Укажите основные функции операционной системы. Модем - это. Операционные системы: назначение и основные функции

Операционная система - совокупность программных средств, обеспечивающая управление аппаратной частью компьютера и прикладными программами, а также их взаимодействием между собой и пользователем. В большинстве вычислительных систем операционные системы являются основной частью системного программного обеспечения.

Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны. Операционная система обычно хранится во внешней памяти компьютера - на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы.

Операционную систему можно назвать программным продолжением устройства управления компьютера. Она скрывает от пользователя сложные ненужные подробности взаимодействия с аппаратурой, образуя прослойку между ними. В результате этого люди освобождаются от очень трудоёмкой работы по организации взаимодействия с аппаратурой компьютера.

Операционная система, с одной стороны, выступает как интерфейс между аппаратурой компьютера и пользователем с его задачами, с другой стороны, предназначена для эффективного использования ресурсов вычислительной системы и организации надежных вычислений.

Основные функции операционных систем:

Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

Управление оперативной памятью (распределение между процессами, виртуальная память).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, компакт-диск и т. д.), организованным в той или иной файловой системе.

Пользовательский интерфейс.

Сетевые операции, поддержка стека протоколов.

Параллельное или псевдопараллельное выполнение задач (многозадачность).

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

Разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).

В различных моделях компьютеров используют операционные системы с разной архитектурой и возможностями. Для их работы требуются разные ресурсы. Они предоставляют разную степень сервиса для программирования и работы с готовыми программами. В зависимости от количества одновременно обрабатываемых задач и числа пользователей, которых могут обслуживать ОС, различают четыре основных класса операционных систем:


Однопользовательские однозадачные, которые поддерживают одну клавиатуру и могут работать только с одной (в данный момент) задачей;

Однопользовательские однозадачные с фоновой печатью, которые позволяют помимо основной задачи запускать одну дополнительную задачу, ориентированную, как правило, на вывод информации на печать. Это ускоряет работу при выдаче больших объёмов информации на печать;

Однопользовательские многозадачные, которые обеспечивают одному пользователю параллельную обработку нескольких задач. Например, к одному компьютеру можно подключить несколько принтеров, каждый из которых будет работать на "свою" задачу;

Многопользовательские многозадачные, позволяющие на одном компьютере запускать несколько задач нескольким пользователям. Эти операционные системы очень сложны и требуют значительных машинных ресурсов.

Наиболее распространенными операционными системами являются:

Mac OS – операционная система корпорации Apple.

OS/2 - операционная система фирмы IBM.

Windows - операционная система корпорации Microsoft.

Linux - общее название Unix-подобных операционных систем на основе одноимённого ядра и собранных для него библиотек и системных программ, разработанных в рамках проекта GNU.

1. Организация (обеспечение) удобного интерфейса между приложениями и пользователями, с одной стороны, и аппаратурой компьютера – с другой. Вместо реальной аппаратуры компьютера ОС представляет пользователю расширенную виртуальную машину, с которой удобнее работать и которую легче программировать. Вот список основных сервисов , предоставляемых типичными операционными системами.

  1. Разработка программ : ОС представляет программисту разнообразные инструменты разработки приложений: редакторы, отладчики и т.п. Ему не обязательно знать, как функционируют различные электронные и электромеханические узлы и устройства компьютера. Часто пользователь не знает даже системы команд процессора, поскольку он может обойтись мощными высокоуровневыми функциями, которые представляет ОС.
  2. Исполнение программ . Для запуска программы нужно выполнить ряд действий: загрузить в основную память программу и данные, инициализировать устройства ввода-вывода и файлы, подготовить другие ресурсы. ОС выполняет всю эту рутинную работу вместо пользователя.
  3. Доступ к устройствам ввода-вывода . Для управления каждым устройством используется свой набор команд. ОС предоставляет пользователю единообразный интерфейс, который скрывает все эти детали и обеспечивает программисту доступ к устройствам ввода-вывода с помощью простых команд чтения и записи. Если бы программист работал непосредственно с аппаратурой компьютера, то для организации, например, чтения блока данных с диска ему пришлось бы использовать более десятка команд с указанием множества параметров. После завершения обмена программист должен был бы предусмотреть еще более сложный анализ результата выполненной операции.
  4. Контролируемый доступ к файлам . При работе с файлами управление со стороны ОС предполагает не только глубокий учет природы устройства ввода-вывода, но и знание структур данных, записанных в файлах. Многопользовательские ОС, кроме того, обеспечивают механизм защиты при обращении к файлам.
  5. Системный доступ . ОС управляет доступом к совместно используемой или общедоступной вычислительной системе в целом, а также к отдельным системным ресурсам. Она обеспечивает защиту ресурсов и данных от несанкционированного использования и разрешает конфликтные ситуации.
  6. Обнаружение ошибок и их обработка . При работе компьютерной системы могут происходить разнообразные сбои за счет внутренних и внешних ошибок в аппаратном обеспечении, различного рода программных ошибок (переполнение, попытка обращения к ячейке памяти, доступ к которой запрещен и др.). В каждом случае ОС выполняет действия, минимизирующие влияние ошибки на работу приложения (от простого сообщения об ошибке до аварийной остановки программы).
  7. Учет использования ресурсов . Хорошая ОС имеет средства учета использования различных ресурсов и отображения параметров производительности вычислительной системы. Эта информация важна для настройки (оптимизации) вычислительной системы с целью повышения ее производительности.

В результате реальная машина, способная выполнить только небольшой набор элементарных действий (машинных команд), с помощью операционной системы превращается в виртуальную машину, выполняющую широкий набор гораздо более мощных функций. Виртуальная машина тоже управляется командами, но уже командами более высокого уровня, например: удалить файл с определенным именем, запустить на выполнение прикладную программу, повысить приоритет задачи, вывести текст файла на печать и т.д. Таким образом, назначение ОС состоит в предоставлении пользователю (программисту) некоторой расширенной виртуальной машины, которую легче программировать и с которой легче работать, чем непосредственно с аппаратурой, составляющей реальный компьютер , систему или сеть .

