Calculul practic al rangului matricei. Rangul matricei și baza matricei minore

Determinarea rangului unei matrice

Considerăm o matrice \(A\) de tip \((m,n)\). Fie, pentru certitudine, \(m \leq n\). Să luăm \(m\) rânduri și să alegem \(m\) coloane ale matricei \(A\), la intersecția acestor rânduri și coloane obținem o matrice pătrată de ordinul \(m\), al cărei determinant se numește comanda minora \(m\) matrice \(A\). Dacă acest minor este diferit de 0, se numește minor de bază iar ei spun că rangul matricei \(A\) este egal cu \(m\). Daca acest determinant este egal cu 0, atunci se aleg alte coloane \(m\), la intersectia lor exista elemente care formeaza un alt minor de ordin \(m\). Dacă minorul este 0, continuăm procedura. Dacă dintre toate posibilele minore de ordin \(m\) nu există zerouri, selectăm \(m-1\) rânduri și coloane din matricea \(A\), la intersecția lor o matrice pătrată de ordin \(m- 1\) apare , determinantul său se numește minor de ordin \(m-1\) al matricei originale. Continuând procedura, căutăm un minor non-zero, trecând prin toți minorii posibili, coborându-le ordinea.

Definiție.

Se numește minorul diferit de zero al unei matrice date de ordinul cel mai înalt minor de bază din matricea originală, ordinea acesteia se numește rang matricele \(A\), rândurile și coloanele, la intersecția cărora există o bază minoră, se numesc rânduri și coloane de bază. Rangul unei matrice este notat cu \(rang(A)\).

Din această definiție rezultă proprietăți simple ale rangului unei matrice: este un număr întreg, iar rangul unei matrice non-nule satisface inegalitățile: \(1 \leq rank(A) \leq \min(m,n)\ ).

Cum se va schimba rangul matricei dacă un rând este șters? Adăugați o linie?

Verifică răspunsul

1) Rangul poate scădea cu 1.

2) Rangul poate crește cu 1.

Dependența liniară și independența liniară a coloanelor matriceale

Fie \(A\) o matrice de tip \((m,n)\). Luați în considerare coloanele matricei \(A\) - acestea sunt coloane cu numere \(m\) fiecare. Să le notăm \(A_1,A_2,...,A_n\). Fie \(c_1,c_2,...,c_n\) niște numere.

Definiție.

Coloana \[ D=c_1A_1+c_2A_2+...+c_nA_n = \sum _(m=1)^nc_mA_m \] se numește o combinație liniară de coloane \(A_1,A_2,...,A_n\), numere \( c_1,c_2 ,...,c_n\) se numesc coeficienții acestei combinații liniare.

Definiție.

Fie date \(p\) coloane \(A_1, A_2, ..., A_p\). Dacă există numere \(c_1,c_2,...,c_p\) astfel încât

1. nu toate aceste numere sunt egale cu zero,

2. combinația liniară \(c_1A_1+c_2A_2+...+c_pA_p =\sum _(m=1)^pc_mA_m\) este egală cu coloana zero (adică o coloană ale cărei toate elementele sunt zero), atunci spunem că coloanele \( A_1, A_2, ..., A_p\) sunt dependente liniar. Dacă pentru un anumit set de coloane astfel de numere \(c_1,c_2,...,c_n\) nu există, coloanele se numesc liniar independente.

Exemplu. Luați în considerare 2 coloane

\[ A_1=\left(\begin(array)(c) 1 \\ 0 \end(array) \right), A_2=\left(\begin(array)(c) 0 \\ 1 \end(array) \right), \] atunci pentru orice numere \(c_1,c_2\) avem: \[ c_1A_1+c_2A_2=c_1\left(\begin(array)(c) 1 \\ 0 \end(array) \right) + c_2\left(\begin(array)(c) 0 \\ 1 \end(array) \right)=\left(\begin(array)(c) c_1 \\ c_2 \end(array) \right). \]

Această combinație liniară este egală cu coloana zero dacă și numai dacă ambele numere \(c_1,c_2\) sunt egale cu zero. Astfel, aceste coloane sunt liniar independente.

Afirmație. Pentru ca coloanele să fie dependente liniar, este necesar și suficient ca unul dintre ele să fie o combinație liniară a celorlalte.

Fie coloanele \(A_1,A_2,...,A_m\) să fie dependente liniar, adică. pentru unele constante \(\lambda _1, \lambda _2,...,\lambda _m\), care nu sunt toate egale cu 0, este valabilă următoarele: \[ \sum _(k=1)^m\lambda _kA_k=0 \ ] (în partea dreaptă este coloana zero). Fie, de exemplu, \(\lambda _1 \neq 0\). Apoi \[ A_1=\sum _(k=2)^mc_kA_k, \quad c_k=-\lambda _k/\lambda _1, \quad \quad (15) \] i.e. prima coloană este o combinație liniară a celorlalte.

Teorema minoră a bazei

Teorema.

Pentru orice matrice diferită de zero \(A\) este adevărată următoarea:

1. Coloanele de bază sunt liniar independente.

2. Orice coloană matrice este o combinație liniară a coloanelor sale de bază.

(Același lucru este valabil și pentru șiruri).

Fie, pentru certitudine, \((m,n)\) tipul de matrice \(A\), \(rang(A)=r \leq n\) iar baza minoră este situată în primul \(r \) matrice de rânduri și coloane \(A\). Fie \(s\) orice număr între 1 și \(m\), \(k\) orice număr între 1 și \(n\). Luați în considerare un minor de următoarea formă: \[ D=\left| \begin(array)(ccccc) a_(11) & a_(12) & \ldots & a_(1r) & a_(1s) \\ a_(21) & a_(22) & \ldots & a_(2r) & a_(2s) \\ \dots &\ldots & \ldots & \ldots & \ldots \\ a_(r1) & a_(r2) & \ldots & a_(rr) & a_(rs) \\ a_(k1) & a_(k2) & \ldots & a_(kr) & a_(ks) \\ \end(array) \right| , \] adică Am atribuit \(s-\)-a coloană și \(k-\)-lea rând minorului de bază. Prin definiția rangului unei matrice, acest determinant este egal cu zero (dacă alegem \(s\leq r\) sau \(k \leq r\), atunci acest minor are 2 coloane identice sau 2 rânduri identice, dacă \(s>r\) și \(k>r\) - prin definiția rangului, un minor de mărime mai mare decât \(r\) devine zero). Să extindem acest determinant de-a lungul ultimei linii, obținem: \[ a_(k1)A_(k1)+a_(k2)A_(k2)+....+a_(kr)A_(kr)+a_(ks) A_(ks)=0. \quad \quad(16) \]

