Основы программирования ардуино для чайников. Arduino — основы программирования. Этапы настройки Arduino

Arduino представляет собой небольшую плату, которая служит для создания различных устройств, интересных гаджетов и даже для вычислительных платформ. Данную плату называют микроконтроллером, которая распространяется с открытыми исходными кодами и с которой можно использовать множество приложений.

Это наиболее простой и недорогой вариант для начинающих, любителей и профессионалов. Процесс программирования проходит на языке Processing/Wiring, который осваивается быстро и легко и в основе которого лежит язык C++, а благодаря это сделать очень легко. Давайте рассмотрим, что такое Arduino, чем полезна для начинающих, её возможности и особенности.

Arduino является вычислительной платформой или платой, которая будет служить мозгом для ваших новых устройств или гаджетов. На ее основе вы сможете создавать как устройства с простыми схемами, так и сложные трудоемкие проекты, например, роботов или дронов.

Основой конструктора служит плата ввода-вывода (аппаратная часть), а также программная часть. Программное обеспечение конструктора на основе Ардуино представлено интегрированной средой разработки .

Внешне сама среда выглядит так:

Программная часть Ардуино разработана таким образом, чтобы справиться с ней мог даже начинающий пользователь, не имеющий представления о программировании. Дополнительным фактором успеха в использовании микроконтроллера стала возможность работать с макетной платой, когда к контроллеру подключаются необходимые детали (резисторы, диоды, транзисторы и т.п.) без необходимости в пайке.

Большая часть плат Arduino имеют подключение через USB кабель. Подобное соединение позволяет обеспечить плату питанием и загрузить скетчи, т.е. мини-программы. Процесс программирования так же является предельно простым. Вначале пользователь использует редактор кода IDE для создания необходимой программы, затем она загружается при помощи одного клика в Ардуино.

Как купить Arduino?

Плата и многие детали Ардуино производится в Италии , поэтому оригинальные составляющие отличаются достаточно высокой стоимостью. Но существуют отдельные компоненты конструктора или наборы, так называемые кит-наборы, которые выпускается по итальянской аналогии, однако по более доступным ценам.

Купить аналог можно на отечественном рынке или, к примеру, заказать из Китая. Многие знают про сайт АлиЭкспресс, например. Но начинающим свое знакомство с Ардуино лучше свою первую плату заказать в российском интернет-магазине. Со временем можно перейти на покупку плат и деталей в Китае. Срок доставки из этой страны составит от двух недель до месяца, а, например, стоимость большого кит-набора будет не более 60-70 долларов .

Стандартные наборы включают в себя как правило следующие детали:

  • макетная плата;
  • светодиоды;
  • резисторы;
  • батареи 9В;
  • регуляторы напряжения;
  • кнопки;
  • перемычки;
  • матричная клавиатура;
  • платы расширения;
  • конденсаторы.

Нужно ли знать программирование?

Первые шаги по работе с платой Arduino начинаются с программирования платы. Программа, которая уже готова к работе с платой, называют скетчем. Переживать о том, что вы не знаете программирование не нужно. Процесс создания программ довольно несложный, а примеров скетчей очень много в интернете, так как сообщество Ардуинщиков очень большое.

После того как программа составлена она загружается (прошивается) на плату. Ардуино в этом случае имеет неоспоримое преимущество – для программирования в большинстве случаев используется USB-кабель. Сразу после загрузки программа готова выполнять различные команды.

Начинающим работать с Arduino нужно знать две ключевые функции:

  • setup() – используется один раз при включении платы, применяется для инициализации настроек;
  • loop() – используется постоянно, является завершающим этапом настройки setup.

Пример записи функции setup() :

Void setup() { Serial.begin(9600); // Открываем serial соединение pinMode(9, INPUT); // Назначаем 9 пин входом pinMode(13, OUTPUT); // Назначаем 13 пин выходом }

Функция setup() выполняется в самом начале и только 1 раз сразу после включения или перезагрузки вашего устройства.

Функция loop() выполняется после функции setup(). Loop переводится как петля, или цикл. Функция будет выполняться снова и снова. Так микроконтроллер ATmega328 (большинстве плат Arduino содержат именно его), будет выполнять функцию loop около 10 000 раз в секунду.