2. Организация эффективного использования ресурсов компьютера. ОС не только представляет пользователям и программистам удобный интерфейс к аппаратным средствам компьютера, но и является своеобразным диспетчером ресурсов компьютера. К числу основных ресурсов современных вычислительных систем относятся процессоры, основная память , таймеры, наборы данных, диски, накопители на магнитных лентах (МЛ), внешние накопители памяти(CD/DVD/Blu-Ray/ USB ), принтеры, сетевые устройства и др. Эти ресурсы распределяются операционной системой между выполняемыми программами. В отличие от программы, которая является статическим объектом , выполняемая программа – это динамический объект , он называется процессом и является базовым понятием современных ОС.

Управление ресурсами вычислительной системы с целью наиболее эффективного их использования является вторым назначением операционной системы. Критерии эффективности , в соответствии с которыми ОС организует управление ресурсами компьютера, могут быть различными. Например, в одних системах важен такой критерий, как пропускная способность вычислительной систем, в других – время ее реакции. Зачастую ОС должны удовлетворять нескольким, противоречащим друг другу критериям, что доставляет разработчикам серьезные трудности.

Управление ресурсами включает решение ряда общих, не зависящих от типа ресурса задач:

  1. планирование ресурса – определение, какому процессу, когда и в каком качестве (если ресурс может выделяться частями) следует выделить данный ресурс;
  2. удовлетворение запросов на ресурсы – выделение ресурса процессам;
  3. отслеживание состояния и учет использования ресурса – поддержание оперативной информации о занятости ресурса и распределенной его доли;
  4. разрешение конфликтов между процессами , претендующими на один и тот же ресурс.

Для решения этих общих задач управления ресурсами разные ОС используют различные алгоритмы, особенности которых, в конечном счете, определяют облик ОС в целом, включая характеристики производительности, область применения и даже пользовательский интерфейс . Таким образом, управление ресурсами составляют важное назначение ОС. В отличие от функций расширенной виртуальной машины большинство функций управления ресурсами выполняются операционной системой автоматически и прикладному программисту недоступны.

3. Облегчение процессов эксплуатации аппаратных и программных средств вычислительной системы. Ряд операционных систем имеет в своем составе наборы служебных программ, обеспечивающие резервное копирование , архивацию данных, проверку, очистку и дефрагментацию дисковых устройств и др.

Кроме того, современные ОС имеют достаточно большой набор средств и способов диагностики и восстановления работоспособности системы. Сюда относятся:

  • диагностические программы для выявления ошибок в конфигурации ОС;
  • средства восстановления последней работоспособной конфигурации;
  • средства восстановления поврежденных и пропавших системных файлов и др.

Следует отметить еще одно назначение ОС.

4. Возможность развития. Современные ОС организуются таким образом, что допускают эффективную разработку, тестирование и внедрение новых системных функций, не прерывая процесса нормального функционирования вычислительной системы. Большинство операционных систем постоянно развиваются (нагляден пример Windows ). Происходит это в силу следующих причин.

  1. Обновление и возникновение новых видов аппаратного обеспечения . Например, ранние версии ОС UNIX и OS/2 не использовали механизмы страничной организации памяти (что это такое, мы рассмотрим позже), потому, что они работали на машинах, не обеспеченных соответствующими аппаратными средствами.
  2. Новые сервисы . Для удовлетворения пользователей или нужд системных администраторов ОС должны постоянно предоставлять новые возможности. Например, может потребоваться добавить новые инструменты для контроля или оценки производительности, новые средства ввода-вывода данных (речевой ввод). Другой пример – поддержка новых приложений, использующих окна на экране дисплея.
  3. Исправления . В каждой ОС есть ошибки. Время от времени они обнаруживаются и исправляются. Отсюда постоянные появления новых версий и редакций ОС. Необходимость регулярных изменений накладывает определенные требования на организацию операционных систем. Очевидно, что эти системы (как, впрочем, и другие сложные программы системы) должны иметь модульную структуру с четко определенными межмодульными связями (интерфейсами). Важную роль играет хорошая и полная документированность системы.

Перейдем к рассмотрению состава компонентов и функций ОС. Современные операционные системы содержат сотни и тысячи модулей (например, W2000 содержит 29 млн строк исходного кода на языке С). Функции ОС обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Совокупности модулей, выполняющих такие группы функций, образуют подсистемы операционной системы.

Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования.

Управление процессами . Подсистема управления процессами непосредственно влияет на функционирование вычислительной системы. Для каждой выполняемой программы ОС организует один или более процессов. Каждый такой процесс представляется в ОС информационной структурой (таблицей, дескриптором, контекстом процессора), содержащей данные о потребностях процесса в ресурсах, а также о фактически выделенных ему ресурсах (область оперативной памяти, количество процессорного времени, файлы, устройства ввода-вывода и др.). Кроме того, в этой информационной структуре хранятся данные, характеризующие историю пребывания процесса в системе: текущее состояние (активное или заблокированное), приоритет, состояние регистров, программного счетчика и др.

В современных мультипрограммных ОС может существовать одновременно несколько процессов, порожденных по инициативе пользователей и их приложений, а также инициированных ОС для выполнения своих функций (системные процессы). Поскольку процессы могут одновременно претендовать на одни и те же ресурсы, подсистема управления процессами планирует очередность выполнения процессов, обеспечивает их необходимыми ресурсами, обеспечивает взаимодействие и синхронизацию процессов.

Управление памятью . Подсистема управления памятью производит распределение физической памяти между всеми существующими в системе процессами, загрузку и удаление программных кодов и данных процессов в отведенные им области памяти, настройку адресно-зависимых частей кодов процесса на физические адреса выделенной области, а также защиту областей памяти каждого процесса. Стратегия управления памятью складывается из стратегий выборки , размещения и замещения блока программы или данных в основной памяти. Соответственно используются различные алгоритмы, определяющие, когда загрузить очередной блок в память ( по запросу или с упреждением), в какое место памяти его поместить и какой блок программы или данных удалить из основной памяти, чтобы освободить место для размещения новых блоков.

Одним из наиболее популярных способов управления памятью в современных ОС является виртуальная память . Реализация механизма виртуальной памяти позволяет программисту считать, что в его распоряжении имеется однородная оперативная память , объем которой ограничивается только возможностями адресации, предоставляемыми системой программирования.

Важная функция управления памятью – защита памяти . Нарушения защиты памяти связаны с обращениями процессов к участкам памяти, выделенной другим процессам прикладных программ или программ самой ОС. Средства защиты памяти должны пресекать такие попытки доступа путем аварийного завершения программы-нарушителя.

