Понятие сложной функции многих переменных. Функции нескольких переменных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

1.ОСНОВНЫЕ ПОНЯТИЯ

Пусть: z - переменная величина с областью изменения R; R- числовая прямая; D - область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Другими словами:

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

http://pandia.ru/text/78/481/images/image002_44.jpg" width="215" height="32 src=">

П р и м е р 1.

http://pandia.ru/text/78/481/images/image005_28.jpg" width="157" height="29 src=">

http://pandia.ru/text/78/481/images/image007_16.jpg" align="left" width="110" height="89">

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

http://pandia.ru/text/78/481/images/image009_11.jpg" width="86" height="32 src=">

http://pandia.ru/text/78/481/images/image011_10.jpg" width="147" height="30 src=">

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

ПЕРЕМЕННЫХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

http://pandia.ru/text/78/481/images/image013_10.jpg" width="106" height="23 src=">

http://pandia.ru/text/78/481/images/image015_6.jpg" width="159" height="23 src=">

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

http://pandia.ru/text/78/481/images/image017_16.gif" width="88" height="29"> и найти .

Решение. Воспользуемся методом сечений.

http://pandia.ru/text/78/481/images/image020_11.gif" width="184 height=60" height="60">– в плоскости – парабола.

– в плоскости –парабола.

http://pandia.ru/text/78/481/images/image025_5.gif" width="43" height="24 src=">– окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

http://pandia.ru/text/78/481/images/image030_5.gif" width="153 height=24" height="24"> называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется - ε - окрестностью точки А.

3адание

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х -> х0, у -> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) - А| < ε , как только

|x - x0| < δ и |у – у0| < δ.

Этот факт обозначается так:

http://pandia.ru/text/78/481/images/image042_2.jpg" width="160" height="39 src=">

http://pandia.ru/text/78/481/images/image044_2.gif" width="20" height="25 src=">. Для функции двух переменных стремление к предельной точке на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

П р и м е р 1. Найти .

Решение. Пусть стремление к предельной точке http://pandia.ru/text/78/481/images/image048_2.gif" width="55 height=24" height="24">. Тогда

http://pandia.ru/text/78/481/images/image050_2.gif" width="72 height=48" height="48"> зависит от .

П р и м е р 2. Найти .

Решение. По любой прямой предел один и тот же:

http://pandia.ru/text/78/481/images/image054_2.gif" width="57" height="29">. Тогда

http://pandia.ru/text/78/481/images/image056_1.gif" width="64" height="21">, (остальное – по аналогии).

О п р е д е л е н и е. Число называют пределом функции при и , если для такое, что из неравенств и следует неравенство . Этот факт коротко записывают так:

http://pandia.ru/text/78/481/images/image065_1.gif" width="124" height="48">.gif" width="236" height="48 src=">;

http://pandia.ru/text/78/481/images/image069_1.gif" width="247" height="60 src=">,

где предельная точка http://pandia.ru/text/78/481/images/image070_1.gif" width="85" height="24 src="> с областью определения и пусть – предельная точка множества , т. е точка, к которой стремятся аргументы х и у .

О п р е д е л е н и е 1. Говорят, что функция непрерывна в точке, если:

1) ;

2) , т. е. .

Сформулируем определение непрерывности в эквивалентной форме..gif" width="89" height="25 src=">.gif" width="85 height=24" height="24">непрерывна в точке, если выполняется равенство

http://pandia.ru/text/78/481/images/image079_0.gif" width="16" height="20 src=">.gif" width="15 height=16" height="16"> придадим произвольное приращение . Функция получит частное приращение по х

http://pandia.ru/text/78/481/images/image084_0.gif" width="35" height="25 src="> является функцией одной переменной . Аналогично,

http://pandia.ru/text/78/481/images/image058_1.gif" width="85" height="24"> называется непрерывной в точке по переменной (по переменной ), если

http://pandia.ru/text/78/481/images/image087.gif" width="101" height="36">).

Теорема. Если функция определена в некоторой окрестности точки и непрерывна в этой точке, то она непрерывна в этой точке по каждой из переменных.

Обратное утверждение неверно.