Также вы будете сталкиваться с дополнительными функциями:

  • pinMode – режим ввода и вывода информации;
  • analogRead – позволяет считывать возникающее аналоговое напряжение на выводе;
  • analogWrite – запись аналогового напряжения в выходной вывод;
  • digitalRead – позволяет считывать значение цифрового вывода;
  • digitalWrite – позволяет задавать значение цифрового вывода на низком или высоком уровне;
  • Serial.print – переводит данные о проекте в удобно читаемый текст.

Помимо этого Ардуино начинающим понравится то, что для плат существует множество библиотек, которые представляют собой коллекции функций, позволяющих управлять платой или дополнительными модулями. К числу наиболее популярных относятся:

  • чтение и запись в хранилище,
  • подключение к интернету,
  • чтение SD карт,
  • управление шаговыми двигателями,
  • отрисовка текста
  • и т. д.

Как настроить Ардуино?

Одним из главных преимуществ конструктора является его безопасность относительно настроек пользователя. Ключевые настройки, потенциально опасные для Arduino, являются защищенными и будут недоступны.

Поэтому даже неопытный программист может смело экспериментировать и менять различные опции, добиваясь нужного результата. Но на всякий случай очень рекомендуем прочитать три важных материала по тому как не испортить плату:

Алгоритм классической настройки программы Arduino выглядит так:

  • установка IDE, которую можно загрузить ниже или или с сайта производителя ;
  • установка программного обеспечения на используемый ПК;
  • запуск файла Arduino;
  • вписывание в окно кода разработанную программу и перенос ее на плату (используется USB кабель);
  • в разделе IDE необходимо выбрать тип конструктора, который будет использоваться. Сделать это можно в окне «инструменты» - «платы»;
  • проверяете код и жмете «Дальше», после чего начнется загрузка в Arduino.
Версия Windows MacOS Linux
1.6.5 Zip
Installer
Installer 32 bits
64 bits
1.8.2 Zip
Installer
Installer 32 bits
64 bits
ARM
1.8.5 Zip
Installer
App
Installer 32 bits
64 bits
ARM

Набиваем руку

Для того чтобы уверенно реализовывать сложные задумки, пользоваться программной средой и Ардуино начинающим необходимо «набить руку». Для этого рекомендуется для начала освоить более легкие задачи и проекты.

Самый простой проект, который вы можете сделать - заставить светодиод, который расположен на плате Ардуино напротив порта, мигал каждую секунду.

Для этого необходимо:

  • подключить конструктор к ПК,
  • открыть программу, в разделе «сервис» ищем блок «последовательный порт»
  • выбираем необходимый интервал
  • после чего необходимо добавить код, который есть в Arduino IDE в разделе "Примеры".

Первыми проектами в Ардуино для начинающих могут стать:

  • мигающий светодиод;
  • подключение и управление датчиком температуры;
  • подключение и управление датчиком движения;
  • подключение фоторезистора;
  • управление сервоприводом.

Первый проект

Вот мы и дошли до нашего первого проекта. Давайте соединим Ардуино, светодиод и кнопку. Этот проект отлично подойдет начинающим.

Схема у нас будет такая:

Светодиод загорится после нажатия на кнопку, а после следующего нажатия погаснет. Сам скетч или программа для Ардуино будет такой:

// пины подключенных устройств int switchPin = 8; int ledPin = 11; // переменные для хранения состояния кнопки и светодиода boolean lastButton = LOW; boolean currentButton = LOW; boolean ledOn = false; void setup() { pinMode(switchPin, INPUT); pinMode(ledPin, OUTPUT); } // функция для подавления дребезга boolean debounse(boolean last) { boolean current = digitalRead(switchPin); if(last != current) { delay(5); current = digitalRead(switchPin); } return current; } void loop() { currentButton = debounse(lastButton); if(lastButton == LOW && currentButton == HIGH) { ledOn = !ledOn; } lastButton = currentButton; digitalWrite(ledPin, ledOn); }

Вы могли заметить функцию debounse, о которой мы еще не писали. Она нужна для .