Управление файлами . Функции управления файлами сосредоточены в файловой системе ОС. Операционная система виртуализирует отдельный набор данных, хранящихся на внешнем накопителе, в виде файла – простой неструктурированной последовательности байтов, имеющих символьное имя. Для удобства работы с данными файлы группируются в каталоги, которые, в свою очередь , образуют группы – каталоги более высокого уровня. Файловая система преобразует символьные имена файлов, с которыми работает пользователь или программист, в физические адреса данных на дисках, организует совместный доступ к файлам , защищает их от несанкционированного доступа.

Управление внешними устройствами . Функции управления внешними устройствами возлагаются на подсистему управления внешними устройствами, называемую также подсистемой ввода-вывода. Она является интерфейсом между ядром компьютера и всеми подключенными к нему устройствами. Спектр этих устройств очень обширен (принтеры, сканеры, мониторы, модемы, манипуляторы, сетевые адаптеры, АЦП разного рода и др.), сотни моделей этих устройств отличаются набором и последовательностью команд, используемых для обмена информацией с процессором и другими деталями.

Программа , управляющая конкретной моделью внешнего устройства и учитывающая все его особенности, называется драйвером. Наличие большого количества подходящих драйверов во многом определяет успех ОС на рынке. Созданием драйверов занимаются как разработчики ОС, так и компании, выпускающие внешние устройства. ОС должна поддерживать четко определенный интерфейс между драйверами и остальными частями ОС. Тогда разработчики компаний-производителей устройств ввода-вывода могут поставлять вместе со своими устройствами драйверы для конкретной операционной системы.

Защита данных и администрирование . Безопасность данных вычислительной системы обеспечивается средствами отказоустойчивости ОС, направленными на защиту от сбоев и отказов аппаратуры и ошибок программного обеспечения, а также средствами защиты от несанкционированного доступа. Для каждого пользователя системы обязательна процедура логического входа, в процессе которой ОС убеждается, что в систему входит пользователь , разрешенный административной службой. Администратор вычислительной системы определяет и ограничивает возможности пользователей в выполнении тех или иных действий, т.е. определяет их права по обращению и использованию ресурсов системы.

Важным средством защиты являются функции аудита ОС, заключающегося в фиксации всех событий, от которых зависит безопасность системы. Поддержка отказоустойчивости вычислительной системы реализуется на основе резервирования (дисковые RAID-массивы, резервные принтеры и другие устройства, иногда резервирование центральных процессоров, в ранних ОС – дуальные и дуплексные системы, системы с мажоритарным органом и др.). Вообще обеспечение отказоустойчивости системы – одна из важнейших обязанностей системного администратора, который для этого использует ряд специальных средств и инструментов [

Операционная система (ОС) – это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения всех других программ. ОС относятся к составу системного программного обеспечения и являются основной его частью. Операционные системы: MS DOS 7.0, Windows Vista Business, Windows 2008 Server, OS/2, UNIX, Linux.

Основные функции ОС:

управление устройствами компьютера (ресурсами), т.е. согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др.

управление процессами, т.е. выполнение программ и их взаимодействие с устройствами компьютера.

управление доступом к данным на энергонезависимых носителях (таких как жесткий диск, компакт-диск и т.д.), как правило, с помощью файловой системы.

ведение файловой структуры.

пользовательский интерфейс, т.е. диалог с пользователем.

Дополнительные функции:

параллельное или псевдопараллельное выполнение задач (многозадачность).

взаимодействие между процессами: обмен данными, взаимная синхронизация.

защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.

разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).

Операционная среда Windows разработана фирмой Microsoft для IBM-совместимых компьютеров.

Windows выполняет следующие основные функции:

  • Удобный, наглядный графический интерфейс пользователя.
  • Многозадачная работа, т.е. выполнение одновременно нескольких программ.
  • Унификация использования аппаратных ресурсов компьютера.

Особенности Windows:

  • Правила написания программы . Для работы в среде Windows программа должна быть написана по определенным правилам, существенно отличающимся от принятых в MS-DOS.

Windows позволяет запускать и программы, написанные для MS DOS, но при этом программы не могут использовать преимущества Windows.

  • Графический интерфейс пользователя в Windows основан на идее оконного интерфейса, принятого так же и в ряде других современных ОС (например, UNIX). Каждая программа имеет собственное окно, в котором и происходит обмен сообщений с пользователем. Для наглядности в Windows широко применяются иконки (пиктограммы), изображающие отдельные программы.

Кроме того, интерфейс Windows в значительной степени стандартизирован, что облегчает пользователям процесс освоения новых порограмм.

  • Многозадачость . Многозадачный режим работы позволяет запускать одновременно несколько приложений, например, текстовый процессор, базу данных, игру и переключаться между ними.
  • Обмен данными между приложениями . Кроме того возможен обмен данными между приложениями, что позволяет, например, информацию созданную в электронной таблице, перенести в текстовый документ через буфер обмена.

Составные части, из которых состоит компьютер, называют модулями. Среди всех модулей выделяют основные модули, без которых работа компьютера невозможна, и остальные модули, которые используются для решения различных задач: ввода и вывода графической информации, подключения к компьютерной сети и т.д.

Персональные компьютеры обычно состоят из следующих основных модулей:

Системный блок.

В системном блоке находятся все основные узлы компьютера:

Материнская плата;

Электронные схемы (процессор, контроллеры устройств и т.д.);

Блок питания;

Дисководы (накопители).

Характеристики основных модулей ПК

Материнская плата

Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память, кэш-память, элемент ROM-BIOS, аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты для подключения других устройств.

Общая производительность материнской платы определяется не только тактовой частотой , но и количествомданных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

Порт – многоразрядный вход или выход в устройстве.

Процессор

В общем случае под процессором понимают устройство, производящее набор операций над данными, представленными в цифровой форме. Применительно к вычислительной технике под процессором понимаютцентральное процессорное устройство , обладающее способностью выбирать, декодировать и выполнять команды, а также передавать и принимать информацию от других устройств.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы.

Функции процессора :

1.обработка данных по заданной программе – функция АЛУ;

2.программное управление работой устройств ЭВМ – функция УУ (устройства управления).

В состав процессора входят также регистры – ряд специальных запоминающих ячеек.

Регистры выполняют две функции:

Кратковременное хранение числа или команды;

Выполнение над ними некоторых операций.

