Солнечная батарея из старых транзисторов. Как сделать солнечную батарею из транзисторов или диодов? Высокие частоты ставят проблемы

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком



Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире , прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор - прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

(далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий ), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором , базой и эмиттером . Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса .

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили , обращайтесь в Заочник.

Эта статья заинтересует в первую очередь тех, кто любит и умеет мастерить. Конечно, можно купить различные готовые устройства и приборы, в том числе и изделия солнечной фотовольтаики в сборе или россыпью. Но умельцам намного интереснее создать собственное устройство, не похожее на другие, но обладающее уникальными свойствами. Например, из транзисторов своими руками может быть изготовлена солнечная батарея, на базе этой солнечной батареи могут быть собраны различные устройства, например, датчик освещенности или маломощное зарядное устройство.

Собираем солнечную батарею

В промышленных гелиевых модулях в качестве элемента, преобразующего солнечный свет в электричество, используется кремний. Естественно, этот материал прошел соответствующую обработку, которая превратила природный элемент в кристаллический полупроводник. Этот кристалл нарезается на тончайшие пластины, которые затем служат основой для сборки больших солнечных модулей. Этот же материал используется и при изготовлении полупроводниковых приборов. Поэтому, в принципе, из достаточного количества кремниевых транзисторов можно изготовить солнечную батарею.

Для изготовления гелиевой батареи лучше всего использовать старые мощные приборы, имеющие маркировку «П» или «КТ». Чем мощнее транзистор, тем большую площадь имеет кремниевый кристалл, а следовательно, тем большую площадь будет иметь фотоэлемент. Желательно, чтобы они были рабочие, в противном случае их использование может стать проблематичным. Можно, конечно, попробовать использовать и неисправные транзисторы. Но при этом каждый из них следует проверить на предмет отсутствия короткого замыкания на одном из двух переходов: эмиттер – база или коллектор – база.

От того, какова структура используемых транзисторов (р-n-р или n-р-n), зависит полярность создаваемой батареи. Например, KT819 имеет структуру n-р-n, поэтому для него положительным («+») выходом будет вывод базы, а отрицательными («-») – выводы эмиттера и коллектора. А транзисторы типа П201, П416 имеют структуру р-n-р, поэтому для них отрицательным («-») выходом будет вывод базы, а положительными («+») - выводы эмиттера и коллектора. Если взять в качестве фотопреобразователя отечественные П201 – П203, то при хорошем освещении можно получить на выходе ток до трех миллиампер при напряжении в 1.5 вольта.

Транзистор П202М

После того, как будет выбран тип и собрано достаточное количество транзисторов, к примеру, П201 или П416, можно приступать к изготовлению солнечной батареи. Для этого на расточном станке следует сточить фланцы транзисторов и удалить верхнюю часть корпуса. Затем нужно провести рутинную, но необходимую операцию по проверке всех транзисторов на пригодность использования их в качестве фотоэлементов. Для этого следует воспользоваться цифровым мультиметром, установив его в режим миллиамперметра с диапазоном измерения до 20 миллиампер. Соединяем «плюсовой» щуп с коллектором проверяемого транзистора, а «минусовой» - с базой.


Если освещение достаточно хорошее, то мультиметр покажет значение тока в пределах от 0.15 до 0.3 миллиампер. Если значение тока окажется ниже минимального значения, то этот транзистор лучше не использовать. После проверки тока следует проверить напряжение. Не снимая щупов с выводов, мультиметр следует переключить на измерение напряжения в диапазоне до одного вольта. При этом же освещении прибор должен показать напряжение, равное примерно 0.3 вольта. Если показатели тока и напряжения соответствуют приведенным значениям, то транзистор годен для использования в качестве фотоэлемента в составе солнечной батареи.


Схема соединений транзисторов в солнечную батарею

Если есть возможность, то можно попробовать выбрать транзисторы с максимальными показателями. У некоторых транзисторов в плане расположения выводов для монтажа батареи может оказаться более удобным переход база – эмиттер. Тогда свободным остается вывод коллектора. И последнее замечание, которое нужно иметь в виду при изготовлении гелиевой батареи из транзисторов. При сборке батареи следует позаботиться об отводе тепла, так как при нагревании кристалл полупроводника, начиная примерно с температуры +25°С, на каждом последующем градусе теряет около 0.5% от начального напряжения.


Транзисторы П203Э с радиаторами охлаждения

В летний солнечный день кристалл кремния может нагреваться до температуры +80°С. При такой высокой температуре каждый элемент, входящий в состав гелиевой батареи, может терять в среднем до 0.085 вольта. Таким образом, коэффициент полезного действия такой самодельной батареи будет заметно снижаться. Именно для того, чтобы минимизировать потери, и нужен теплоотвод.

Обычный транзистор как элемент солнечной фотовольтаики

Кроме того, что обычный транзистор достаточно просто можно превратить в фотоэлектрический преобразователь, при небольшой фантазии его можно использовать и в других полезных схемах, используя фотоэлектрические свойства полупроводника. И область применения этих свойств может быть самая неожиданная. Причем применять модифицированный транзистор можно в двух вариантах – в режиме солнечной батареи и в режиме фототранзистора. В режиме солнечной батареи с двух выводов (база – коллектор или база – эмиттер) без каких-либо модификаций снимается электрический сигнал, вырабатываемый полупроводником при освещении его.

Фототранзистор представляет собой полупроводниковое устройство, реагирующее на световой поток и работающее во всех диапазонах спектра. Этот прибор преобразовывает излучение в электрический сигнал постоянного тока, одновременно усиливая его. Ток коллектора фототранзистора находится в зависимости от мощности излучения. Чем интенсивнее освещается область базы фототранзистора, тем больше становится ток коллектора.