Aici numerele \(A_(kp)\) sunt complementele algebrice ale elementelor din rândul de jos \(D\). Valorile lor nu depind de \(k\), deoarece sunt formate folosind elemente din primele \(r\) linii. În acest caz, valoarea \(A_(ks)\) este un minor de bază, diferit de 0. Să notăm \(A_(k1)=c_1,A_(k2)=c_2,...,A_(ks) =c_s \neq 0 \). Să rescriem (16) în notație nouă: \[ c_1a_(k1)+c_2a_(k2)+...+c_ra_(kr)+c_sa_(ks)=0, \] sau, împărțind la \(c_s\), \[ a_(ks)=\lambda_1a_(k1)+\lambda_2a_(k2)+...+\lambda_ra_(kr), \quad \lambda _p=-c_p/c_s. \] Această egalitate este valabilă pentru orice valoare a lui \(k\), deci \[ a_(1s)=\lambda_1a_(11)+\lambda_2a_(12)+...+\lambda_ra_(1r), \] \[ a_ (2s)=\lambda_1a_(21)+\lambda_2a_(22)+...+\lambda_ra_(2r), \] \[ ................... .. .................................... \] \[ a_(ms)=\lambda_1a_( m1) +\lambda_2a_(m2)+...+\lambda_ra_(mr). \] Deci, coloana \(s-\)-a este o combinație liniară a primelor coloane \(r\). Teorema este demonstrată.

Cometariu.

Din teorema minoră de bază rezultă că rangul unei matrice este egal cu numărul coloanelor sale liniar independente (care este egal cu numărul de rânduri liniar independente).

Corolarul 1.

Dacă determinantul este zero, atunci are o coloană care este o combinație liniară a celorlalte coloane.

Corolarul 2.

Dacă rangul unei matrice este mai mic decât numărul de coloane, atunci coloanele matricei sunt dependente liniar.

Calcularea rangului unei matrice și găsirea bazei minore

Unele transformări de matrice nu își schimbă rangul. Astfel de transformări pot fi numite elementare. Faptele corespunzătoare pot fi ușor verificate folosind proprietățile determinanților și determinând rangul unei matrice.

1. Rearanjarea coloanelor.

2. Înmulțirea elementelor oricărei coloane cu un factor diferit de zero.

3. Adăugarea oricărei alte coloane la o coloană, înmulțită cu un număr arbitrar.

4. Trimiterea coloanei zero.

Același lucru este valabil și pentru șiruri.

Folosind aceste transformări, matricea poate fi transformată în așa-numita formă „trapezoidală” - o matrice cu doar zerouri sub diagonala principală. Pentru o matrice „trapezoidală”, rangul este numărul de elemente nenule de pe diagonala principală, iar baza minoră este minora a cărei diagonală coincide cu mulțimea elementelor nenule de pe diagonala principală a matricei transformate.

Exemplu. Luați în considerare matricea

\[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(matrice) \right). \] Îl vom transforma folosind transformările de mai sus. \[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 4 & 12 & 16 \\ 0 & -1 & -3 & -4 \end(array) \right) \mapsto \] \[ \left(\begin(array)(cccc) 1 & 0 & 4 & - 1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end(array) \right)\mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \end(array)\right). \]

Aici facem secvențial următorii pași: 1) rearanjați a doua linie în partea de sus, 2) scădeți prima linie din restul cu un factor adecvat, 3) scădeți a doua linie din a treia de 4 ori, adăugați a doua linie la a patra, 4) tăiați liniile zero - a treia și a patra. Matricea noastră finală a căpătat forma dorită: există numere diferite de zero pe diagonala principală și zerouri sub diagonala principală. După aceasta, procedura se oprește și numărul de elemente nenule de pe diagonala principală este egal cu rangul matricei. Minorul de bază este primele două rânduri și primele două coloane. La intersecția lor există o matrice de ordinul 2 cu un determinant diferit de zero. În același timp, mergând înapoi de-a lungul lanțului de transformări, puteți urmări de unde provine acest sau acel rând (acesta sau acea coloană) din matricea finală, adică. determinați rândurile și coloanele de bază din matricea originală. În acest caz, primele două rânduri și primele două coloane formează baza minoră.


Fie A o matrice de dimensiuni m\x n și k un număr natural care nu depășește m și n: k\leqslant\min\(m;n\). Ordinea k-a minoră matricea A este determinantul unei matrice de ordin k formată din elementele de la intersecția dintre k rânduri și k coloane alese în mod arbitrar ale matricei A. La desemnarea minorilor, vom indica numerele rândurilor selectate ca indici superiori, iar numerele coloanelor selectate ca indici inferiori, aranjandu-le în ordine crescătoare.


Exemplul 3.4. Scrieți minori de diferite ordine ale matricei


A=\begin(pmatrix)1&2&1&0\\ 0&2&2&3\\ 1&4&3&3\end(pmatrix)\!.


Soluţie. Matricea A are dimensiuni de 3\x4 . Are: 12 minori de ordinul I, de exemplu, minor M_(()_2)^(()_3)=\det(a_(32))=4; 18 minori de ordinul 2, de exemplu, M_(()_(23))^(()^(12))=\begin(vmatrix)2&1\\2&2\end(vmatrix)=2; 4 minori de ordinul 3, de exemplu,


M_(()_(134))^(()^(123))= \begin(vmatrix)1&1&0\\0&2&3\\ 1&3&3 \end(vmatrix)=0.

Într-o matrice A de dimensiuni m\x n se numește ordinul al r-lea minor de bază, dacă este diferit de zero și toți minorii de ordin (r+1)-ro sunt egali cu zero sau nu există deloc.


Rangul matricei se numește ordinea de bază minoră. Nu există o bază minoră într-o matrice zero. Prin urmare, rangul unei matrice zero este, prin definiție, egal cu zero. Rangul matricei A este notat cu \operatorname(rg)A.


Exemplul 3.5. Găsiți toate minorii de bază și rangul matricei


A=\begin(pmatrix)1&2&2&0\\0&2&2&3\\0&0&0&0\end(pmatrix)\!.


Soluţie. Toți minorii de ordinul trei ai acestei matrice sunt egali cu zero, deoarece acești determinanți au un al treilea rând zero. Prin urmare, doar un minor de ordinul doi situat în primele două rânduri ale matricei poate fi de bază. Trecând prin 6 minori posibili, selectăm non-zero


M_(()_(12))^(()^(12))= M_(()_(13))^(()^(12))= \begin(vmatrix)1&2\\0&2 \end( vmatrix)\!,\quad M_(()_(24))^(()^(12))= M_(()_(34))^(()^(12))= \begin(vmatrix) 2&0\\2&3\end(vmatrix)\!,\quad M_(()_(14))^(()^(12))= \begin(vmatrix)1&0\\0&3\end(vmatrix)\!.


Fiecare dintre acești cinci minori este unul de bază. Prin urmare, rangul matricei este 2.