Производительность CPU характеризуется следующими основными параметрами:

1. тактовой частотой;

2. степенью интеграции;

3. внутренней и внешней разрядностью обрабатываемых данных;

4. памятью, к которой может адресоваться CPU.

Память

Центральный процессор имеет доступ к данным, находящимся в оперативной памяти. Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ.

ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе.

Периферийные устройства можно разделить на несколько групп по функциональному назначению:

1. Устройства ввода-вывода – предназначены для ввода информации в ПК, вывода в необходимом для оператора формате или обмена информацией с другими ПК. К такому типу ПУ можно отнести внешние накопители, модемы.

2. Устройства вывода – предназначены для вывода информации в необходимом для оператора формате. К этому типу периферийных устройств относятся: принтер, монитор, аудиосистема.

3. Устройства ввода – Устройствами ввода являются устройства, посредством которых можно ввести информацию в компьютер. Главное их предназначение - реализовывать воздействие на машину. К такому виду периферийных устройств относятся: клавиатура, сканер, графический планшет и т.д.

4. Дополнительные ПУ – такие как манипулятор «мышь», который лишь обеспечивает удобное управление графическим интерфейсом операционных систем ПК и не несет ярковыраженных функций ввода либо вывода информации; WEB-камеры, способствующие передаче видео и аудио информации в сети Internet, либо между другими ПК. Последние, правда, можно отнести и к устройствам ввода, благодаря возможности сохранения фото, видео и аудио информации на магнитных или магнитооптических носителях.

Графические редакторы

К программным средствам создания и обработки векторной графики относятся графические редакторы (например Adobe Illustrator, Macromedia Freehand, CorelDraw) и векторизаторы (трассировщики) - специализированные пакеты преобразования растровых изображений в векторные (например Adobe StreamLine, CorelTrace). Векторный редактор Adobe Illustrator является одним из общепризнанных лидеров среди программ этого класса. Его особое преимущество заключается в хорошо отлаженном взаимодействии с другими продуктами компании Adobe, прежде всего с пакетами Photoshop и PageMaker. Эти приложения выполнены в едином стиле и образуют законченный пакет. Векторный редактор Macromedia Freehand с простым и дружественным интерфейсом служит удобным инструментом работы для начинающих. Программа отличается небольшим размером и хорошим быстродействием. Нетребовательность к аппаратным ресурсам позволяет работать на компьютерах среднего уровня. Инструментальные средства программы достаточны для разработки сложных документов и лишь в некоторых элементах уступают более мощным средствам Adobe Illustrator и CorelDraw. Пакет специально адаптирован для совместной работы с программой компьютерной верстки QuarkXPress. Векторный редактор CorelDraw исторически, особенно в России, считается основным пакетом создания и обработки векторной графики на платформе Windows. К его преимуществам относятся развитая система управления и обширные средства настройки параметров инструментов. По возможностям создания самых сложных художественных композиций CorelDraw заметно превосходит конкурентов. Однако интерфейс программы сложен для освоения. Трассировщик Adobe StreamLine по праву занимает ведущее место в своем классе программ. Хотя имеются более мощные пакеты, ориентированные на обработку чертежей, они очень требовательны к аппаратным ресурсам, да и по стоимости много дороже. StreamLine позволяет проводить тонкую настройку параметров векторизации, что улучшает ее точность. Более всего векторизация удобна для преобразования чертежей, черно-белых рисунков и другой простой графики без полутонов. Полутоновые и цветные изображения обрабатываются хуже, и результат требует значительной доработки для приближения к оригиналу. Среди программ для создания изображений на платформе Macintosh стоит отметить пакет для редактирования растровой живописи и изображений PixelPaint Pro компании Pixel Resources. Среди программ компьютерной живописи для графических станций Silicon Graphics (SGI) особое место занимает пакет StudioPaint 3D компании Alias Wavefront, который позволяет рисовать различными инструментами («кистями») в режиме реального времени прямо на трехмерных моделях. Пакет работает с неограниченным количеством слоев изображения и предоставляет 30 уровней отмены предыдущего действия (undo), включает операции цветокоррекции и «сплайновые кисти», «мазок» которых можно редактировать по точкам как сплайновую кривую. StudioPaint 3D поддерживает планшет с чувствительным пером, что дает возможность художнику сделать традиционный эскиз от руки, а затем позволяет перенести рисунок в трехмерные пакеты для моделирования или анимации и построить по эскизу трехмерную модель. Программа создания и обработки трехмерной графики 3D Studio Max фирмы Kinetix изначально создавалась для платформы Windows. Этот пакет считается «полупрофессиональным». Однако его средств вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Отличительными особенностями пакета являются поддержка большого числа аппаратных ускорителей трехмерной графики, мощные световые эффекты, большое число дополнений, созданных сторонними фирмами. Сравнительная нетребовательность к аппаратным ресурсам позволяет работать даже на компьютерах среднего уровня. Вместе с тем по средствам моделирования и анимации пакет 3D Studio Max уступает более развитым программным средствам.

Операционная система - комплекс системных и служебных программ, управляющий ресурсами вычислительной системы и обеспечивающий пользовательский интерфейс, программно-аппаратный и программный интерфейс.

Она опирается на базовое программное обеспечение – базовую систему ввода-вывода BIOS (Base Input-Output System). Программы, работающие под управлением операционной системы, называются приложениями. Под ресурсами вычислительной системы понимаются объем оперативной памяти, процессорное время, объем внешней памяти, внешние устройства.

Операционная система обеспечивает следующие виды интерфейсов:

1. интерфейс между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

2. интерфейс между программным и аппаратным обеспечением (программно-аппаратный интерфейс);

3. интерфейс между разными видами программного обеспечения (программный интерфейс).

Все операционные системы обеспечивают пакетный и диалоговый режим работы.

В пакетном режиме операционная система автоматически исполняет заданную последовательность команд.

В диалоговом режиме< операционная система находится в ожидании команды пользователя, получив её, приступает к исполнению, а после завершения возвращает отклик и ждёт очередной команды. Диалоговый режим работы основан на использовании прерываний. Прерыванием называется способность операционной системы прервать текущую работу и отреагировать на события, вызванные пользователем с помощью управляющих устройств.

По способу реализации интерфейса пользователя различают неграфические и графические операционные системы.