П р и м е р. Докажем, что функция

непрерывна в точке http://pandia.ru/text/78/481/images/image081_0.gif" width="15 height=16" height="16">.gif" width="57" height="24"> в точке , соответствующее приращению http://pandia.ru/text/78/481/images/image081_0.gif" width="15" height="16 src=">:

http://pandia.ru/text/78/481/images/image092_0.gif" width="99" height="36 src=">, а это означает, что непрерывна в точке по переменной .

Аналогично можно доказать непрерывность в точке по переменной .

Покажем, что предел не существует. Пусть точка стремиться к точке по прямой , проходящей через точку . Тогда получим

.

Таким образом, приближаясь к точке http://pandia.ru/text/78/481/images/image051_1.gif" width="15" height="20">, получаем разные предельные значения. Отсюда следует, что предел данной функции в точке не существует, а значит, функция http://pandia.ru/text/78/481/images/image097.jpg" width="351" height="48 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image099.jpg" width="389" height="55 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image101_0.gif" width="60" height="28 src=">.

Решение . Имеем:

,

П р и м е р 2.

http://pandia.ru/text/78/481/images/image105.jpg" width="411" height="51 src=">

П р и м е р 3. Найти частные производные функции

http://pandia.ru/text/78/481/images/image107.jpg" width="477" height="58 src=">

Пример 4. Найти частные производные функции

http://pandia.ru/text/78/481/images/image109.jpg" width="321" height="54 src=">

5.2. Дифференциалы первого порядка функции двух переменных

Частные дифференциалы функции z = f(x, у) по переменным х и у определяются, соответственно по формулам х(x;y) и f"у{x;y) сущест­вуют в точке (х0;у0) и в некоторой ее окрестности и не­прерывны в этой точке, то по аналогии с функцией одной переменной устанавливается формула для полного при­ращения функции двух переменных

http://pandia.ru/text/78/481/images/image112_0.gif" width="364" height="57 src=">

где http://pandia.ru/text/78/481/images/image114_0.gif" width="154" height="39 src=">

Другими словами, функция z = f(x, y) дифференцируема в точке, (х, у), если ее приращение Δz эквивалентно функции:

Выражение

http://pandia.ru/text/78/481/images/image116.jpg" width="192" height="57 src=">

С учетом того, что Δх = dx, Δy=dy:

http://pandia.ru/text/78/481/images/image090_0.gif" width="57" height="24 src="> дифференцируема в точке , то она непрерывна в этой точке.

Обратное утверждение неверно, т. е. непрерывность является только необходимым, но не достаточным условием дифференцируемости функции. Покажем это.

П р и м е р. Найдем частные производные функции http://pandia.ru/text/78/481/images/image120.gif" width="253" height="57 src=">.

Полученные формулы теряют смысл в точке http://pandia.ru/text/78/481/images/image121.gif" width="147" height="33 src="> не имеет частных производных в точке . В самом деле, . Эта функция одной переменной , как известно, не имеет производной в точке http://pandia.ru/text/78/481/images/image124.gif" width="25" height="48"> в точке не существует. Аналогично, не существует частная производная . При этом функция , очевидно, непрерывна в точке .

Итак, мы показали, что непрерывная функция может не иметь частных производных. Осталось установить связь между дифференцируемостью и существованием частных производных.

5.4. Связь между дифференцируемостью и существованием частных производных.

Теорема 1. Необходимое условие дифференцируемости.

Если функция z = f(x, y) дифференцируема в точке M(x, y), то она имеет в точке M частные производные по каждой переменной и .

Обратная теорема не верна, т. е. существование частных производных является необходимым, но не является достаточным условием дифференцируемости функции.

Теорема 2. Достаточное условие дифференцируемости. Если функция z = f(x, y) имеет непрерывные частные производные и в точке , то она дифференцируема в точке (и ее полный дифференциал в этой точке выражается формулой http://pandia.ru/text/78/481/images/image130.gif" width="101 height=29" height="29">

Пример 2. Вычислить 3,021,97

3адание

Вычислить приближенно при помощи дифференциа­ла:

5.6. Правила дифференцирования сложных и неявных функций. Полная производная.

Случай 1.

z=f(u, v); u=φ(x, y), v=ψ(x, y)

Функции u и v непрерывные функции от аргументов х, у.

Таким образом, функция z есть сложная функция от аргументов х и у: z=f(φ(x, y),ψ(x, y))

Предположим, что функции f(u, v), φ(x, y), ψ(x, y) имеют непрерывные частные производные по всем своим аргументам.