После того, как Вы разберетесь с начальными навыками работы с платой можно приступать к реализации более сложных и многогранных задач. Конструктор позволяет создать RC-машинку, управляемый вертолет, создать свой телефон, создать систему и т.д.

Для ускорения освоения работы с платой Ардуино рекомендуем вам начать делать устройства из нашей рубрики , где по шагам описаны процессы создания самых интересных устройств и гаджетов.

Мы рассмотрели ранее. Сегодня же мы проделаем вместе с вами первые шаги с Arduino – начнем с установки программного обеспечения и закончим написанием и запуском первой программы.

Мы полагаем, что саму плату Arduino вы уже себе приобрели:). Если кто-то проспал предыдущий пост, то напомним, что Arduino можно приобрести (сама плата Arduino UNO) или (стартовый комплект Arduino). Имея в руках Arduino, мы можем перейти к изучению.

Программное обеспечение «Arduino IDE»

Для начала нам нужно скачать с сайта программное обеспечение «Arduino IDE» на русском языке. С помощью IDE мы будем программировать микроконтроллер в нашей Arduino.

В случае с Windows достаточно скачать нужный архив и распаковать его в папку (желательно в корне диска «С»). После распаковки «Arduino IDE» мы уже можем подключить плату Arduino к персональному компьютеру.

Подключение Arduino к компьютеру и установка драйверов

Arduino подключаем к компьютеру с помощью (такой же, как для принтера). При подключении операционная система попытается сама установить соответствующие драйверы, но скорее всего ей это не удастся и нужно будет установить эти драйвера вручную.

Ручная установка драйверов выглядит примерно так:

Первый запуск Arduino IDE

Запустите «Arduino IDE», кликнув два раза на файл arduino.exe. Вы увидите такое окно:

Именно в этом окне мы и будем создавать и отправлять в микроконтроллер все программы. Однако, прежде чем мы напишем первую программу, мы должны установить еще две вещи.

В меню «Инструменты — Плата» выберите версию Arduino, которая у вас уже есть (например, Arduino UNO):

а в «Инструменты — Порт» выберите порт, к которому подключена плата Arduino (это тот порт, который нужно было запомнить во время установки драйверов).

На этом все, теперь мы можем уже перейти к программированию

Первая программа Arduino

В самой «Arduino IDE» есть масса примеров программ, работа которых хорошо описана с помощью комментариев. Для начала выберем один из таких примеров.

Из меню «Файл – Примеры – Basics» выберите «Blink»

Это очень простая программа, отвечающая за мигание , расположенного на плате Arduino, который подключен к выводу 13:

Давайте рассмотрим по порядку всю программу:

// Все что стоит после (//…) или между (/* … */) являются комментариями в коде /* Функция setup () выполняется только один раз, в начале программы. Она чаще всего используется для загрузки различных параметров. */ void setup() { pinMode(13, OUTPUT); // Установить вывод 13 в качестве выхода } //Функция loop () — это цикл, который выполняется все время пока включено питание. void loop() { digitalWrite(13, HIGH); // подать высокий уровень (+5В) на вывод 13 delay(1000); // ждать секунду (1000 мсек = 1 сек) digitalWrite(13, LOW); // подать низкий уровень (0В) на вывод 13 delay(1000); // ждать секунду // После достижения конца цикла loop () все начнется с самого начала }

Для загрузки программы в Arduino достаточно нажать на кнопку со стрелкой.

После загрузки программы, в нижней части окна появится надпись: «Загрузка завершена, после чего светодиод начнет мигать с интервалом в 1 сек.

В самом низу окна «Arduino IDE» будут отображаться различные сообщения компилятора. В данном случае отображается информация о размере нашей программы (скетч) и максимально доступной памяти микроконтроллера. В случае появления каких-то ошибок они будут отображаться в этом месте.

Самая простая схема на Arduino

Нам удалось заставить моргать светодиод, расположенный на плате Arduino. Теперь построим максимально простую аналогичную схему: заставим мигать светодиод, подключенный через резистор (около 220 Ом) к одному из выводов Arduino.