Неграфические операционные системы используют интерфейс командной строки. Основным устройством управления в этом случае является клавиатура. Управляющие команды вводятся в виде некоторых слов в поле командной строки, где их можно редактировать. Исполнение команды начинается после нажатия определённой клавиши, чаще всего.

Графические операционные системы обеспечивают более сложный интерфейс, в котором в качестве устройства управления кроме клавиатуры используется мышь. Работа графической операционной системы основана на взаимодействии активных и пассивных экранных элементов управления. В качестве активного элемента управления выступает указатель мыши, перемещение которого по экрану синхронизировано с перемещением мыши. В качестве пассивных элементов управления выступают графические элементы управления приложений: экранные кнопки, значки, переключатели, раскрывающиеся списки, меню и др.

Большинство современных графических операционных систем являются многозадачными. Они управляют распределением ресурсов вычислительной системы между приложениями и обеспечивают:

1. возможность одновременного выполнения нескольких приложений;

2. возможность обмена данными между приложениями;

3. возможность совместного использования программных, аппаратных и сетевых ресурсов вычислительной системы несколькими приложениями.


Похожая информация.


≫ Что такое операционная система? Функции, история, виды

Опубликовано: 26 октября 2016 г.

Операционная система (Operating System) - комплекс программ, обеспечивающий выполнение других программ, распределение ресурсов, планирование, ввод/вывод и управление данными.

Функции операционной системы

Операционная система выполняет большое число функций, к которым, в первую очередь, следует отнести:

  • Интерфейс между пользователем и системой;
  • Запуск программ на выполнение;
  • Управление аппаратными ресурсами компьютера, такими как монитор, процессор, память, внешние устройства;
  • Программную поддержку работы периферийных устройств (монитора, клавиатуры, дисковых накопителей, принтера и др.);
  • Обеспечение безопасности данных;
  • Диагностику неисправностей системы;
  • Обработку ошибок.

Немного истории

Одной из первых операционных систем, разработанных для персонального компьютера, была операционная система MS DOS . Лишенная графического интерфейса, обладающая очень ограниченными возможностями, она практически завершила свое существование с появлением Windows .

Сначала графическая оболочка Windows 3.1 для MS DOS, а затем полноценные операционные системы - MS Windows 95, Windows NT 4.0, Windows 98, Windows ME, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 стали наиболее часто используемыми операционными системами для персональных компьютеров.

Почти одновременно с Windows появилась и начала завоевывать популярность операционная система Linux , перенявшая от операционной системы UNIX идеологию командной строки. С течением времени Linux развил графический интерфейс, не только не уступающий, но во многом превосходящий возможности графического интерфейса операционной системы Windows.

Сейчас все большее число пользователей отдают предпочтение бесплатной, динамично развивающейся операционной системе Linux, отказываясь от операционной системы Windows.

В 1987 году появилась совместно разработанная фирмами Microsoft и IBM операционная система OS/2 , или, как ее называют, «полуось». С 1990 года фирма Microsoft отошла от разработки OS/2, и в настоящий момент только IBM продолжает поддерживать OS/2.

Существуют и другие операционные системы, ориентированные на работу на IBM-совместных персональных компьютерах. В персональных компьютерах Macintosh применяется операционная система MacOS .

Виды операционных систем

Операционные системы бывают:

  • Бесплатные и платные. Большая часть операционных систем - платные, например, MS Windows. Однако существуют и бесплатно распространяемые операционные системы, например Linux. Вы можете бесплатно получить Linux у того, кто уже обладает этой операционной системой, или скачать Linux из Интернета.
  • С текстовым интерфейсом , например MS DOS, и с графическим интерфейсом , например Windows и Linux.
  • Однозадачные и многозадачные. Однозадачные операционные системы, например MS DOS, могут работать только с одной программой. Многозадачные операционные системы, например Windows ХР, OS/2, UNIX, способны одновременно выполнять несколько программ на одном компьютере.
  • Однопользовательские и многопользовательские , отличающиеся по числу одновременно работающих пользователей. Многопользовательские операционные системы позволяют нескольким пользователям одновременно работать на одном и том же компьютере.
    Главное отличие многопользовательских систем от однопользовательских состоит в наличии у каждого пользователя средств защиты информации от несанкционированного доступа других пользователей, работающих на этом компьютере. Чтобы начать работать, человек должен пройти регистрацию в системе: ввести свое учетное имя (account name) и пароль (password).

Подробнее об операционных системах можно прочитать на официальных сайтах фирм производителей.

2.Понятие файловой системы.

3. Управление установкой, исполнением и удалением приложений

4. Обеспечение взаимодействия с аппаратным обеспечением

5. Обслуживание компьютера

6. Прочие функции операционных систем

1.НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ОПЕРАЦИОННЫХ СИСТЕМ

Операционная система представляет комплекс системных и служебных программных средств. С одной стороны, она опирается на базовое программное обеспечение компьютера, входящее в его систему BIOS (базовая система ввода-вывода), с другой стороны, она сама является опорой для программного обеспечения более высоких уровней - прикладных и большинства служебных приложений.

Приложениями операционной системы принято называть программы, предназначенные для работы под управлением данной системы.

Операционная система предназначена для управления выполнением пользовательских программ, планирования и управления вычислительными ресурсами ЭВМ.

Операционные системы для персональных компьютеров делятся на:

· одно- и многозадачные;

· одно- и многопользовательские;

· непереносимые и переносимые на другие типы компьютеров;

· несетевые и сетевые, обеспечивающие работу в локальной вычислительной сети ЭВМ.

Основная функция всех операционных систем - посредническая. Она заключаются в обеспечении нескольких видов интерфейса:

· интерфейса между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

· интерфейса между программным и аппаратным обеспечением (аппаратно -программный интерфейс);

· интерфейса между разными видами программного обеспечения (программный интерфейс).

Даже для одной аппаратной платформы, например такой, как IBM PC, существует несколько операционных систем. Различия между ними рассматривают в двух категориях: внутренние и внешние. Внутренние различия характеризуются методами реализации основных функций. Внешние различия определяются наличием и доступностью приложений данной системы, необходимых для удовлетворения технических требований, предъявляемых к конкретному рабочему месту.

1.1.Обеспечение интерфейса пользователя

1.1.1.Режимы работы с компьютером

Все операционные системы способны обеспечивать как пакетный, так и диалоговый режим работы с пользователем.

В пакетном режиме операционная система автоматически исполняет заданную последовательность команд.

