Схемы основных топологий сетей. Топология компьютерных сетей. Классификация компьютерных сетей по топологии

Сетевая топология (от греч. τόπος , - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
(ВикиредиЯ )

Топология
– это схема соединения каналами связи компьютеров или узлов сети между собой .
Сетевая топология может быть

  • физической - описывает реальное расположение и связи между узлами сети.
  • логической - описывает хождение сигнала в рамках физической топологии.
  • информационной - описывает направление потоков информации, передаваемых по сети.
  • управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют следующие топологии:

  • полносвязная
  • ячеистая
  • общая шина
  • звезда
  • кольцо
  • снежинка

Рассмотрим каждую из них по подробнее.

1) Полносвязная топология - топология компьютерной сети, в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть

может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю.
После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается.

Недостаток: г ромоздкий и неэффективный вариант , т . к . каждый компьютер должен иметь большое кол - во коммуникационных портов .


2) Ячеистая топология - базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами.

Получается из полносвязной путем удаления некоторых возможных связей. Эта топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

3) Общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Достоинства:


Недостатки:

  • Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
  • Сложная локализация неисправностей;
  • С добавлением новых рабочих станций падает производительность сети.

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

4) Звезда - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Метод доступа реализуется с помощью технологии Arcnet. Этот метод доступа также использует маркер для передачи данных . Маркер передается от компьютера к компьютеру в порядке возрастания адреса . Как и в кольцевой топологии , каждый компьютер регенерирует маркер .

Сравнение с другими топологиями.

Достоинства:

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • хорошая масштабируемость сети;
  • лёгкий поиск неисправностей и обрывов в сети;
  • высокая производительность сети (при условии правильного проектирования);
  • гибкие возможности администрирования.

Недостатки:

  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

5) Кольцо - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями.

Достоинства:

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки:

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

6) С нежинка ( Иерархическая Звезда или древовидная топология) - топология типа звезды , но используется несколько концентратов , иерархически соединенных между собой связями типа звезда . Топология "снежинка" требует меньшей длины кабеля, чем "звезда", но больше элементов.

Самый распространенный способ связей как в локальных сетях , и сайт lyceum1.perm.ru

  • Агрегатный индекс цен: особенности построения с учетом разных весов
  • Анализ деятельности Финской спортивной федерации по модели процесса эффективности функционирования
  • Анализ эффективности использования ОС: факторные модели фондорентабельности и фондоотдачи
  • Классификация топологических элементов сетей

    Локальные сети состоят из конечных устройств и промежуточных устройств, соединенных кабельной системой. Определим некоторые основные понятия .

    Узлы сети (nodes) - конечные устройства и промежуточные устройства, наделенные сетевыми адресами. К узлам сети относятся компьютеры с сетевым интерфейсом, выступающие в роли рабочих станций, серверов или в обеих ролях; сетевые периферийные устройства (принтеры, плоттеры, сканеры); сетевые телекоммуникационные устройства (модемные пулы, модемы коллективного использования); маршрутизаторы.

    Кабельный сегмент - отрезок кабеля или цепочка отрезков кабелей, электрически (оптически) соединенных друг с другом, обеспечивающие соединение двух или более узлов сети. Иногда применительно к коаксиальному кабелю так называют и отрезок кабеля, оконцованный разъемами, но мы будем пользоваться более широким вышеприведенным толкованием.

    Сегмент сети (или просто сегмент) - совокупность узлов сети, использующих общую (разделяемую) среду передачи. Применительно к технологии Ethernet это совокупность узлов, подключенных к одному коаксиальному кабельному сегменту, одному хабу (повторителю), а также к нескольким кабельным сегментам и/или хабам, связанным между собой повторителями. Применительно к Token Ring это одно кольцо.

    Сеть (логическая) - совокупность узлов сети, имеющих единую систему адресации третьего уровня модели OSI. Примерами могут быть IPX-сеть, IP-сеть. Каждая сеть имеет свой собственный адрес, этими адресами оперируют маршрутизаторы для передачи пакетов между сетями. Сеть может быть разбита на подсети (subnet), но это чисто организационное разделение с адресацией на том же третьем уровне. Сеть может состоять из множества сегментов, причем один и тот же сегмент может входить в несколько разных сетей.

    Облако (cloud) - коммуникационная инфраструктура с однородными внешними интерфейсами, подробностями организации которой не интересуются. Примером облака может быть городская-междугородная-международная телефонная сеть: в любом ее месте можно подключить телефонный аппарат и связаться с любым абонентом.

    По способу использования кабельных сегментов различают :

    Двухточечные соединения (point-to-p6int connection) - между двумя (и только двумя!) узлами. Для таких соединений в основном используются симметричные электрические (витая пара) и оптические кабели.

    Многоточечные соединения (multi point connection) - к одному кабельному сегменту подключается более двух узлов. Типичная среда передачи - несимметричный электрический кабель (коаксиальный кабель), возможно применение и других кабелей, в том числе и оптических. Соединение устройств отрезками кабеля друг за другом называется цепочечным (daisy chaining). Возможно подключение множества устройств и к одному отрезку кабеля - методом прокола (tap).