Наша программа «Blink» из примера управляет сигналом на контакте 13, к которому подключен светодиод на плате. Однако ничто не мешает нам подключить к этому выводу (13) и «земле» (GND) любой другой внешний светодиод. Имея мы можем быстро собрать такую схему:

Конечно, контакт 13, здесь только как пример. Мы так же можем в программе изменить номер контакта (например, на 6) и к этому контакту подключить дополнительный светодиод.

Чтобы нам не менять номер контакта в нескольких местах (в нашем примере программы он встречается 3 раза), мы можем его присвоить переменной, к которой мы будем ссылаться:

Int led = 13; // назначаем переменной led номер контакта 13 void setup() { pinMode(led, OUTPUT); // подставить переменную led вместо номера контакта 13 } void loop() { digitalWrite(led, HIGH); // подставить переменную led вместо номера контакта 13 delay(1000); digitalWrite(led, LOW); // подставить переменную led вместо номера контакта 13 delay(1000); }

В коротких программах это не имеет большого значения, но в более сложных проектах, в которых мы используем десяток входов и выходов и неоднократно на них ссылаемся, использование переменных очень облегчает работу.

Все самое интересное в микроконтроллерах обретает смысл только тогда, когда кроме выходов мы начнем использовать и входы. В следующем примере подключим к Arduino, с помощью которого мы будем регулировать частоту мигания светодиода.

Потенциометр здесь использован в роли . То есть, напряжение на его крайних выводах (+5В и «земля») делится на две части, из которых одна часть подается (центральный вывод потенциометра) на вход A0 (аналоговый вход Arduino). Вращая потенциометр, мы меняем величину напряжения, которое подается на аналоговый вход.

Напряжение, поступающее на аналоговый вход, определяется Arduino как число в диапазоне от 0 (0В) до 1023 (для 5В). Таким образом, если мы, например, подадим на аналоговый вход 2,5В, это будет истолкована Arduino как 512. Надеемся, что до этого момента все ясно

Все остальное объясним уже в самой программе:

Int led = 13; // это уже для нас понятно int potPin = 0; // назначаем переменной номер аналогового входа int pot; // переменная, в которой мы будем сохранять значение потенциометра int bk; // переменная, в которой мы будем сохранять значение скорости мигания светодиода void setup() { pinMode(led, OUTPUT); } void loop() { pot = analogRead(potPin); // считываем A0 и сохраняем в переменной pot /* Использованная ниже функция map() служит для преобразования одного диапазона чисел в другой. В нашем случае, перерасчет числа из диапазона от 0 до 1023 (значение, полученное с A0) на диапазон чисел от 50 до 3000 (интервал между включением и выключением светодиода). Пересчитанный диапазон чисел будет сохранен в переменной «bk». */ bk = map(pot, 0, 1023, 50, 3000); digitalWrite(led, HIGH); delay(bk); // пауза зависит от положения потенциометра digitalWrite(led, LOW); delay(bk); // пауза зависит от положения потенциометра }

Код начинает потихоньку усложнять, но мы надеемся, что все понятно. Введя в схему небольшую модификацию, мы можем добиться изменения частоты мигания светодиода, например, от интенсивности света в комнате Для этого вместо потенциометра необходимо использовать делитель напряжения, сделанный из фоторезистора и резистора.

Проще говоря, это резистор, сопротивление которого изменяется в зависимости от интенсивности падающего на него света.

Как видно на рисунке выше, фоторезистор подключен между +5В и контактом A0, а затем A0 через резистор на массу. Это точно такое же подключение, как и в случае с потенциометром. Здесь просто вместо двух крайних выводов потенциометра у нас ножка от фоторезистора и резистор, а вместо среднего вывода потенциометра, мы соединили друг с другом оставшиеся свободные выводы фоторезистора и резистора.

Программу в принципе менять не нужно, потому что наша схема практически не изменился. После монтажа достаточно подать питание и можно наслаждаться светодиодом, скорость мигания которого зависит от степени освещенности фоторезистора.