Из обычного транзистора можно сделать не только фотоэлемент, преобразующий световую энергию в энергию электрическую. Обычный транзистор можно легко превратить в фототранзистор и использовать в дальнейшем уже его новые функциональные возможности. Для такой модификации подходят практически любые транзисторы. Например, серии MП. Если повернуть транзистор выводами кверху, то мы увидим, что вывод базы припаян непосредственно к корпусу транзистора, а выводы эмиттера и коллектора изолированы и заведены вовнутрь. Электроды транзистора расположены треугольником. Если повернуть транзистор так, чтобы вершина этого треугольника – база – была повернута к вам, то коллектор окажется слева, а эмиттер – справа.


Корпус транзистора, сточенный со стороны эмиттера

Теперь надфилем следует аккуратно сточить корпус транзистора со стороны эмиттера до получения сквозного отверстия. Фототранзистор готов к работе. Как и фотоэлемент из транзистора, так и самодельный фототранзистор может быть использован в различных схемах, реагирующих на свет. Например, в датчиках освещенности, которые управляют включением и выключением, например, внешнего освещения.


Схема простейшего датчика освещения

И те, и другие транзисторы могут быть использованы в схемах слежения за положением солнца для управления поворотом солнечных батарей. Слабый сигнал с этих транзисторов достаточно просто усиливается, например, составным транзистором Дарлингтона, который, в свою очередь, уже может управлять силовыми реле.

Примеров использования таких самоделок можно привести великое множество. Сфера их применения ограничивается только фантазией и опытом человека, взявшегося за такую работу. Мигающие елочные гирлянды, регуляторы освещенности в комнате, управление освещением дачного участка… Все это можно сделать своими руками.

После того, как мы с вами стали изучать биполярные транзисторы, в личные сообщения стало приходить очень много сообщений именно про них. Самые распространенные вопросы звучат примерно так:

Если транзистор состоит из двух диодов, тогда почему бы просто не использовать два диода и не сделать из них простой транзистор?

Почему электрический ток течет от коллектора к эмиттеру (или наоборот), если транзистор состоит из двух диодов, которые соединены или катодами или анодами? Ведь ток потечет только через диод, включенный в прямом направлении, через другой он ведь течь не может?

А ведь правда ваша…Все логично… Но что-то мне кажется, что где-то есть подвох;-). А вот где эта самая «изюминка» мы и рассмотрим в этой статье…

Строение транзистора

Итак, как вы все помните из предыдущих статей, любой биполярный транзистор, скажем так, состоит из двух диодов. Для

эквивалентная схема выглядит вот так:


А для NPN транзистора


как-то вот так:


А что мудрить? Давайте проведем простой опыт!

У нас имеется всеми нами любимый советский транзистор КТ815Б. Он представляет из себя кремниевый транзистор NPN проводимости:


Собираем простую схемку с ОЭ (О бщим Э миттером), чтобы продемонстрировать его некоторые свойства. Этот опыт я показывал в предыдущих статьях. Но как говорится, повторение — мать учения.

Для демонстрации опыта нам понадобится маломощная лампочка накаливания и парочка Блоков питания . Собираем все это дело вот по такой схеме:


где у нас Bat1 — это блок питания, который у нас включается между базой и эмиттером, а Bat2 — блок питания, который у нас включается между коллектором и эмиттером, и в придачу последовательно цепляется еще лампочка.

Все это выглядит вот так:


Так как лампочка нормально светит при напряжении в 5 В, на Bat 2 я также выставил 5 В.

На Bat 1 плавно повышаем напряжение… и при напряжении в 0,6 В


у нас загорается лампочка. Следовательно, наш транзистор «открылся»


Но раз уж транзистор состоит из диодов, то почему бы нам не взять два диода и не «сделать» из них транзистор? Сказано — сделано. Собираем эквивалентную схему транзистора КТ815Б из двух диодов марки 1N4007.


На рисунке ниже я обозначил выводы диодов, как анод и катод, а также обозначил выводы «транзистора».


Собираем все это дело по такой же схеме:



Так как наш транзистор КТ815Б были кремниевый, и диоды 1N4007 тоже кремниевые, то по идее транзистор из диодов должен открыться при напряжении 0,6-0,7 В. Добавляем напряжение на Bat1 до 0,7 В…


и…

нет, лампочка не горит ((


Если обратите внимание на блок питания Bat1, то можно увидеть, что потребление при 0,7 В составляло уже 0,14 А.

Проще говоря, если бы мы еще чуток поддали напряжение, то спалили бы диод «база-эмиттер», если, конечно, вспомнить вольтамперная характеристику (ВАХ) диода.

Но почему, в чем дело? Почему транзистор КТ815Б, который по сути состоит из таких же кремниевых диодов пропускает через коллектор-эмиттер электрический ток, а два диода, спаянных также, не работают как транзистор? Где же зарыта собака?

А вы знаете, как в транзисторе расположены эти «диоды»? Если учесть, что N полупроводник — это хлеб, а тонкий слой ветчины — это P полупроводник, то в транзисторе они располагаются примерно вот так (на салат не смотрим):

Дело все в том, что база в транзисторе по ширине очень тонкая , как эта ветчина, а коллектор и эмиттер по ширине как эти половинки хлеба (немного преувеличиваю конечно, они чуть меньше), поэтому, транзистор, ведет себя как транзистор:-), то есть открывается и пропускает ток через коллектор-эмиттер.

Благодаря тому, что база очень тонкая по ширине, значит два P-N перехода находятся на очень маленьком расстоянии друг от друга и между ними происходит взаимодействие. Это взаимодействие называется транзисторным эффектом. А какой может быть транзисторный эффект между диодами, у которых расстояние между двумя P-N переходами как до Луны?