Поставим задачу вычислить http://pandia.ru/text/78/481/images/image140.gif" width="23" height="44 src=">.

Дадим аргументу x приращение Δx, фиксируя значение аргумента y. Тогда функции двух переменных u= φ(x, y) и

v= φ(x, y) получат частные приращения Δxu и Δxv. Следовательно, z=f(u, v) получит полное приращение, определяемое в п.5.2 (дифференциалы первого порядка функции двух переменных):

http://pandia.ru/text/78/481/images/image142.gif" width="293" height="43 src=">

Если xu→ 0, то Δxu → 0 и Δxv → 0 (в силу непрерывности функций u и v). Переходя к пределу при Δx→ 0, получим:

http://pandia.ru/text/78/481/images/image144.gif" width="147" height="44 src="> (*)

П р и м е р.

Z=ln(u2+v), u=ex+y ² , v=x2 + y;

http://pandia.ru/text/78/481/images/image146.gif" width="81" height="41 src=">.

http://pandia.ru/text/78/481/images/image148.gif" width="97" height="44 src=">.gif" width="45" height="44 src=">.

Тогда по формуле (*) получим:

http://pandia.ru/text/78/481/images/image152.gif" width="219" height="44 src=">.

Для получения окончательного результата в две последние формулы вместо u и v необходимо подставить еx+y² и x2+y, соответственно.

Случай 2.

Функции х и у непрерывные функции.

Таким образом, функция z=f(x, у) зависит через посредство х и у от одной независимой переменной t, т. е. допустим, что х и у суть не незави­симые переменные, но функции независимой переменной t, и определим производную http://pandia.ru/text/78/481/images/image155.gif" width="235" height="44 src=">

Разделим обе части этого равенства на Δt:

http://pandia.ru/text/78/481/images/image157.gif" width="145" height="44 src="> (**)

Случай 3.

Предположим, теперь, что роль независимой переменной t играет переменная х, т. е. что функция z=f(x, у) зависит от неза­висимой переменной х как непосредственно, так и через посредство переменной у, которая является непрерывной функцией от х.

Принимая во внима­ние, что http://pandia.ru/text/78/481/images/image160.gif" width="120" height="44 src="> (***)

Производная x(x, у)=http://pandia.ru/text/78/481/images/image162.gif" width="27" height="27 src=">, y=sin x.

Находим частные производные

http://pandia.ru/text/78/481/images/image164.gif" width="72" height="48 src=">.gif" width="383" height="48 src=">

Доказанное правило дифференцирования сложных функций при­меняется для нахождения производной, неявной функции.

Производная от функции, заданной неявно.

Положим, что уравнение

определяет у как неявную функцию от х, имеющую производную

у’ = φ’(x)_

Подставляя у = φ (х) в уравнение F(x, y) = 0, мы должны были бы получить тождество 0 = 0, так как у = φ(х) есть решение этого уравнения. Мы видим, таким образом, что постоянную нуль можно рассматривать как сложную функцию от х, которая зависит от х как непосредственно, так и через посредство у =φ(х).

Производная по х от этой постоянной должна равняться нулю; применяя правило (***), получим

F’x(x, y) + F’y(x, y)·y’ = 0,

http://pandia.ru/text/78/481/images/image168.gif" width="64" height="41 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image171.gif" width="20" height="24"> справедливо как для одной, так и для другой функции.

5.7. Полный дифференциал первого порядка. Инвариантность формы дифференциала первого порядка

Подставим выражения для http://pandia.ru/text/78/481/images/image173.gif" width="23" height="41 src="> определенные равенствами (*) (см. случай 1 в п.5.6 «Правила дифференцирования сложных и неявных функций. Полная производная») в формулу полного дифференциала

Gif" width="33" height="19 src=">.gif" width="33" height="19 src=">.gif" width="140" height="44 src=">

Тогда формула полного дифференциала первого порядка функции двух переменных имеет вид

http://pandia.ru/text/78/481/images/image180.gif" width="139" height="41 src=">

Сравнивая последнее равенство с формулой для первого дифференциала функции двух независимых переменных, можем сказать, что выражение полного дифференциала первого порядка функции нескольких переменных имеет тот же вид, которое он имел бы, если бы u и v были бы независимыми переменными.

Иначе говоря, форма первого дифференциала инвариантна, то есть не зависит от того, являются ли переменные u и v независимыми переменными, или зависят от других переменных.