На этом закончим данную статью, в который мы попытались ввести вас в основы программирования Arduino. В последующих статьях мы будем уже рассматривать конкретные проекты.

Доброго времени суток, Хабр. Запускаю цикл статей, которые помогут Вам в знакомстве с Arduino. Но это не значит, что, если Вы не новичок в этом деле – Вы не найдёте ничего для себя интересного.

Введение

Было бы не плохо начать со знакомства с Arduino. Arduino – аппаратно-программные средства для построения систем автоматики и робототехники. Главным достоинством есть то, что платформа ориентирована на непрофессиональных пользователей. То есть любой может создать своего робота вне зависимости от знаний программирования и собственных навыков.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте . Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:


main(){ void setup(){ } void loop(){ } }

Важно заметить, что обязательную в С++ функцию main() процессор Arduino создаёт сам. И результатом того, что видит программист есть:


void setup(){ } void loop(){ }

Давайте разберёмся с двумя обязательными функциями. Функция setup() вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция loop() - циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

Первая программа

Для того, чтоб лучше понять принцип работы платформы, давайте напишем первую программу. Эту простейшую программу (Blink) мы выполним в двух вариантах. Разница между ними только в сборке.


int Led = 13; // объявляем переменную Led на 13 пин (выход) void setup(){ pinMode(Led, OUTPUT); // определяем переменную } void loop(){ digitalWrite(Led, HIGH); // подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду digitalWrite(Led, LOW); // не подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду }

Принцип работы этой программы достаточно простой: светодиод загорается на 1 секунду и тухнет на 1 секунду. Для первого варианта нам не понадобиться собирать макет. Так как в платформе Arduino к 13 пину подключён встроенный светодиод.

Прошивка Arduino

Для того, чтоб залить скетч на Arduino нам необходимо сначала просто сохранить его. Далее, во избежание проблем при загрузке, необходимо проверить настройки программатора. Для этого на верхней панели выбираем вкладку «Инструменты». В разделе «Плата», выберете Вашу плату. Это может быть Arduino Uno, Arduino Nano, Arduino Mega, Arduino Leonardo или другие. Также в разделе «Порт» необходимо выбрать Ваш порт подключения (тот порт, к которому вы подключили Вашу платформу). После этих действий, можете загружать скетч. Для этого нажмите на стрелочку или во вкладке «Скетч» выберете «Загрузка» (также можно воспользоваться сочетанием клавиш “Ctrl + U”). Прошивка платы завершена успешно.

Прототипирование/макетирование

Для сборки макета нам необходимы следующие элементы: светодиод, резистор, проводки (перемычки), макетная плата(Breadboard). Для того, чтоб ничего не спалить, и для того, чтоб всё успешно работало, надо разобраться со светодиодом. У него есть две «лапки». Короткая – минус, длинная – плюс. На короткую мы будем подключать «землю» (GND) и резистор (для того, чтоб уменьшить силу тока, которая поступает на светодиод, чтоб не спалить его), а на длинную мы будем подавать питание (подключим к 13 пину). После подключения, загрузите на плату скетч, если вы ранее этого не сделали. Код остаётся тот же самый.


На этом у нас конец первой части. Спасибо за внимание.

» представляет учебный курс «Arduino для начинающих». Серия представлена 10 уроками, а также дополнительным материалом. Уроки включают текстовые инструкции, фотографии и обучающие видео. В каждом уроке вы найдете список необходимых компонентов, листинг программы и схему подключения. Изучив эти 10 базовых уроков, вы сможете приступить к более интересным моделям и сборке роботов на основе Arduino. Курс ориентирован на новичков, чтобы к нему приступить, не нужны никакие дополнительные сведения из электротехники или робототехники.

Краткие сведения об Arduino

Что такое Arduino?

Arduino (Ардуино) — аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере. Arduino как и относится к одноплатным компьютерам.

Как связаны Arduino и роботы?

Ответ очень прост — Arduino часто используется как мозг робота.

Преимущество плат Arduino перед аналогичными платформами — относительно невысокая цена и практически массовое распространение среди любителей и профессионалов робототехники и электротехники. Занявшись Arduino, вы найдете поддержку на любом языке и единомышленников, которые ответят на вопросы и с которым можно обсудить ваши разработки.