Note 3.2


1. Dacă toate minorele de ordinul k dintr-o matrice sunt egale cu zero, atunci și minorele de ordin superior sunt egale cu zero. Într-adevăr, extinzând ordinul minor de (k+1)-ro peste orice rând, obținem suma produselor elementelor acestui rând de către minorii de ordinul k, iar acestea sunt egale cu zero.


2. Rangul unei matrice este egal cu cel mai înalt ordin al minorului diferit de zero al acestei matrice.


3. Dacă o matrice pătrată este nesingulară, atunci rangul ei este egal cu ordinea sa. Dacă o matrice pătrată este singulară, atunci rangul ei este mai mic decât ordinul său.


4. Desemnările sunt folosite și pentru rang \operatorname(Rg)A,~ \operatorname(rang)A,~ \operatorname(rank)A.


5. Rangul matricei bloc este definit ca rangul unei matrice obișnuite (numerice), adică indiferent de structura sa bloc. În acest caz, rangul unei matrice de bloc nu este mai mic decât rangurile blocurilor sale: \operatorname(rg)(A\mid B)\geqslant\operatorname(rg)AȘi \operatorname(rg)(A\mid B)\geqslant\operatorname(rg)B, deoarece toate minorele matricei A (sau B ) sunt și minore ale matricei bloc (A\mid B) .

Teoreme pe baza minorului și rangul matricei

Să luăm în considerare principalele teoreme care exprimă proprietățile dependenței liniare și ale independenței liniare a coloanelor (rândurilor) unei matrice.


Teorema 3.1 pe baza minoră.Într-o matrice arbitrară A, fiecare coloană (rând) este o combinație liniară a coloanelor (rândurilor) în care se află baza minoră.


Într-adevăr, fără pierderi de generalitate, presupunem că într-o matrice A de mărime m\x n baza minoră este situată în primele r rânduri și primele r coloane. Luați în considerare determinantul


D=\begin(vmatrix)~ a_(11)&\cdots&a_(1r)\!\!&\vline\!\!&a_(1k)~\\ ~\vdots&\ddots &\vdots\!\!&\ vline\!\!&\vdots~\\ ~a_(r1)&\cdots&a_(rr)\!\!&\vline\!\!&a_(rk)~\\\hline ~a_(s1)&\cdots&a_ (sr)\!\!&\vline\!\!&a_(sk)~\end(vmatrix),


care se obține prin atribuirea elementelor corespunzătoare ale rândului și coloanei a k-a bazei minore a matricei A. Rețineți că pentru orice 1\leqslant s\leqslant m iar acest determinant este egal cu zero. Dacă s\leqslant r sau k\leqslant r , atunci determinantul D conține două rânduri identice sau două coloane identice. Dacă s>r și k>r, atunci determinantul D este egal cu zero, deoarece este minor de ordinul (r+l)-ro. Extinderea determinantului de-a lungul ultimei linii, obținem


a_(s1)\cdot D_(r+11)+\ldots+ a_(sr)\cdot D_(r+1r)+a_(sk)\cdot D_(r+1\,r+1)=0,


unde D_(r+1\,j) sunt complementele algebrice ale elementelor ultimului rând. Rețineți că D_(r+1\,r+1)\ne0 deoarece aceasta este o bază minoră. De aceea


a_(sk)=\lambda_1\cdot a_(s1)+\ldots+\lambda_r\cdot a_(sr), Unde \lambda_j=-\frac(D_(r+1\,j))(D_(r+1\,r+1)),~j=1,2,\ldots,r.


Scriind ultima egalitate pentru s=1,2,\ldots,m, obținem

\begin(pmatrix)a_(1k)\\\vdots\\a_(mk)\end(pmatrix)= \lambda_1\cdot\! \begin(pmatrix)a_(11)\\\vdots\\a_(m1)\end(pmatrix)+\ldots \lambda_r\cdot\! \begin(pmatrix)a_(1r)\\\vdots\\a_(mr)\end(pmatrix)\!.


acestea. a k-a coloană (pentru orice 1\leqslant k\leqslant n) este o combinație liniară a coloanelor bazei minore, ceea ce trebuia să dovedim.


Teorema minoră a bazei servește la demonstrarea următoarelor teoreme importante.

Condiție pentru ca determinantul să fie zero

Teorema 3.2 (condiție necesară și suficientă pentru ca determinantul să fie zero). Pentru ca un determinant să fie egal cu zero, este necesar și suficient ca una dintre coloanele sale (unul dintre rândurile sale) să fie o combinație liniară a coloanelor (rândurilor) rămase.


Într-adevăr, necesitatea decurge din teorema minoră de bază. Dacă determinantul unei matrice pătrate de ordinul n este egal cu zero, atunci rangul său este mai mic decât n, adică. cel puțin o coloană nu este inclusă în baza minoră. Atunci această coloană aleasă, de teorema 3.1, este o combinație liniară a coloanelor în care se află baza minoră. Adăugând, dacă este necesar, la această combinație alte coloane cu coeficienți zero, obținem că coloana selectată este o combinație liniară a coloanelor rămase ale matricei. Suficiența rezultă din proprietățile determinantului. Dacă, de exemplu, ultima coloană A_n a determinantului \det(A_1~A_2~\cdots~A_n) exprimată liniar prin restul


A_n=\lambda_1\cdot A_1+\lambda_2\cdot A_2+\ldots+\lambda_(n-1)\cdot A_(n-1),


apoi adăugând la A_n coloana A_1 înmulțită cu (-\lambda_1), apoi coloana A_2 înmulțită cu (-\lambda_2), etc. coloana A_(n-1) înmulțită cu (-\lambda_(n-1)) obținem determinantul \det(A_1~\cdots~A_(n-1)~o) cu o coloană nulă care este egală cu zero (proprietatea 2 a determinantului).

Invarianța rangului matricei sub transformări elementare

Teorema 3.3 (asupra invarianței rangului sub transformări elementare). În timpul transformărilor elementare ale coloanelor (rândurilor) unei matrice, rangul acesteia nu se modifică.


Într-adevăr, să fie. Să presupunem că în urma unei transformări elementare a coloanelor matricei A am obţinut matricea A". Dacă s-a efectuat o transformare de tip I (permutarea a două coloane), atunci orice minor (r+l)-ro de ordinul al matricei A" este fie egală cu minorul corespunzător (r+l )-ro de ordinul matricei A, fie diferă de acesta prin semn (proprietatea 3 a determinantului). Dacă a fost efectuată o transformare de tip II (înmulțirea coloanei cu numărul \lambda\ne0 ), atunci orice minor (r+l)-ro de ordinul matricei A" este fie egal cu minorul corespunzător (r+l) -ro de ordinul matricei A sau diferit de acesta factor \lambda\ne0 (proprietatea 6 a determinantului Dacă s-a efectuat o transformare de tip III (adăugând la o coloană o altă coloană înmulțită cu numărul \Lambda), atunci oricare minor al ordinului (r+1) al matricei A" este fie egal cu minorul corespunzător. (r+1) al-lea ordin al matricei A (proprietatea 9 a determinantului), fie este egal cu suma două minore (r+l)-ro de ordinul matricei A (proprietatea 8 a determinantului). Prin urmare, la o transformare elementară de orice tip, toate minorele (r+l)-ro de ordinul matricei A" sunt egale cu zero, deoarece toate minorele (r+l)-ro de ordinul matricei A sunt egal cu zero Astfel, s-a dovedit că la transformările elementare ale coloanelor matricea de rang nu poate crește Deoarece transformările inverse cu cele elementare sunt elementare, rangul matricei nu poate scădea la transformările elementare ale coloanelor, adică este similar. a demonstrat că rangul matricei nu se modifică la transformări elementare ale rândurilor.