Суть диалогового режима состоит в том, что операционная система находится в ожидании команды пользователя и, получив ее, приступает к исполнению, а исполнив, возвращает отклик и ждет очередной команды.

Диалоговый режим работы основан на использовании прерываний процессора и прерываний BIOS. Опираясь на эти аппаратные прерывания, операционная система создает свой комплекс системных прерываний. Способность операционной системы прервать текущую работу и отреагировать на события, вызванные пользователем с помощью управляющих устройств, воспринимается нами как диалоговый режим работы.

1.1.2.Виды интерфейсов пользователя

По реализации интерфейса пользователя различают неграфические и графические операционные системы.

Неграфические операционные системы реализуют интерфейс командной строки.

Графические операционные системы реализуют более сложный тип интерфейса, в котором в качестве органа управления кроме клавиатуры может использоваться мышь или адекватное устройство позиционирования. Работа с графической операционной системой основана на взаимодействии активных и пассивных экранных элементов управления. В качестве активного элемента управления выступает указатель мыши - графический объект, перемещение которого на экране синхронизировано с перемещением мыши. В качестве пассивных элементов управления выступают графические элементы управления приложений

Характер взаимодействия между активными и пассивными элементами управления выбирает сам пользователь.

1.2. Обеспечение автоматического запуска

Все операционные системы обеспечивают свой автоматический запуск. Для дисковых операционных систем в специальной (системной) области диска создается запись программного кода. Обращение к этому коду выполняют программы, находящиеся в базовой системе ввода-вывода (BIOS). Завершая свою работу, они дают команду на загрузку и исполнение содержимого системной области диска.

Недисковые операционные системы характерны для специализированных вычислительных систем, в частности для компьютеризированных устройств автоматического управления. Математическое обеспечение, содержащееся в микросхемах ПЗУ таких компьютеров, можно условно рассматривать как аналог операционной системы. Ее автоматический запуск осуществляется аппаратно. При подаче питания процессор обращается к фиксированному физическому адресу ПЗУ (его можно изменять аппаратно с использованием логических микросхем), с которого начинается запись программы инициализации операционной системы.

2.ПОНЯТИЕ ФАЙЛОВОЙ СИСТЕМЫ.

2.1. Организация файловой системы

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы - табличный. Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, цилиндра и сектора.

Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT-таблицах). Поскольку нарушение FAT-таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности, и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Наименьшей физической единицей хранения данных является сектор. Размер сектора равен 512 байт. Поскольку размер FAT-таблицы ограничен, то для дисков, размер которых превышает 32 Мбайт, обеспечить адресацию к каждому отдельному сектору не представляется возможным. В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к данным. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.

Операционные системы MS-DOS, OS/2, Windows 95 и Windows NT реализуют 16-разрядные поля в таблицах размещения файлов. Такая файловая система называется FAT 16. Она позволяет разместить в.FAT-таблицах не более 2 16 записей о местоположении единиц хранения данных и, соответственно, для дисков объемом от 1 до 2 Гбайт длина кластера составляет 32 Кбайт (64 сектора). Это не вполне рациональный расход рабочего пространства, поскольку любой файл (даже очень маленький) полностью оккупирует весь кластер, которому соответствует только одна адресная запись в таблице размещения файлов. Даже если файл достаточно велик и располагается в нескольких кластерах, все равно в его конце образуется некий остаток, нерационально расходующий целый кластер.

Для современных жестких дисков потери, связанные с неэффективностью файловой системы, весьма значительны и могут составлять от 25% до 40% полной емкости диска, в зависимости от среднего размера хранящихся файлов. С дисками же размером более 2 Гбайт файловая система FAT 16 вообще работать не может.

2.2. Обслуживание файловой структуры

Несмотря на то что данные о местоположении файлов хранятся в табличной структуре, пользователю они представляются в виде иерархической структуры - людям так удобнее, а все необходимые преобразования берет на себя операционная система. К функции обслуживания файловой структуры относятся следующие операции, происходящие под управлением операционной системы:

§ создание файлов и присвоение им имен;

§ создание каталогов (папок) и присвоение им имен;

§ переименование файлов и каталогов (папок);

§ копирование и перемещение файлов между дисками компьютера и между каталогами (папками) одного диска;

§ удаление файлов и каталогов (папок);

§ навигация по файловой структуре с целью доступа к заданному файлу, каталогу (папке);

§ управление атрибутами файлов.

2.3. Создание и именование файлов

Файл - это именованная последовательность байтов произвольной длины. Поскольку из этого определения вытекает, что файл может иметь нулевую длину, то фактически создание файла состоит в присвоении ему имени и регистрации его в файловой системе - это одна из функций операционной системы.

По способам именования файлов различают «короткое» и «длинное» имя. Согласно соглашению 8.3, принятому в MS-DOS, имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводится 8 символов, а на его расширение - 3 символа. Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита.

Соглашение 8.3 не является стандартом, и потому в ряде случаев отклонения от правильной формы записи допускаются как операционной системой, так и ее приложениями(например, в большинстве случаев система «не возражает» против использования некоторых специальных символов, а некоторые версии MS-DOS даже допускают использование в именах файлов символов русского и других алфавитов). Сегодня имена файлов, записанные в соответствии с соглашением 8.3, считаются «короткими».

Основным недостатком «коротких» имен является их низкая содержательность. С появлением операционной системы Windows 95 было введено понятие «длинного» имени. Такое имя может содержать до 256 символов. «Длинное» имя может содержать любые символы, кроме девяти специальных: \ / : * ? " < > |.В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются все символы, идущие после последней точки.

Наряду с «длинным» именем операционные системы Windows 95,98,2000 создают также и короткое имя файла - оно необходимо для возможности работы с данным файлом на рабочих местах с устаревшими операционными системами.

Использование «длинных» имен файлов в операционных системах Windows имеет ряд особенностей.

1. Если «длинное» имя файла включает пробелы, то в служебных операциях его надо заключать в кавычки. Рекомендуется не использовать пробелы, а заменять их символами подчеркивания.

2. В корневой папке диска нежелательно хранить файлы с длинными именами - в отличие от прочих папок в ней ограничено количество единиц хранения, причем, чем длиннее имена, тем меньше файлов можно разместить в корневой папке.

3. Кроме ограничения на длину имени файла (256 символов) существует гораздо более жесткое ограничение на длину полного имени файла (в него входит путь доступа к файлу, начиная от вершины иерархической структуры). Полное имя не может быть длиннее 260 символов.