    Топология

    Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

    Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные .

    В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда .

    В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка .

    При выборе оптимальной топологии преследуются три основных цели:

    Обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

    Выбор оптимального маршрута передачи блоков данных;

    Предоставление приемлемого времени ответа и нужной пропускной способности.

    При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

    Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.


    | | | | | | 7 | | | | | | | |

    Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути. Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

    Существует разные топологии сети (рис. 8.1): «общая шина», «звезда» и «кольцо» и т.д.

    Общая шина

    При топологии «общая шина» все компьютеры параллельно подключаются к одной линии связи (шине), в качестве которой обычно выступает коаксиальный кабель или электромагнитный сигнал радиочастоты (рис. 8.1, а). Информация от каждого компьютера одновременно передается всем остальным компьютерам. Основными преимуществами такой схемы являются низкая стоимость и простота наращивания, т.е. присоединения новых узлов к сети.

    Самым серьезным недостатком «общей шины» является ее недостаточная надежность: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другой недостаток «общей шины» – невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность канала связи всегда делится между всеми узлами сети.

    Рис. 8.1. Типы сетевой топологии: а – общая шина; б – звезда; в – кольцо;

    г – смешанная; д – полносвязная; е – древовидная

    При топологии «звезда» (рис. 8.1, б) кодному центральному устройству (компьютеру, концентратору или хабу) присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному устройству, от центрального – одному или нескольким периферийным.

    При топологии «кольцо» (рис.


    8.1, в) компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера.

    В сетях с кольцевой конфигурацией данные передаются по кольцу от одного компьютера к другому. Главное достоинство «кольца» в том, что оно по своей природе обладает свойством резервирования связей. Действительно, любая пара узлов соединена здесь двумя путями – по часовой стрелке и против. «Кольцо» представляет собой очень удобную конфигурацию и для организации обратной связи – данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому отправитель в данном случае может контролировать процесс доставки данных адресату. Часто это свойство «кольца» используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прерывался канал связи между остальными станциями «кольца».

    Смешанная топология

    В то время как небольшие сети, как правило, имеют типовую топологию – «звезда», «кольцо» или «общая шина», для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией (рис. 8.1, г).

    Полносвязная топология

    Полносвязная топология соответствует сети, в которой каждый компьютер непосредственно связан отдельным дуплексным (двухсторонним) физическим каналом связи со всеми остальными (рис. 8.1, д). Несмотря на логическую простоту, это вариант громоздкий и неэффективный. Полносвязные топологии в крупных сетях применяются редко, так как для связи N узлов требуется N (N – 1)/2 физических дуплексных линий связи, т.е. существует квадратичная зависимость. Эта модель является, скорее, теоретической, из которой путем отбрасывания связей можно получить другие топологии.

    Древовидная топология

    Древовидная, или иерархическая, топология получается при объединении концентраторов нескольких звезд в иерархическом порядке (рис. 8.1, е). При этом возникает древовидная структура с одним путем передачи для каждого из компьютеров.

    Тема 1.4: Основы локальных сетей

    Тема 1.5: Базовые технологии локальных сетей

    Тема 1.6: Основные программные и аппаратные компоненты ЛВС

    Локальные сети

    1.4. Основы локальных сетей

    1.4.3. Сетевые топологии

    Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

    Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

    В настоящее время в локальных сетях используются следующие физические топологии:

    • физическая "шина" (bus);
    • физическая “звезда” (star);
    • физическое “кольцо” (ring);
    • физическая "звезда" и логическое "кольцо" (Token Ring).

    Шинная топология

    Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных.

    Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.


    Рис. 1.

    Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

    Преимущества сетей шинной топологии:

    • отказ одного из узлов не влияет на работу сети в целом;
    • сеть легко настраивать и конфигурировать;
    • сеть устойчива к неисправностям отдельных узлов.

    Недостатки сетей шинной топологии:

    • разрыв кабеля может повлиять на работу всей сети;
    • ограниченная длина кабеля и количество рабочих станций;
    • трудно определить дефекты соединений.

    Топология типа “звезда”

    В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub) . Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.



    Рис. 2.

    Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

    Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

    Преимущества сетей топологии звезда:

    • легко подключить новый ПК;
    • имеется возможность централизованного управления;
    • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

    Недостатки сетей топологии звезда:

    Топология “кольцо”

    В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.


    Рис. 3.

    Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо. Данную сеть очень легко создавать и настраивать.

    К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

    Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

    Топология Token Ring

    Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

    Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

    Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.


    Рис. 4.

    В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

    Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

    Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

    Преимущества сетей топологии Token Ring:

    • топология обеспечивает равный доступ ко всем рабочим станциям;
    • высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

    Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.

    На уровне самого общего представления любая сеть состоит из совокупности пунктов и соединяющих их линий, взаимное расположение которых характеризует связность сети и способность к обеспечению информационного обмена между различными адресатами. Структура, отображающая расположение пунктов сети и связывающих их линий называетсятопологией сети. Различаютфизическую топологию илогическую .Физическая топология отображает размещение пунктов в пространстве и конфигурацию линий связи .Логическая топология дает представление о путях перемещения информационных сообщений в сети от источников к приемнникам на основе адресной информации.