Corolarul 1. Dacă un rând (coloană) al unei matrice este o combinație liniară a celorlalte rânduri (coloane), atunci acest rând (coloană) poate fi șters din matrice fără a-și schimba rangul.


Într-adevăr, un astfel de șir poate fi făcut zero folosind transformări elementare, iar un șir zero nu poate fi inclus în baza minoră.


Corolarul 2. Dacă matricea este redusă la cea mai simplă formă (1.7), atunci


\operatorname(rg)A=\operatorname(rg)\Lambda=r\,.


Într-adevăr, matricea formei celei mai simple (1.7) are o bază minoră de ordinul r-a.


Corolarul 3. Orice matrice pătrată nesingulară este elementară, cu alte cuvinte, orice matrice pătrată nesingulară este echivalentă cu o matrice de identitate de același ordin.


Într-adevăr, dacă A este o matrice pătrată nesingulară de ordinul al n-lea, atunci \operatorname(rg)A=n(a se vedea punctul 3 din comentariile 3.2). Prin urmare, aducând matricea A la forma cea mai simplă (1.7) prin transformări elementare, obținem matricea identitate \Lambda=E_n , deoarece \operatorname(rg)A=\operatorname(rg)\Lambda=n(vezi Corolarul 2). Prin urmare, matricea A este echivalentă cu matricea de identitate E_n și poate fi obținută din aceasta ca urmare a unui număr finit de transformări elementare. Aceasta înseamnă că matricea A este elementară.

Teorema 3.4 (despre rangul matricei). Rangul unei matrice este egal cu numărul maxim de rânduri liniar independente ale acestei matrice.


De fapt, lasă \operatorname(rg)A=r. Atunci matricea A are r rânduri liniar independente. Acestea sunt liniile în care se află baza minoră. Dacă ar fi dependente liniar, atunci acest minor ar fi egal cu zero prin Teorema 3.2, iar rangul matricei A nu ar fi egal cu r. Să arătăm că r este numărul maxim de rânduri liniar independente, adică. orice p rânduri sunt dependente liniar pentru p>r . Într-adevăr, formăm matricea B din aceste p rânduri. Deoarece matricea B face parte din matricea A, atunci \operatorname(rg)B\leqslant \operatorname(rg)A=r

Aceasta înseamnă că cel puțin un rând al matricei B nu este inclus în baza minoră a acestei matrice. Apoi, după teorema bazei minore, este egală cu o combinație liniară a rândurilor în care este situată baza minoră. Prin urmare, rândurile matricei B sunt dependente liniar. Astfel, matricea A are cel mult r rânduri liniar independente.


Corolarul 1. Numărul maxim de rânduri liniar independente dintr-o matrice este egal cu numărul maxim de coloane liniar independente:


\operatorname(rg)A=\operatorname(rg)A^T.


Această afirmație rezultă din Teorema 3.4 dacă o aplicăm rândurilor unei matrice transpuse și ținem cont de faptul că minorii nu se modifică în timpul transpunerii (proprietatea 1 a determinantului).


Corolarul 2. În timpul transformărilor elementare ale rândurilor unei matrice, dependența liniară (sau independența liniară) a oricărui sistem de coloane ale acestei matrice este păstrată.


De fapt, să alegem oricare k coloane ale unei matrice A date și să compunem matricea B din ele. Să presupunem că în urma transformărilor elementare ale rândurilor matricei A s-a obţinut matricea A" şi ca urmare a aceloraşi transformări ale rândurilor matricei B s-a obţinut matricea B". Prin teorema 3.3 \operatorname(rg)B"=\operatorname(rg)B. Prin urmare, dacă coloanele matricei B au fost liniar independente, i.e. k=\operatorname(rg)B(vezi Corolarul 1), atunci coloanele matricei B" sunt de asemenea independente liniar, deoarece k=\operatorname(rg)B". Dacă coloanele matricei B ar fi liniar dependente (k>\operatorname(rg)B), atunci coloanele matricei B" sunt de asemenea dependente liniar (k>\operatorname(rg)B"). În consecință, pentru orice coloană a matricei A, dependența liniară sau independența liniară este păstrată sub transformări elementare de rând.


Note 3.3


1. Prin corolarul 1 al teoremei 3.4, proprietatea coloanelor indicată în corolarul 2 este valabilă și pentru orice sistem de rânduri matrice dacă transformările elementare sunt efectuate numai pe coloanele sale.


2. Corolarul 3 al teoremei 3.3 poate fi rafinat după cum urmează: orice matrice pătrată nesingulară, folosind transformări elementare doar ale rândurilor sale (sau numai coloanelor sale), poate fi redusă la o matrice de identitate de același ordin.


De fapt, folosind doar transformări elementare de rând, orice matrice A poate fi redusă la forma simplificată \Lambda (Fig. 1.5) (vezi Teorema 1.1). Deoarece matricea A este nesingulară (\det(A)\ne0), coloanele sale sunt liniar independente. Aceasta înseamnă că și coloanele matricei \Lambda sunt liniar independente (Corolarul 2 al Teoremei 3.4). Prin urmare, forma simplificată \Lambda a unei matrice nesingulare A coincide cu forma sa cea mai simplă (Fig. 1.6) și este matricea de identitate \Lambda=E (vezi corolarul 3 al teoremei 3.3). Astfel, transformând doar rândurile unei matrice nesingulare, aceasta poate fi redusă la matricea identitară. Raționament similar este valabil pentru transformările elementare ale coloanelor unei matrice nesingulare.

Rangul produsului și suma matricelor

Teorema 3.5 (cu privire la rangul produsului matricelor). Rangul produsului matricelor nu depășește rangul factorilor:


\operatorname(rg)(A\cdot B)\leqslant \min\(\operatorname(rg)A,\operatorname(rg)B\).