П р и м е р.

Найти полный дифференциал первого порядка сложной функции

z=u2v3, u=x2·sin y , v=x3·ey.

Р е ш е н и е. По формуле для полного дифференциала первого порядка имеем

dz = 2uv3·du+3u2v2·dv =

2uv3·(2x·siny ·dx+x2·cosy ·dy)+3u2v2·(3x2·ey·dx+x3·ey·dy).

Это выражение можно переписать так

dz=(2uv3·2x·siny+3u2v2·3x2·ey)·dx+(2uv3x2·cosy+3u2v2x3·ey)·dy=

Свойство инвариантности дифференциала позволяет распространить правило нахождения дифференциала суммы, произведения и частного на случай функции от нескольких переменных:

http://pandia.ru/text/78/481/images/image183.jpg" width="409" height="46 src=">

http://pandia.ru/text/78/481/images/image185.gif" width="60" height="41 src=">. Эта

функция будет однородной третьей степени при всех вещественных х, у и t. Такой же функцией будет и любой однородный многочлен от х и у третьей степени, т. е. такой многочлен, в каждом члене которого сумма показателей хну равна трем:

http://pandia.ru/text/78/481/images/image187.jpg" width="229" height="47 src=">

суть однородные функции степеней соответственно 1, 0 и (- 1)..jpg" width="36" height="15">. Действительно,

http://pandia.ru/text/78/481/images/image191.jpg" width="363" height="29 src=">

Полагая t=1, находим

http://pandia.ru/text/78/481/images/image193.jpg" width="95" height="22 src=">

Частные производные http://pandia.ru/text/78/481/images/image195.jpg" width="77" height="30 src=">), вообще го-

воря, являются функциями переменных х и у. Поэтому от них можно снова находить частные производные. Следовательно, частных про­изводных второго порядка от функции двух переменных четыре, так как каждую из функций и можно дифференцировать как по х, так и по у.

Вторые частные производные обозначают так:

есть производная n - го порядка; здесь функция z сначала р раз дифференцировалась по х, а потом n - р раз по у.

Для функции любого числа переменных частные производите высших порядков определяются аналогично.

П р и м е р 1. Вычислить частные производные второго порядка от функции

http://pandia.ru/text/78/481/images/image209.jpg" width="600" height="87 src=">

П р и м е р 2. Вычислить и http://pandia.ru/text/78/481/images/image212.jpg" width="520" height="97 src=">

П р и м е р 3. Вычислить , если

http://pandia.ru/text/78/481/images/image215.jpg" width="129" height="36 src=">

x, f"y, f"xy и f"yx определены и непрерывны в точке М(х, у) и в некоторой ее окрестности, то в этой точке

http://pandia.ru/text/78/481/images/image218.jpg" width="50 height=28" height="28">.jpg" width="523" height="128 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image222.jpg" width="130" height="30 src=">

Решение.

Смешанные производные равны.

5.10. Дифференциалы высших порядков функции n переменных .

Полный дифференциал du функции от нескольких переменных есть в свою очередь функ­ция тех же переменных, и мы можем определить полный дифферен­циал этой последней функции. Таким образом, мы получим дифферен­циал второго порядка d2u первоначальной функции и, который также будет функцией тех же переменных, а его полный дифференциал приведет нас к дифференциалу третьего порядка d3u первоначальной функции и т. д.

Рассмотрим подробнее случай функции u=f(x, у) двух пере­менных х и у и будем предполагать, что переменные х и у суть независимые переменные. По определению

http://pandia.ru/text/78/481/images/image230.jpg" width="463" height="186 src=">

Вычисляя точно так же d3u, мы получим

http://pandia.ru/text/78/481/images/image232.jpg" width="347" height="61 src="> (*)-

причем формулу эту надо понимать так: сумму, стоящую в круглых скобках, надо возвести в степень n, применяя Формулу бинома Ньютона, после чего показатели степеней у и http://pandia.ru/text/78/481/images/image235.jpg" width="22" height="21 src=">.gif" width="22" height="27"> с направляющими косинусами cos α, cos β (α + β = 90°). На векторе рассмотрим точку М1(х + Δх; у + Δу). При перехо­де от точки М к точке М1 функция z = f(x; у) получит пол­ное приращение

http://pandia.ru/text/78/481/images/image239.jpg" width="133 height=27" height="27"> стремящемся к нулю (см. рис.).