    Рисунок 1 . Системное описание архитектуры сети

    Для исследования топологических особенностей сети ее удобно изображать в виде точек и соединяющих их дуг . Такая геометрическая фигура носит название граф. Точки в графе именуются вершинами, а дуги, если не учитывается их направленность, – ребрами. Граф является моделью топологическойструктуры информационной сети. Выбор топологии является наипервейшей задачей, решаемой при построении сети. Он осуществляется с учетом таких требований, какэкономичность инадежность связи . Задача выбора топологии сети решается сравнительно несложно, если известен набортиповых топологий (примитивов) , которые можно использовать как отдельно, так и в комбинации. Рассмотрим ряд таких типовых топологий, назовем их базовыми, и охарактеризуем их особенности.

    Топология «точка точка» является наиболее простым примером базовой топологии и представляет собой сегмент сети, связывающий физически и логически два пункта (рис 2).

    Надежность связи в таком сегменте может быть повышена за счет введения резервной связи, обеспечивающей стопроцентное резервирование,

    называемое защитой типа 1+1 . При выходе из строя основной связи сеть автоматически переводится на резервную. Несмотря на всю простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков информации по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим цифровой телефонный трафик. Она же используется как составная часть радиально-кольцевой топологии (в качестве радиусов). Топология «точка–точка» с резервированием типа 1+1 может рассматриваться как вырожденный вариант топологии «кольцо» (см. ниже).

    Древовидная топология может иметь различные варианты (рис. 3).

    Рисунок 3 . Древовидная топология: а – дерево, б – звезда, в – цепь

    Особенностью сегмента сети, имеющего древовидную топологию любого из перечисленных вариантов, является то, что связность n пунктов на уровне физической топологии здесь достигается числом ребер R = n – 1, что обеспечивает высокую экономичность такой сети. На логическом уровне, количество связывающих путей передачи информации между каждой парой пунктов в таком сегменте всегда равно h = 1. С точки зрения надежности, это достаточно низкий показатель. Повышение надежности в таких сетях достигается введением резервных связей (например, защиты типа 1+1). Древовидная топология находит применение в локальных сетях, сетях абонентского доступа.

    Топология «кольцо» (рис. 4) характеризует сеть, в которой к каждому пункту присоединены две, и только две линии. Кольцевая топология широко используется в локальных сетях, в сегментах меж-узловых соединений территориальных сетей, а также в сетях абонентского доступа, организуемых на базе оптического кабеля.

    Число ребер графа, отображающего физическую топологию, равно числу вершин: R = n и характеризует сравнительно невысокие затраты на сеть.

    На логическом уровне между каждой парой пунктов могут быть организованы h = 2 независимых связывающих пути (прямой и альтернативный). Это обеспечивает повышение надежности связи в таком сегменте, особенно при использовании резервирования типа 1+1, так называемогодвойного кольца (рис. 5). Двойное кольцо образуется физическими соединениями между парами пунктов, при которых информационный поток направляется в двух противоположных направлениях (восточном и западном), причем одно направление используется как основное, второе – как резервное.

    Полносвязная топология (рис. 6) обеспечивает физическое и логическое соединение пунктов по принципу «каждый с каждым». Граф, включающий n вершин, содержитR = n (n – 1)/2 ребер, что определяет высокую стоимость сети. Количество независимых связывающих путей между каждой парой пунктов в таком сегменте сети равноh = n – 1. Полносвязная топология на логическом уровне обладает максимальной надежностью связи, благодаря возможности организации большого числа обходных путей. Такая топология характерна для территориальных сетей при формировании сегментов базовых и опорных (магистральных) сетей. Максимальная надежность связи в сегменте достигается при использовании на обходных направлениях альтернативных сред распространения сигналов (например, волоконно-оптический кабель и радиорелейная линия).

    Ячеистая топология (рис. 7). Каждый пункт сегмента имеет непосредственную связь с небольшим числом пунктов, ближайших по расстоянию. При большом числе вершин число реберR » r × n /2, гдеr – число ребер, инцидентных каждой вершине. Ячеистые сегменты обладают высокой надежностью связи при меньшем числе ребер по сравнению с полно-связным сегментом.

    Рисунок. 7 Ячеистая топология

    Использование полно-связной и ячеистой топологий целесообразно лишь в сегментах с высокой концентрацией трафика, так как их реализация связана со значительными затратами.

    Сложные топологии. Реальные сети часто имеют сложные топологии, являющиеся расширениями и/или комбинациями базовых физических топологий. За счет использования сложных топологий удается обеспечивать требования красширяемости имасштабируемости сети.

    Под расширяемостью понимают возможность увеличения размера сети, путем сравнительно несложного включения новых структурных элементов. Расширяемость сети, как правило, ограничена, т.к. начиная с некоторого момента добавление очередного структурного элемента приводит к резкому снижению производительности сети.

    Хорошо масштабируемые сети характеризуются неограниченными возможностями по наращиванию сети, не оказывающими влияния на ее производительность . Хорошая масштабируемость является одним из важнейших требований, предъявляемых к современным сетям, особенно территориальным.