Într-adevăr, să fie matricele A și B dimensiunile m\x p și p\times n . Să atribuim matricei A matricea C=AB\colon\,(A\mid C). Desigur că \operatorname(rg)C\leqslant\operatorname(rg)(A\mid C), deoarece C face parte din matrice (A\mid C) (vezi paragraful 5 al observațiilor 3.2). Rețineți că fiecare coloană C_j, conform operației de înmulțire a matricei, este o combinație liniară de coloane A_1,A_2,\ldots,A_p matrici A=(A_1~\cdots~A_p):


C_(j)=A_1\cdot b_(1j)+A_2\cdot b_(2j)+\ldots+A_(p)\cdot b_pj),\quad j=1,2,\ldots,n.


O astfel de coloană poate fi ștearsă din matrice (A\mid C) fără a-și schimba rangul (Corolarul 1 al Teoremei 3.3). Tăiind toate coloanele matricei C, obținem: \operatorname(rg)(A\mid C)=\operatorname(rg)A. De aici, \operatorname(rg)C\leqslant\operatorname(rg)(A\mid C)=\operatorname(rg)A. În mod similar, putem demonstra că condiția este îndeplinită simultan \operatorname(rg)C\leqslant\operatorname(rg)B, și trageți o concluzie despre validitatea teoremei.


Consecinţă. Dacă A este o matrice pătrată nesingulară, atunci \operatorname(rg)(AB)= \operatorname(rg)BȘi \operatorname(rg)(CA)=\operatorname(rg)C, adică rangul unei matrice nu se schimbă atunci când este înmulțită de la stânga sau de la dreapta cu o matrice pătrată nesingulară.


Teorema 3.6 privind rangul sumelor matricelor. Rangul sumei matricelor nu depășește suma rândurilor termenilor:


\operatorname(rg)(A+B)\leqslant \operatorname(rg)A+\operatorname(rg)B.


Într-adevăr, să creăm o matrice (A+B\mid A\mid B). Rețineți că fiecare coloană a matricei A+B este o combinație liniară de coloane a matricelor A și B. De aceea \operatorname(rg)(A+B\mid A\mid B)= \operatorname(rg)(A\mid B). Avand in vedere ca numarul de coloane liniar independente din matrice (A\mid B) nu depaseste \operatorname(rg)A+\operatorname(rg)B, A \operatorname(rg)(A+B)\leqslant \operatorname(rg)(A+B\mid A\mid B)(vezi secțiunea 5 din Observațiile 3.2), obținem inegalitatea care se dovedește.

Vom lua în considerare, de asemenea, o aplicație practică importantă a subiectului: studiul unui sistem de ecuații liniare pentru consistență.

Care este rangul unei matrice?

Epigraful plin de umor a articolului conține o cantitate mare de adevăr. De obicei, asociem cuvântul „rank” cu un fel de ierarhie, cel mai adesea cu o scară de carieră. Cu cât o persoană are mai multe cunoștințe, experiență, abilități, conexiuni etc. – cu cât este mai mare poziția și gama de oportunități. În termeni de tineret, rangul se referă la gradul general de „abruptitate”.

Iar frații noștri matematici trăiesc după aceleași principii. Să luăm câteva aleatorii la plimbare matrice zero:

Să ne gândim la asta, dacă în matrice toate zerourile, atunci despre ce rang putem vorbi? Toată lumea este familiarizată cu expresia informală „zero total”. În societatea matricelor totul este exact la fel:

Rangul matricei zeroorice dimensiune este egală cu zero.

Notă : Matricea zero este desemnată cu litera greacă „theta”

Pentru a înțelege mai bine rangul matricei, în continuare voi folosi materiale pentru a ajuta geometrie analitică. Luați în considerare zero vector spațiul nostru tridimensional, care nu stabilește o direcție anume și este inutil pentru construcție bază afină. Din punct de vedere algebric, coordonatele acestui vector sunt scrise în matrice„unul câte trei” și logic (în sensul geometric indicat) să presupunem că rangul acestei matrice este zero.

Acum să ne uităm la câteva diferit de zero vectori coloanăȘi vectori rând:


Fiecare instanță are cel puțin un element diferit de zero și asta e ceva!

Rangul oricărui vector rând diferit de zero (vector coloană) este egal cu unu

Și în general vorbind - dacă în matrice dimensiuni arbitrare există cel puțin un element diferit de zero, apoi rangul său nu mai puțin unitati.

Vectorii rând algebrici și vectorii coloană sunt într-o anumită măsură abstracti, așa că să revenim din nou la asocierea geometrică. Non-zero vector stabilește o direcție foarte definită în spațiu și este potrivit pentru construcție bază, prin urmare rangul matricei va fi considerat egal cu unu.

Informații teoretice : în algebra liniară, un vector este un element al unui spațiu vectorial (definit prin 8 axiome), care, în special, poate reprezenta un rând (sau coloană) ordonat de numere reale cu operațiile de adunare și înmulțire cu un număr real definite. pentru ei. Informații mai detaliate despre vectori pot fi găsite în articol Transformări liniare.

dependent liniar(exprimate unul prin altul). Din punct de vedere geometric, a doua linie conține coordonatele vectorului coliniar , care nu a avansat deloc problema în clădire bază tridimensională, fiind în acest sens de prisos. Astfel, rangul acestei matrice este, de asemenea, egal cu unu.

Să rescriem coordonatele vectorilor în coloane ( transpune matricea):

Ce s-a schimbat în ceea ce privește rangul? Nimic. Coloanele sunt proporționale, ceea ce înseamnă că rangul este egal cu unu. Apropo, rețineți că toate cele trei linii sunt, de asemenea, proporționale. Ele pot fi identificate cu coordonatele Trei vectori coliniari ai planului, din care unul singur util pentru construirea unei baze „plate”. Și acest lucru este în întregime în concordanță cu simțul nostru geometric al rangului.

Din exemplul de mai sus rezultă o afirmație importantă:

Rangul matricei în rânduri este egal cu rangul matricei în coloane. Am menționat deja puțin acest lucru în lecția despre eficient metode de calcul a determinantului.

Notă : dependența liniară a rândurilor implică dependența liniară a coloanelor (și invers). Dar pentru a economisi timp și din obișnuință, aproape întotdeauna voi vorbi despre dependența liniară a șirurilor.

Să continuăm dresajul nostru iubit animal de companie. Să adăugăm coordonatele altui vector coliniar la matricea din al treilea rând :

Ne-a ajutat să construim o bază tridimensională? Desigur că nu. Toți cei trei vectori merg înainte și înapoi pe aceeași cale, iar rangul matricei este egal cu unul. Puteți lua oricât de mulți vectori coliniari doriți, să zicem 100, să le puneți coordonatele într-o matrice „o sută cu trei”, iar rangul unui astfel de zgârie-nori va rămâne unul.

Să ne familiarizăm cu matricea, ale cărei rânduri liniar independent. O pereche de vectori necoliniari este potrivită pentru construirea unei baze tridimensionale. Rangul acestei matrice este doi.