Урок 1. Мигающий светодиод на Arduino

На первом уроке вы научитесь подключать светодиод к Arduino и управлять его мигать. Это самая простая и базовая модель.

Светодиод — полупроводниковый прибор, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Урок 2. Подключение кнопки на Arduino

На этом уроке вы научитесь подключать кнопку и светодиод к Arduino.

При нажатой кнопке светодиод будет гореть, при отжатой – не гореть. Это также базовая модель.

Урок 3. Подключение потенциометра на Arduino

В этом уроке вы научитесь подключать потенциометр к Arduino.

Потенциометр — это резистор с регулируемым сопротивлением. Потенциометры используются как регуляторы различных параметров – громкости звука, мощности, напряжения и т.п. Это также одна из базовых схем. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода.

Урок 4. Управление сервоприводом на Arduino

На этом уроке вы научитесь подключать сервопривод к Arduino.

Сервопривод – это мотор, положением вала которого можно управлять, задавая угол поворота.

Сервоприводы используются для моделирования различных механических движений роботов.

Урок 5. Трехцветный светодиод на Arduino

На этом уроке вы научитесь подключать трехцветный светодиод к Arduino.

Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. В уроке рассмотрены оба варианта.

Урок 6. Пьезоэлемент на Arduino

На этом уроке вы научитесь подключать пьезоэлемент к Arduino.

Пьезоэлемент — электромеханический преобразователь, который переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук.

В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе.

Урок 7. Фоторезистор на Arduino

На этом уроке нашего курса вы научитесь подключать фоторезистор к Arduino.

Фоторезистор — резистор, сопротивление которого зависит от яркости света, падающего на него.

В нашей модели светодиод горит только если яркость света над фоторезистором меньше определенной, эту яркость можно регулировать в программе.

Урок 8. Датчик движения (PIR) на Arduino. Автоматическая отправка E-mail

На этом уроке нашего курса вы научитесь подключать датчик движения (PIR) к Arduino, а также организовывать автоматическую отправку e-mail.

Датчик движения (PIR) — инфракрасный датчик для обнаружения движения или присутствия людей или животных.

В нашей модели при получении с PIR-датчика сигнала о движении человека Arduino посылает компьютеру команду отправить E-mail и отправка письма происходит автоматически.

Урок 9. Подключение датчика температуры и влажности DHT11 или DHT22

На этом уроке нашего вы научитесь подключать датчик температуры и влажности DHT11 или DHT22 к Arduino, а также познакомитесь с различиями в их характеристиках.

Датчик температуры и влажности — это составной цифровой датчик, состоящий из емкостного датчика влажности и термистора для измерения температуры.

В нашей модели Arduino считывает показания датчика и осуществляется вывод показаний на экран компьютера.

Урок 10. Подключение матричной клавиатуры

На этом уроке нашего курса вы научитесь подключать матричную клавиатуру к плате Arduino, а также познакомитесь с различными интересными схемами.

Матричная клавиатура придумана, чтобы упростить подключение большого числа кнопок. Такие устройства встречаются везде - в клавиатурах компьютеров, калькуляторах и так далее.

Урок 11. Подключение модуля часов реального времени DS3231

На последнем уроке нашего курса вы научитесь подключать модуль часов реального времени из семейства
DS к плате Arduino, а также познакомитесь с различными интересными схемами.

Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

Приложение. Готовые каркасы и роботы Arduino


Начинать изучать Arduino можно не только с самой платы, но и с покупки готового полноценного робота на базе этой платы — робота-паука, робота-машинки, робота-черепахи и т.п. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и робототехнике. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Еще один вариант — покупка каркаса или корпуса робота: платформы на колесиках или гусенице, гуманоида, паука и т.п. В этом случае начинку робота придется делать самостоятельно.

Приложение. Мобильный справочник


– помощник для разработчиков алгоритмов под платформу Arduino, цель которого дать конечному пользователю возможность иметь при себе мобильный набор команд (справочник).

Приложение состоит из 3-х основных разделов:

  • Операторы;
  • Данные;
  • Функции.