4. Разрешается использовать символы любых алфавитов, в том числе и русского.

5. Прописные и строчные буквы не различаются операционной системой. Однако символы разных регистров исправно отображаются операционной системой, и, если для наглядности надо использовать прописные буквы, это можно делать.

6. В современных операционных системах любое расширение имени файла может нести информацию для операционной системы. Системы Windows имеют средства для регистрации свойств типов файлов по расширению их имени, поэтому во многих случаях выбор расширения имени файла не является частным делом пользователя. Приложения этих систем предлагают выбрать только основную часть имени и указать тип файла, а соответствующее расширение имени приписывают автоматически.

2.4. Создание каталогов (папок)

Каталоги (папки) - важные элементы иерархической структуры, необходимые для обеспечения удобного доступа к файлам, если файлов на носителе слишком много. Файлы объединяются в каталоги по любому общему признаку, заданному их создателем (по типу, по принадлежности, по назначению, по времени создания и т. п.). Каталоги низких уровней вкладываются в каталоги более высоких уровней и являются для них вложенными. Верхним уровнем вложенности иерархической структуры является корневой каталог диска.

Мы знаем, что в иерархических структурах данных адрес объекта задается маршрутом (путем доступа), ведущим от вершины структуры к объекту. При записи пути доступа к файлу, проходящего через систему вложенных каталогов, все промежуточные каталоги разделяются между собой определенным символом. Во многих операционных системах в качестве такого символа используется «\», например:

2.4.1.Особенности Windows

До появления операционной системы Windows 95 при описании иерархической файловой структуры использовался введенный выше термин каталог. С появлением этой системы был введен новый термин - папка. В том, что касается обслуживания файловой структуры носителя данных, эти термины равнозначны: каждому каталогу файлов на диске соответствует одноименная папка операционной системы. Основное отличие понятий папка и каталог проявляется не в организации хранения файлов, а в организации хранения объектов иной природы.

2.5.Копирование и перемещение файлов.

В неграфических операционных системах операции копирования и перемещения файлов выполняются вводом прямой команды в поле командной строки.

В графических операционных системах существуют приемы работы с устройством позиционирования, позволяющие выполнять эти команды наглядными методами.

2.6.Навигация по файловой структуре

Навигация по файловой структуре является одной из наиболее используемых функций операционной системы. Удобство этой операции часто воспринимают как удобство работы с операционной системой. В операционных системах, имеющих интерфейс командной строки, навигацию осуществляют путем ввода команд перехода с диска на диск или из каталога в каталог. В связи с крайним неудобством такой навигации, широкое применение нашли специальные служебные программы, называемые файловыми оболочками.

Как и операционные системы, файловые оболочки бывают неграфическими и графическими. Наиболее известная неграфическая файловая оболочка для MS-DOS -диспетчер файлов Norton Commander , а роль графической файловой оболочки для MS-DOS в свое время исполняли программы Windows 1.0 и Windows 2.0, которые постепенно развились до понятия операционной среды (в версиях Windows 3.x) и далее до самостоятельной операционной системы (Windows 95/98).

3. УПРАВЛЕНИЕ УСТАНОВКОЙ, ИСПОЛНЕНИЕМ И УДАЛЕНИЕМ ПРИЛОЖЕНИЙ

3.1.Понятие многозадачности

Работа с приложениями составляет наиболее важную часть работы операционной системы. С точки зрения управления исполнением приложений, различают однозадачные и многозадачные операционные системы.

Однозадачные операционные системы (например, MS-DOS) передают все ресурсы вычислительной системы одному исполняемому приложению и не допускают ни параллельного выполнения другого приложения (полная многозадачность), ни его приостановки и запуска другого приложения (вытесняющая многозадачность). В то же время параллельно с однозадачными операционными системами возможна работа специальных программ, называемых резидентными. Такие программы не опираются на операционную систему, а непосредственно работают с процессором, используя его систему прерываний.

Большинство современных графических операционных систем - многозадачные. Они управляют распределением ресурсов вычислительной системы между задачами и обеспечивают:

§ возможность одновременной или поочередной работы нескольких приложений;

§ возможность обмена данными между приложениями;

§ возможность совместного использования программных, аппаратных, сетевых и прочих ресурсов вычислительной системы несколькими приложениями.

3.2.Вопросы надежности

От того, как операционная система управляет работой приложений, во многом зависит надежность всей вычислительной системы. Операционная система должна предоставлять возможность прерывания работы приложений по желанию пользователя и снятия сбойной задачи без ущерба для работы других приложений. При этом требование надежности операционной системы может входить в противоречие с требованием ее универсальности.

Так, например, наиболее универсальные операционные системы Windows 95,98,2000 могут испытывать общесистемные сбои из-за работы с приложениями, недостаточно четко соблюдающими спецификацию операционной системы. Операционные системы Windows NT , OS/2 и XP обладают повышенной устойчивостью и не выходят из строя при сбое приложений, но имеют меньшую универсальность, и, соответственно, парк доступных приложений для них ограничен.

Поэтому общепринятой является практика, когда программа разрабатывается и отлаживается в операционной системе Windows NT,XP, а ее окончательная сборка и компиляция выполняются в Windows 95/98, 2000.

3.3.Установка приложений

Для правильной работы приложений на компьютере они должны пройти операцию, называемую установкой. Таким образом, дистрибутивный комплект (установочный пакет) программного обеспечения, как правило, представляет собой не законченный программный продукт, а полуфабрикат, из которого в процессе установки на компьютере формируется полноценное рабочее приложение. При этом осуществляется привязка приложения к существующей аппаратно-программной среде и его настройка на работу именно в этой среде.

Устаревшие операционные системы (например, MS-DOS) не имеют средств для управления установкой приложений.

Современные графические операционные системы берут на себя управление установкой приложений. Они управляют распределением ресурсов вычислительной системы между приложениями, обеспечивают доступ устанавливаемых приложений к драйверам устройств вычислительной системы, формируют общие ресурсы, которые могут использоваться разными приложениями, выполняют регистрацию установленных приложений и выделенных им ресурсов.

3.4.Удаление приложений

Процесс удаления приложений, как и процесс установки, имеет свои особенности и может происходить под управлением вычислительной системы. В таких операционных системах, где каждое приложение самообеспечено собственными ресурсами (например, в MS-DOS), его удаление не требует специального вмешательства операционной системы. Для этого достаточно удалить каталог, в котором размещается приложение, со всем его содержимым.