Care este rangul matricei? Liniile par să nu fie proporționale... deci, în teorie, sunt trei. Cu toate acestea, rangul acestei matrice este, de asemenea, doi. Am adăugat primele două rânduri și am scris rezultatul în partea de jos, adică. exprimată liniar a treia linie prin primele două. Geometric, rândurile matricei corespund coordonatele a trei vectori coplanari, iar printre acești trei sunt și o pereche de camarazi necoliniari.

După cum puteți vedea, dependență liniarăîn matricea considerată nu este evidentă, iar astăzi vom învăța cum să o scoatem la lumină.

Cred că mulți oameni pot ghici care este rangul unei matrice!

Luați în considerare o matrice ale cărei rânduri liniar independent. Se formează vectori bază afină, iar rangul acestei matrice este de trei.

După cum știți, orice al patrulea, al cincilea, al zecelea vector al spațiului tridimensional va fi exprimat liniar în termeni de vectori de bază. Prin urmare, dacă adăugați orice număr de rânduri la o matrice, atunci rangul acesteia va fi tot egal cu trei.

Raționament similar poate fi efectuat pentru matrice de dimensiuni mai mari (desigur, fără nicio semnificație geometrică).

Definiție : Rangul unei matrice este numărul maxim de rânduri liniar independente. Sau: Rangul unei matrice este numărul maxim de coloane liniar independente. Da, numărul lor este întotdeauna același.

Din cele de mai sus rezultă și un ghid practic important: rangul matricei nu depășește dimensiunea minimă a acesteia. De exemplu, în matrice patru rânduri și cinci coloane. Dimensiunea minimă este patru, prin urmare, rangul acestei matrice cu siguranță nu va depăși 4.

Denumiri: în teoria și practica lumii nu există un standard general acceptat pentru desemnarea rangului unei matrice cel mai adesea puteți găsi: - cum se spune, un englez scrie una, un german alta; Prin urmare, pe baza celebrei glume despre iadul american și rusesc, să notăm rangul matricei cu un cuvânt nativ. De exemplu: . Și dacă matricea este „nenumită”, dintre care sunt multe, atunci puteți scrie pur și simplu .

Cum să găsiți rangul unei matrice folosind minori?

Dacă bunica mea ar avea o a cincea coloană în matrice, atunci ar trebui să calculeze un alt minor de ordinul al 4-lea („albastru”, „zmeura” + coloana a 5-a).

Concluzie: ordinea maximă a unui minor diferit de zero este trei, ceea ce înseamnă .

Poate că nu toată lumea a înțeles pe deplin această frază: un minor de ordinul al 4-lea este egal cu zero, dar printre minorii de ordinul al 3-lea a existat unul diferit de zero - prin urmare, ordinul maxim diferit de zero minor și egal cu trei.

Apare întrebarea: de ce să nu calculăm imediat determinantul? Ei bine, în primul rând, în majoritatea sarcinilor matricea nu este pătrată și, în al doilea rând, chiar dacă obțineți o valoare diferită de zero, sarcina va fi cel mai probabil respinsă, deoarece implică de obicei o soluție standard „de jos în sus”. Și în exemplul luat în considerare, determinantul zero al ordinului al patrulea ne permite să afirmăm că rangul matricei este doar mai mic de patru.

Trebuie să recunosc, am venit cu problema pe care am analizat-o eu însumi pentru a explica mai bine metoda limitării minorilor. În practică, totul este mai simplu:

Exemplul 2

Găsiți rangul unei matrice utilizând metoda marginilor minore

Soluția și răspunsul sunt la sfârșitul lecției.

Când funcționează algoritmul cel mai rapid? Să revenim la aceeași matrice patru pe patru. . Evident, soluția va fi cea mai scurtă în cazul „bunului” minori de colt:

Și, dacă , atunci , altfel – .

Gândirea nu este deloc ipotetică - există multe exemple în care întreaga chestiune este limitată doar la minori unghiulari.

Cu toate acestea, în unele cazuri, o altă metodă este mai eficientă și de preferat:

Cum să găsiți rangul unei matrice folosind metoda Gaussiană?

Paragraful este destinat cititorilor care sunt deja familiarizați metoda gaussianași mai mult sau mai puțin au pus mâna pe ea.

Din punct de vedere tehnic, metoda nu este nouă:

1) folosind transformări elementare, reducem matricea la o formă în trepte;

2) rangul matricei este egal cu numărul de rânduri.

Este absolut clar că folosind metoda Gaussiană nu modifică rangul matricei, iar esența aici este extrem de simplă: conform algoritmului, în timpul transformărilor elementare, toate rândurile proporționale inutile (dependente liniar) sunt identificate și eliminate, rezultând un „reziduu uscat” - numărul maxim de rânduri liniar independente.

Să transformăm vechea matrice familiară cu coordonatele a trei vectori coliniari:

(1) Prima linie a fost adăugată la a doua linie, înmulțită cu –2. Prima linie a fost adăugată la a treia linie.

(2) Liniile zero sunt eliminate.

Astfel, a mai rămas o linie, deci . Inutil să spun că acest lucru este mult mai rapid decât calcularea a nouă zero minori de ordinul 2 și abia apoi tragerea unei concluzii.

Vă reamintesc că în sine matrice algebrică nimic nu poate fi schimbat, iar transformările sunt efectuate doar în scopul determinării rangului! Apropo, să ne oprim încă o dată la întrebarea, de ce nu? Matricea sursă transportă informații care sunt fundamental diferite de informațiile din matrice și rând. În unele modele matematice (fără exagerare), diferența într-un număr poate fi o chestiune de viață sau de moarte. ...Mi-am amintit de profesori de matematică din clasele primare și gimnaziale care tăiau fără milă notele cu 1-2 puncte pentru cea mai mică inexactitate sau abatere de la algoritm. Și a fost teribil de dezamăgitor când, în loc de un „A” aparent garantat, a ieșit „bun” sau chiar mai rău. Înțelegerea a venit mult mai târziu - cum altfel să-i încredințezi unei persoane sateliți, focoase nucleare și centrale electrice? Dar nu vă faceți griji, nu lucrez în aceste domenii =)

Să trecem la sarcini mai semnificative, unde, printre altele, ne vom familiariza cu tehnici de calcul importante metoda Gauss:

Exemplul 3

Găsiți rangul unei matrice folosind transformări elementare

Soluţie: este dată o matrice „patru cu cinci”, ceea ce înseamnă că rangul său nu este cu siguranță mai mare de 4.