Где купить Arduino


Наборы Arduino

Курс будет пополняться дополнительными уроками. Подпишитесь на нас

В принципе она универсальна и на ней можно реализовать огромное количество проектов.

Приступим!

Первым делом нам нужно скачать и установить среду разработки со встроенными драйверами, это можно сделать с официального сайта Arduino.cc или по ссылке . После чего можно подключить плату к компьютеру через usb провод которой чаще всего идет в комплекте, либо через любой подходящий. Ардуино использует USB B, в нем нет ничего особенного. Если все сделано правильно и плата исправна windows найдет новое устройство и самостоятельно установит его после чего на плате загорится светодиод помеченный как ON или PWR.

Теперь можно открывать Arduino ide и перед нами сразу появится окно редактора.1) Окно редактора, то место куда мы будем писать код.

2)Окно состояния, здесь будут отображается ошибки и другая информация о нашей программе и процессе заливки прошивки в плату.

3) Панель инструментов и т.д.

Кстати ide поддерживает русский язык, что должно помочь в ее освоении. Теперь проверим все ли хорошо и перейдем на вкладку инструменты -> Платы. Там сразу должна быть выбрана наша плата:

Если это не так-то выберем ее вручную.

Теперь попробует прошить нашу плату тестовой прошивкой, для этого идем Файл -> примеры -> Basics -> Blink. Сразу в окне редактора появились комментарии и сам текст программы. Комментарии всегда расположены между тегами */ или с // и их можно без проблем удалить, они не как не повлияют на работу программы и перестанут мешать сконцентрироваться на главном.

После чего останется такой код:

void setup() { pinMode(13, OUTPUT); } void loop() { digitalWrite(13, HIGH); delay(1000); digitalWrite(13, LOW); delay(1000); }

void setup () {

pinMode (13 , OUTPUT ) ;

void loop () {

digitalWrite (13 , HIGH ) ;

delay (1000 ) ;

digitalWrite (13 , LOW ) ;

delay (1000 ) ;

Перед тем как я расскажу что он делает давайте прошьем его в ардуино и посмотрим что он будет делать. Для этого нажимаем Скетч -> Загрузка и через некоторое время вы увидите сообщение Загрузка завершена а на плате начнет мигать светодиод!

Если вы получили ошибку: Проблема загрузки на плату то не отчаивайтесь это легко исправить. Для этого идем Инструменты -> Порт -> и там выбераем порт рядом с которым в скобочках написано Arduino/Genuino Uno и пробуем прошить контроллер заново. Если что-то не получается пишите в комментариях, разберемся.

Давайте теперь разберемся, чего это мы такое залили на ардуино.

void setup() { }

Эту часть кода среда разработки сгенерировала нам самостоятельно, здесь между фигурных скобок происходит инициализация входов, выходом платы, в нашем случае там написано pinMode(13, OUTPUT); Это значит что 13 пин платы к которому подключен светодиод (о котором мы говорили в прошлой статье) мы назначаем на выход.

Эту часть кода так же сгенерирована автоматически, между фигурных скобок пишется тот код, который будет выполнять непосредственно наша программа бесконечно. То есть это бесконечный цикл. В нем написано digitalWrite(13, HIGH); , что по Русски значит подать 5 вольт на 13 пин, это действия зажигает светодиод.

delay(1000); Эта задержка, она останавливает выполнение следующей инструкции на 1000 мили секунд (1 секунду).

digitalWrite(13, LOW); подтягивает 13 пин к земле, по русски убирает 5 вольт что приводит к потуханию светодиода.

И так как void loop() это бесконечный цикл то лампочка на Arduino будет мигать бесконечно!

Развлекаться с голой платой Arduino не так весело как хотелось бы из-за того что на плате установлен всего 1 светодиод и нет ни одной кнопки но это не значит что поморгать светодиодом это все что мы можем! Давайте заставим его загораться и тухнуть по команде с компьютера!

Для этого нам потребуется написать прошивку для ардуино и воспользоваться монитором порта для теста, а потом мы напишем программу на C# но это будет в следующей статье.