В операционных системах, реализующих принцип совместного использования ресурсов (например, в Windows 95/98), процесс удаления приложений имеет особенности. Нельзя допустить, чтобы при удалении одного приложения были удалены ресурсы, на которые опираются другие приложения, даже если эти ресурсы были когда-то установлены вместе с удаляемым приложениям. В связи с этим удаление приложений происходит под строгим контролем операционной системы.

4. ОБЕСПЕЧЕНИЕ ВЗАИМОДЕЙСТВИЯ С АППАРАТНЫМ ОБЕСПЕЧЕНИЕМ

Средства аппаратного обеспечения вычислительной техники отличаются гигантским многообразием. Ни один разработчик программного обеспечения не в состоянии предусмотреть все варианты взаимодействия их со своей программой.

Гибкость аппаратных и программных конфигураций вычислительных систем поддерживается за счет того, что каждый разработчик оборудования прикладывает к нему специальные программные средства управления - драйверы. Драйверы имеют точки входа для взаимодействия с прикладными программами, а диспетчеризация обращений прикладных программ к драйверам устройств - это одна из функций операционной системы. Строго говоря, выпуская устройство, его разработчик прикладывает к нему несколько драйверов, предназначенных для основных операционных систем, как-то: Windows 95/98, Windows NT, MS-DOS и т. п.

В операционных системах MS-DOS драйверы устройств загружаются как резидентные программы, напрямую работающие с процессором и другими устройствами материнской платы. Загрузка драйверов устройств может быть ручной или автоматической, когда команды на загрузку и настройку драйверов включаются в состав файлов, автоматически читаемых при загрузке компьютера.

В таких операционных системах, как Windows 95/98 и Windows NT, операционная система берет на себя все функции по установке драйверов устройств и передаче им управления от приложений. Во многих случаях операционная система даже не нуждается в драйверах, полученных от разработчика устройства, а использует драйверы из собственной базы данных.

Каждое подключенное устройство может использовать до трех аппаратных ресурсов устройств материнской платы: адресов внешних портов процессора, прерываний процессора и каналов прямого доступа к памяти. Если устройство подключается к материнской плате через шину PCI, то есть техническая возможность организовать между ним и материнской платой обратную связь. Это позволяет операционной системе анализировать требования устройств о выделении им ресурсов и гибко реагировать на них, исключая захват одних и тех же ресурсов разными устройствами. Такой принцип динамического распределения ресурсов операционной системой получил название plug-and-play, а устройства, удовлетворяющие этому принципу, называются самоустанавливающимися.

Если же устройство подключается к устаревшей шине ISA и не является самоустанавливающимся, то в этом случае операционная система не может динамически выделять ему ресурсы, но, тем не менее, при распределении ресурсов для самоустанавливающихся устройств, она учитывает ресурсы, захваченные им.

5. ОБСЛУЖИВАНИЕ КОМПЬЮТЕРА

Предоставление основных средств обслуживания компьютера - одна из функций операционной системы, она решается внешним образом - включением в базовый состав операционной системы первоочередных служебных приложений.

5.1.Средства проверки дисков

Надежность работы дисков (особенно жесткого диска) определяет не только надежность работы компьютера в целом, но и безопасность хранения данных, ценность которых может намного превышать стоимость самого компьютера. Поэтому наличие средств для проверки дисков является обязательным требованием к любой операционной системе.

Средства проверки принято рассматривать в двух категориях: средства логической проверки, то есть проверки целостности файловой структуры, и средства физической диагностики поверхности. Логические ошибки, как правило, устраняются средствами самой операционной системы, а физические дефекты поверхности только локализуются.

Логические ошибки файловой структуры имеют два характерных проявления: это потерянные кластеры или общие кластеры. Потерянные кластеры образуются в результате неправильного (или аварийного) завершения работы с компьютером. Кроме того, в операционных системах Windows также нельзя выключать компьютер, если не исполнена специальная процедура завершения работы с операционной системой.

Ошибка, проявляющаяся как общие кластеры, характеризуется тем, что, согласно данным FAT-таблиц, два или более файлов претендуют на то, что их данные находятся в одном и том же месте диска. При нормальной работе такой ситуации быть не может, и это свидетельствует об ошибке в.FAT-таблицах. Причиной появления общих кластеров может стать самопроизвольное изменение данных в FAT-таблицах или некорректное восстановление ранее удаленных данных с помощью внесистемных средств.

5.2.Средства «сжатия» дисков

Некоторые операционные системы предоставляют служебные средства для программного «сжатия» дисков путем записи данных на диск в уплотненном виде посредством специального драйвера (резидентного для MS-DOS или работающего в фоновом режиме для Windows).

5.3.Средства управления виртуальной памятью

Ранние операционные системы ограничивали возможность использования приложений по объему необходимой для их работы оперативной памяти.

Современные операционные системы не только обеспечивают непосредственный доступ ко всему полю оперативной памяти, установленной в компьютере, но и позволяют ее расширить за счет создания так называемой виртуальной памяти на жестком диске. Виртуальная память реализуется в виде так называемого файла подкачки. В случае недостаточности оперативной памяти для работы приложения часть ее временно опорожняется с сохранением образа на жестком диске. В процессе работы приложений происходит многократный обмен между основной установленной оперативной памятью и файлом подкачки.

5.4.Средства кэширования дисков

Поскольку, взаимодействие процессора с дисками компьютера происходит намного медленнее операций обмена с оперативной памятью, операционная система принимает специальные меры по сохранению части прочитанных с диска данных в оперативной памяти. В случае, если по ходу работы процессору вновь потребуется обратиться к ранее считанным данным или программному коду, он может найти их в специальной области ОЗУ, называемой дисковым кэшем. В современных операционных системах эту функцию включают в ядро системы, и она работает автоматически, без участия пользователя, хотя определенная возможность настройки размера кэша за ним сохраняется.

5.5.Средства резервного копирования данных

Ценность данных, размещенных на компьютере, принято измерять совокупностью затрат, которые может понести владелец в случае их утраты. Важным средством защиты данных является регулярное резервное копирование на внешний носитель. В связи с особой важностью этой задачи операционные системы обычно содержат базовые средства для выполнения

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02