În prima coloană, nu există 1 sau –1, prin urmare, sunt necesare acțiuni suplimentare pentru a obține cel puțin o unitate. De-a lungul existenței site-ului, mi s-a pus în mod repetat întrebarea: „Este posibil să rearanjam coloanele în timpul transformărilor elementare?” Aici, am rearanjat prima și a doua coloană și totul este în regulă! În majoritatea sarcinilor în care este utilizat metoda gaussiana, coloanele pot fi într-adevăr rearanjate. DAR NU ESTE NEVOIE. Și ideea nu este nici măcar în posibilă confuzie cu variabile, ideea este că în cursul clasic de matematică superioară această acțiune nu este în mod tradițional luată în considerare, așa că un astfel de încuviințare va fi privit FOARTE strâmb (sau chiar forțat să refacă totul).

Al doilea punct se referă la numere. Pe măsură ce iei decizia, este util să folosești următoarea regulă generală: transformările elementare ar trebui, dacă este posibil, să reducă numerele matriceale. La urma urmei, este mult mai ușor să lucrezi cu unu, doi, trei decât, de exemplu, cu 23, 45 și 97. Și prima acțiune vizează nu numai obținerea unuia în prima coloană, ci și eliminarea numerelor. 7 și 11.

Mai întâi soluția completă, apoi comentariile:

(1) Prima linie a fost adăugată la a doua linie, înmulțită cu –2. Prima linie a fost adăugată la a treia linie, înmulțită cu –3. Și la grămadă: prima linie a fost adăugată la a patra linie, înmulțită cu –1.

(2) Ultimele trei rânduri sunt proporționale. Linia a 3-a și a 4-a au fost eliminate, a doua linie a fost mutată pe primul loc.

(3) Prima linie a fost adăugată la a doua linie, înmulțită cu –3.

Matricea redusă la formă eșalonată are două rânduri.

Răspuns:

Acum este rândul tău să torturezi matricea de patru câte patru:

Exemplul 4

Găsiți rangul unei matrice folosind metoda Gaussiană

iti amintesc ca metoda gaussiana nu implică o rigiditate clară, iar decizia ta va fi foarte probabil diferită de decizia mea. Un scurt exemplu de sarcină la sfârșitul lecției.

Ce metodă ar trebui să folosesc pentru a găsi rangul unei matrice?

În practică, adesea nu se precizează deloc ce metodă ar trebui folosită pentru a găsi rangul. Într-o astfel de situație, condiția ar trebui analizată - pentru unele matrice este mai rațional să se rezolve prin minori, în timp ce pentru altele este mult mai profitabil să se aplice transformări elementare:

Exemplul 5

Aflați rangul unei matrice

Soluţie: prima metoda dispare cumva imediat =)

Puțin mai sus, am sfătuit să nu ating coloanele matricei, dar când există o coloană zero, sau coloane proporționale/coincidente, atunci tot merită amputat:

(1) A cincea coloană este zero, eliminați-o din matrice. Astfel, rangul matricei nu este mai mare de patru. Prima linie a fost înmulțită cu –1. Aceasta este o altă caracteristică caracteristică a metodei Gauss, care transformă următoarea acțiune într-o plimbare plăcută:

(2) La toate liniile, începând de la a doua, s-a adăugat primul rând.

(3) Prima linie a fost înmulțită cu –1, a treia linie a fost împărțită cu 2, a patra linie a fost împărțită cu 3. A doua linie a fost adăugată la a cincea linie, înmulțită cu –1.

(4) A treia linie a fost adăugată la a cincea linie, înmulțită cu –2.

(5) Ultimele două rânduri sunt proporționale, al cincilea se elimină.

Rezultatul sunt 4 rânduri.

Răspuns:

Clădire standard cu cinci etaje pentru studiu independent:

Exemplul 6

Aflați rangul unei matrice

O scurtă soluție și răspuns la sfârșitul lecției.

Trebuie remarcat faptul că expresia „rangul matricei” nu este văzută atât de des în practică și, în majoritatea problemelor, puteți face cu totul fără ea. Dar există o sarcină în care conceptul în cauză este personajul principal și vom încheia articolul cu această aplicație practică:

Cum se studiază un sistem de ecuații liniare pentru consistență?

Adesea, pe lângă soluție sisteme de ecuații liniare conform condiției, se cere mai întâi să o examinăm pentru compatibilitate, adică să se dovedească că există vreo soluție. Un rol cheie în o astfel de verificare îl joacă Teorema Kronecker-Capelli, pe care o voi formula în forma necesară:

Dacă rang matrice de sistem egal cu rangul sistem de matrice extinsă, atunci sistemul este consistent, iar dacă acest număr coincide cu numărul de necunoscute, atunci soluția este unică.

Astfel, pentru a studia sistemul pentru compatibilitate este necesar să se verifice egalitatea , Unde - matricea sistemului(amintiți-vă terminologia din lecție metoda Gauss), A - matrice de sistem extinsă(adică o matrice cu coeficienți de variabile + o coloană de termeni liberi).

Să fie dată o matrice:

.

Să selectăm în această matrice șiruri arbitrare și coloane arbitrare
. Apoi determinantul ordinul al-lea, compus din elemente de matrice
, situat la intersecția rândurilor și coloanelor selectate, se numește minor matricea de ordinul al-lea
.

Definiția 1.13. Rangul matricei
este cel mai mare ordin al minorului diferit de zero al acestei matrice.

Pentru a calcula rangul unei matrice, trebuie să luăm în considerare toți minorii ei de ordinul cel mai mic și, dacă cel puțin unul dintre ei este diferit de zero, să trecem la luarea în considerare a minorilor de ordinul cel mai înalt. Această abordare pentru determinarea rangului unei matrice se numește metoda de limită (sau metoda de limită a minorilor).

Problema 1.4. Folosind metoda limitării minorilor, determinați rangul matricei
.

.

Luați în considerare marginile de ordinul întâi, de exemplu,
. Apoi trecem la considerarea unor margini de ordinul doi.

De exemplu,
.

În cele din urmă, să analizăm marginea de ordinul trei.

.

Deci, cel mai înalt ordin al unui minor diferit de zero este 2, prin urmare
.

Când rezolvați Problema 1.4, puteți observa că un număr de minori de ordinul doi sunt diferit de zero. În acest sens, se aplică următorul concept.

Definiția 1.14. O bază minoră a unei matrice este orice minoră diferită de zero a cărei ordine este egală cu rangul matricei.

Teorema 1.2.(Teorema de bază minoră). Rândurile de bază (coloanele de bază) sunt liniar independente.

Rețineți că rândurile (coloanele) unei matrice sunt dependente liniar dacă și numai dacă cel puțin una dintre ele poate fi reprezentată ca o combinație liniară a celorlalte.

Teorema 1.3. Numărul de rânduri de matrice liniar independente este egal cu numărul de coloane de matrice liniar independente și este egal cu rangul matricei.

Teorema 1.4.(Condiție necesară și suficientă pentru ca determinantul să fie egal cu zero). Pentru ca determinantul -a ordine a fost egal cu zero, este necesar și suficient ca rândurile (coloanele) să fie dependente liniar.

