-корпусе».

В будущем развитие ИС приведёт к слиянию двух направлений и созданию микроэлектронных устройств большой сложности, содержащих мощные вычислительные устройства, системы контроля окружающей среды и средства общения с человеком.

Лит. смотри при ст. Микроэлектроника.

А. А. Орликовский.

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Статьи, партнеры Разное

История изобретения интегральной схемы

Первая логическая схема на кристаллах кремния была изобретена 52 года назад и содержала только один транзистор. Один из основателей компании Fairchild Semiconductor Роберт Нойс в 1959 году изобрел устройство, которое затем стало называться интегральной схемой, микросхемой или микрочипом. А почти на полгода раньше похожее устройство придумал инженер из компании Texas Instruments Джэк Килби. Можно сказать, что эти люди стали изобретателями микросхемы.

Интегральной микросхемой называется система из конструктивно связанных элементов, соединенных между собой электрическими проводниками. Также под интегральной схемой понимают кристалл с электронной схемой. Если интегральная схема заключена в корпус, то это уже микросхема.

Первая действующая интегральная микросхема была представлена Килби 12 сентября 1958. В ней использовалась разработанная им концепция, базирующаяся на принципе изоляции компонентов схемы p-n-переходами, изобретенном Куртом Леховеком.

Внешний вид новинки был немного страшноват, но Килби и не предполагал, что показанное им устройство положит начало всем информационным технологиям, иначе, по его словам, он сделал бы этот прототип покрасивее.

Но в тот момент важна была не красота, а практичность. Все элементы электронной схемы – резисторы, транзисторы, конденсаторы и остальные, - были размещены на отдельных платах. Так было до тех пор, пока не возникла мысль сделать всю схему на одном монолитном кристалле полупроводникового материала.

Самая первая интегральная микросхема Килби представляла собой маленькую германиевую полоску 11х1,5 мм с одним транзистором, несколькими резисторами и конденсатором. Несмотря на свою примитивность, эта схема выполнила свою задачу – вывела синусоиду на экран осциллографа.

Шестого февраля 1959 года Джэк Килби подал заявку на регистрацию патента на новое устройство, описанное им как объект из полупроводникового материала с полностью интегрированными компонентами электронной схемы. Его вклад в изобретение микросхемы был отмечен вручением ему в 2000 году Нобелевской премии в области физики.

Идея Роберта Нойса смогла решить несколько практических проблем, не поддавшихся интеллекту Килби. Он предложил использовать для микросхем кремний, а не германий, предложенный Джэком Килби.

Патенты были получены изобретателями в одном и том же 1959 году. Начавшееся между TI и Fairchild Semiconductor соперничество завершилось мирным договором. На взаимовыгодных условиях они создали лицензию на изготовление чипов. Но в качестве материала для микросхем выбрали все же кремний.

Производство интегральных схем было запущено на Fairchild Semiconductor в 1961 году. Они сразу заняли свою нишу в электронной промышленности. Благодаря их применению в создании калькуляторов и компьютеров в качестве отдельных транзисторов, дало возможность сделать вычислительные устройства более компактными, повысив при этом их производительность, значительно упростив ремонт компьютеров .

Можно сказать, что с этого момента началась эпоха миниатюризации, продолжающаяся по сей день. При этом абсолютно точно соблюдается закон, который сформулировал коллега Нойса Гордон Мур. Он предсказал, что число транзисторов в интегральных схемах каждые 2 года будет удваиваться.

Покинув Fairchild Semiconductor в 1968 году, Мур и Нойс создали новую компанию – Intel. Но это уже совсем другая история...

) впервые выдвинул идею объединения множества стандартных электронных компонентов в монолитном кристалле полупроводника . Осуществление этих предложений в те годы не могло состояться из-за недостаточного развития технологий.

В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, решили три фундаментальные проблемы, препятствовавшие созданию интегральных схем. Джек Килби из Texas Instruments запатентовал принцип объединения, создал первые, несовершенные, прототипы ИС и довёл их до серийного производства. Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированных на одном кристалле полупроводника (изоляцию p-n-переходом (англ. P–n junction isolation )). Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии Жана Эрни (англ. Jean Hoerni ). 27 сентября 1960 года группа Джея Ласта (англ. Jay Last ) создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments , владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий.

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961-1962 гг. парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 г. Sylvania выпустила в продажу первое семейство разработанной Лонго транзисторно-транзисторной логики (ТТЛ) - исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964-1965 годах разработчик операционных усилителей Fairchild Боб Видлар .

Первая в СССР гибридная толстоплёночная интегральная микросхема (серия 201 «Тропа») была разработана в 1963-65 годах в НИИ точной технологии («Ангстрем »), серийное производство с 1965 года. В разработке принимали участие специалисты НИЭМ (ныне НИИ «Аргон») .

Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии , разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон »). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов - эквивалент схемотехнической сложности триггера , аналога американских ИС серии SN -51 фирмы Texas Instruments ). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты . Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год) .

Параллельно работа по разработке интегральной схемы проводилась в центральном конструкторском бюро при Воронежском заводе полупроводниковых приборов (ныне - ). В 1965 году во время визита на ВЗПП министра электронной промышленности А. И. Шокина заводу было поручено провести научно-исследовательскую работу по созданию кремниевой монолитной схемы - НИР «Титан» (приказ министерства от 16.08.1965 г. № 92), которая была досрочно выполнена уже к концу года. Тема была успешно сдана Госкомиссии, и серия 104 микросхем диодно-транзисторной логики стала первым фиксированным достижением в области твердотельной микроэлектроники, что было отражено в приказе МЭП от 30.12.1965 г. № 403.

Уровни проектирования

В настоящее время (2014 г.) большая часть интегральных схем проектируется при помощи специализированных САПР , которые позволяют автоматизировать и значительно ускорить производственные процессы , например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) - до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) - до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь уже устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн. до 1 млрд. элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Технология изготовления

  • Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния , германия , арсенида галлия , оксида гафния).
  • Плёночная интегральная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок :
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (часто называемая микросборкой ), содержит несколько бескорпусных диодов, бескорпусных транзисторов и(или) других электронных активных компонентов. Также микросборка может включать в себя бескорпусные интегральные микросхемы. Пассивные компоненты микросборки (резисторы , конденсаторы , катушки индуктивности) обычно изготавливаются методами тонкоплёночной или толстоплёночной технологий на общей, обычно керамической подложке гибридной микросхемы. Вся подложка с компонентами помещается в единый герметизированный корпус.
  • Смешанная микросхема - кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

  • Микросхемы на униполярных (полевых) транзисторах - самые экономичные (по потреблению тока):
    • МОП -логика (металл-оксид-полупроводник логика) - микросхемы формируются из полевых транзисторов n -МОП или p -МОП типа;
    • КМОП -логика (комплементарная МОП-логика) - каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n -МОП и p -МОП).
  • Микросхемы на биполярных транзисторах :
    • РТЛ - резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ДТЛ - диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ТТЛ - транзисторно-транзисторная логика - микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
    • ТТЛШ - транзисторно-транзисторная логика с диодами Шоттки - усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки ;
    • ЭСЛ - эмиттерно-связанная логика - на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, - что существенно повышает быстродействие;
    • ИИЛ - интегрально-инжекционная логика.
  • Микросхемы, использующие как полевые, так и биполярные транзисторы:

Используя один и тот же тип транзисторов, микросхемы могут создаваться по разным методологиям, например, статической или динамической . КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость к статическому электричеству - достаточно коснуться рукой вывода микросхемы, и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолетового излучения при засветке отказались.

Следующие процессоры изготавливали с использованием УФ-излучения (эксимерный лазер ArF, длина волны 193 нм). В среднем внедрение лидерами индустрии новых техпроцессов по плану ITRS происходило каждые 2 года, при этом обеспечивалось удвоение количества транзисторов на единицу площади: 45 нм (2007), 32 нм (2009), 22 нм (2011) , производство 14 нм начато в 2014 году , освоение 10 нм процессов ожидается около 2018 года.

В 2015 году появились оценки, что внедрение новых техпроцессов будет замедляться .

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры .

Назначение

Интегральная микросхема может обладать законченной, сколь угодно сложной, функциональностью - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

  • Фильтры (в том числе на пьезоэффекте).
  • Аналоговые умножители .
  • Аналоговые аттенюаторы и регулируемые усилители .
  • Стабилизаторы источников питания: стабилизаторы напряжения и тока .
  • Микросхемы управления импульсных блоков питания.
  • Преобразователи сигналов.
  • Схемы синхронизации .
  • Различные датчики (например, температуры).

Цифровые схемы

  • Буферные преобразователи
  • (Микро)процессоры (в том числе ЦП для компьютеров)
  • Микросхемы и модули памяти
  • ПЛИС (программируемые логические интегральные схемы)

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения , во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Аналого-цифровые схемы

  • цифро-аналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП);
  • трансиверы (например, преобразователь интерфейса Ethernet );
  • модуляторы и демодуляторы ;
    • радиомодемы
    • декодеры телетекста, УКВ-радио-текста
    • трансиверы Fast Ethernet и оптических линий
    • Dial-Up модемы
    • приёмники цифрового ТВ
    • сенсор оптической «мыши»
  • микросхемы питания электронных устройств - стабилизаторы, преобразователи напряжения, силовые ключи и др.;
  • цифровые аттенюаторы ;
  • схемы фазовой автоподстройки частоты (ФАПЧ);
  • генераторы и восстановители частоты тактовой синхронизации;
  • базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые схемы;

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия - это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса

Специфические названия

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express ) в процессор.

https://jsdsrgsr.ru/