Calcularea rangului unei matrice pe baza definiției sale este prea greoaie. Acest lucru devine deosebit de important pentru matricele de ordin înalt. În acest sens, în practică, rangul unei matrice este calculat pe baza aplicării teoremelor 10.2 - 10.4, precum și a utilizării conceptelor de echivalență a matricei și transformări elementare.

Definiția 1.15. Două matrice
Și sunt numite echivalente dacă rangurile lor sunt egale, adică
.

Dacă matrice
Și sunt echivalente, apoi rețineți
.

Teorema 1.5. Rangul matricei nu se modifică din cauza transformărilor elementare.

Vom numi transformări matrice elementare
oricare dintre următoarele operații pe o matrice:

Înlocuirea rândurilor cu coloane și coloanelor cu rândurile corespunzătoare;

Rearanjarea rândurilor matricei;

Tăierea unei linii ale cărei elemente sunt toate zero;

Înmulțirea unui șir cu un alt număr decât zero;

Adăugând elementelor unei linii elementele corespunzătoare ale altei linii înmulțite cu același număr
.

Corolarul teoremei 1.5. Dacă matricea
obtinut din matrice folosind un număr finit de transformări elementare, apoi matricea
Și sunt echivalente.

Când se calculează rangul unei matrice, aceasta ar trebui redusă la o formă trapezoidală folosind un număr finit de transformări elementare.

Definiția 1.16. Vom numi trapezoidală o formă de reprezentare matricială atunci când în marginea minoră de ordinul cel mai înalt non-zero, toate elementele de sub cele diagonale dispar. De exemplu:

.

Aici
, elemente de matrice
mergi la zero. Apoi forma de reprezentare a unei astfel de matrice va fi trapezoidală.

De regulă, matricele sunt reduse la o formă trapezoidală folosind algoritmul gaussian. Ideea algoritmului Gauss este că, prin înmulțirea elementelor primului rând al matricei cu factorii corespunzători, se realizează ca toate elementele primei coloane situate sub elementul
, s-ar transforma la zero. Apoi, înmulțind elementele coloanei a doua cu factorii corespunzători, ne asigurăm că toate elementele coloanei a doua situate sub elementul
, s-ar transforma la zero. Apoi procedați în același mod.

Problema 1.5. Determinați rangul unei matrice prin reducerea acesteia la o formă trapezoidală.

.

Pentru a facilita utilizarea algoritmului gaussian, puteți schimba prima și a treia linie.






.

Este evident că aici
. Cu toate acestea, pentru a aduce rezultatul într-o formă mai elegantă, puteți continua transformarea coloanelor.








.

>>Rang matrice

Rangul matricei

Determinarea rangului unei matrice

Luați în considerare o matrice dreptunghiulară. Dacă în această matrice selectăm în mod arbitrar k linii şi k coloane, apoi elementele de la intersecția rândurilor și coloanelor selectate formează o matrice pătrată de ordinul k-lea. Determinantul acestei matrice se numește minor de ordinul k-lea matricea A. Evident, matricea A are minore de orice ordin de la 1 la cel mai mic dintre numerele m și n. Dintre toate minorele nenule ale matricei A, există cel puțin un minor a cărui ordine este cea mai mare. Se numește cel mai mare dintre ordinele minore diferite de zero ale unei matrice date rang matrici. Dacă rangul matricei A este r, aceasta înseamnă că matricea A are un minor de ordin diferit de zero r, dar fiecare minor de ordin mai mare decât r, este egal cu zero. Rangul matricei A este notat cu r(A). Evident, relația este valabilă

Calcularea rangului unei matrice folosind minori

Rangul matricei se găsește fie prin metoda limitării minorilor, fie prin metoda transformărilor elementare. Când calculați rangul unei matrice folosind prima metodă, ar trebui să treceți de la minorii de ordin inferior la minorii de ordin superior. Dacă a fost deja găsit un D minor de ordinul k al matricei A, diferit de zero, atunci numai minorele de ordin (k+1) care mărginesc D minor necesită calcul, adică. conținându-l ca minor. Dacă toate sunt egale cu zero, atunci rangul matricei este egal cu k.

Exemplul 1.Găsiți rangul matricei folosind metoda limitării minorilor

.

Soluţie.Începem cu minorii de ordinul 1, adică. dintre elementele matricei A. Să alegem, de exemplu, un (element) minor M 1 = 1, situat în primul rând și prima coloană. Mărginind cu ajutorul celui de-al doilea rând și al treilea coloan, obținem un M 2 minor = diferit de zero. Ne întoarcem acum la minorii de ordinul 3 care se învecinează cu M2. Sunt doar două dintre ele (puteți adăuga o a doua sau a patra coloană). Să le calculăm: = 0. Astfel, toți minorii învecinați de ordinul al treilea s-au dovedit a fi egali cu zero. Rangul matricei A este doi.

Calcularea rangului unei matrice folosind transformări elementare

ElementarUrmătoarele transformări de matrice se numesc:

1) permutarea oricăror două rânduri (sau coloane),

2) înmulțirea unui rând (sau coloană) cu un număr diferit de zero,

3) adăugarea la un rând (sau coloană) a unui alt rând (sau coloană), înmulțit cu un anumit număr.

Cele două matrici sunt numite echivalent, dacă una dintre ele este obținută de la cealaltă folosind o mulțime finită de transformări elementare.

Matricele echivalente nu sunt, în general, egale, dar rangurile lor sunt egale. Dacă matricele A și B sunt echivalente, atunci se scrie după cum urmează: A~B.

CanonicO matrice este o matrice în care la începutul diagonalei principale există mai multe pe rând (al căror număr poate fi zero), iar toate celelalte elemente sunt egale cu zero, de exemplu,

.

Folosind transformări elementare de rânduri și coloane, orice matrice poate fi redusă la canonică. Rangul unei matrice canonice este egal cu numărul celor de pe diagonala sa principală.

Exemplul 2Aflați rangul unei matrice

și să-l aducă la forma canonică.

Soluţie. Din a doua linie, scădeți prima și rearanjați aceste linii:

.

Acum din a doua și a treia linie o scădem pe prima, înmulțită cu 2 și, respectiv, 5:

;

scădeți primul din a treia linie; obținem o matrice

B = ,

care este echivalentă cu matricea A, deoarece se obține din ea folosind o mulțime finită de transformări elementare. În mod evident, rangul matricei B este 2 și, prin urmare, r(A)=2. Matricea B poate fi ușor redusă la canonică. Scăzând prima coloană, înmulțită cu numere potrivite, din toate cele ulterioare, întoarcem la zero toate elementele primului rând, cu excepția primului, iar elementele rândurilor rămase nu se modifică. Apoi, scăzând a doua coloană, înmulțită cu numerele potrivite, din toate cele ulterioare, trecem la zero toate elementele din al doilea rând, cu excepția celui de-al doilea, și obținem matricea canonică:

.