http://pandia.ru/text/78/481/images/image241.jpg" width="324" height="54 src=">

где http://pandia.ru/text/78/481/images/image243.gif" width="76" height="41 src=">, а потому получаем:

http://pandia.ru/text/78/481/images/image245.gif" width="24" height="41 src="> при Δs->0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

http://pandia.ru/text/78/481/images/image247.jpg" width="227" height="51 src="> (*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

http://pandia.ru/text/78/481/images/image249.jpg" width="287" height="56 src=">

http://pandia.ru/text/78/481/images/image251.jpg" width="227" height="59 src=">

http://pandia.ru/text/78/481/images/image253.gif" width="253 height=62" height="62">

Следовательно, функция z = f(x;y) в данном направлении возрастает.

5. 12 . Градиент

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

http://pandia.ru/text/78/481/images/image256.jpg" width="205" height="56 src=">

т. е..jpg" width="89" height="33 src=">

в точке М(3;4).

Р е ш е н и е.

http://pandia.ru/text/78/481/images/image259.jpg" width="213" height="56 src=">

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

Функции многих переменных

§1. Понятие функции многих переменных.

Пусть имеется n переменных величин . Каждый набор
обозначает точкуn - мерного множества
(п -мерный вектор).

Пусть даны множества
и
.

Опр . Если каждой точке
ставится в соответствие единственное число
, то говорят, что задана числовая функция n переменных:

.

называют областью определения,
- множеством значений данной функции.

В случае n =2 вместо
обычно пишутx , y , z . Тогда функция двух переменных имеет вид:

z = f (x , y ).

Например,
- функция двух переменных;

- функция трех переменных;

Линейная функция n переменных.

Опр . Графиком функции n переменных называется n - мерная гиперповерхность в пространстве
, каждая точка которой задается координатами

Например, графиком функции двух переменных z = f (x , y ) является поверхность в трехмерном пространстве, каждая точка которой задается координатами (x , y , z ) , где
, и
.

Поскольку график функции трех и более переменных изобразить не представляется возможным, в основном мы будем (для наглядности) рассматривать функции двух переменных.

Построение графиков функций двух переменных является довольно сложной задачей. Существенную помощь в ее решении может оказать построение так называемых линий уровня.

Опр . Линией уровня функции двух переменных z = f (x , y ) называется множество точек плоскости ХОУ , являющихся проекцией сечения графика функции плоскостью, параллельной ХОУ. В каждой точке линии уровня функция имеет одно и то же значение. Линии уровня описываются уравнением f (x , y )=с , где с – некоторое число. Линий уровня бесконечно много, и через каждую точку области определения можно провести одну из них.

Опр . Поверхностью уровня функции n переменных y = f (
) называется гиперповерхность в пространстве
, в каждой точке которой значение функции постоянно и равно некоторому значениюс . Уравнение поверхности уровня: f (
)=с.

Пример . Построить график функции двух переменных

.

.

При с=1:
;
.

При с=4:
;
.

При с=9:
;
.

Линии уровня – концентрические окружности, радиус которых уменьшается с ростом z .

§2. Предел и непрерывность функции многих переменных.

Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.

Опр . Число А называется пределом функции двух переменных z = f (x , y ) при
,
и обозначается
, если для любого положительного числанайдется положительное число, такое, что если точка
удалена от точки
на расстояние меньше, то величиныf (x , y ) и А отличаются меньше чем на .

Опр . Если функция z = f (x , y ) определена в точке
и имеет в этой точке предел, равный значению функции
, то она называется непрерывной в данной точке.

.

§3. Частные производные функции многих переменных.

Рассмотрим функцию двух переменных
.

Зафиксируем значение одного из ее аргументов, например , положив
. Тогда функция
есть функция одной переменной. Пусть она имеет производную в точке:

.

Данная производная называется частной производной (или частной производной первого порядка) функции
пов точке
и обозначается:
;
;
;
.

Разность называется частным приращением пои обозначается
:

Учитывая приведенные обозначения, можно записать


.

Аналогично определяется

.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

При нахождении частной производной по какому-либо аргументу другие аргументы считаются постоянными. Все правила и формулы дифференцирования функций одной переменной справедливы для частных производных функции многих переменных.

Заметим, что частные производные функции являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.

Например, функция
имеет четыре частных производных второго порядка, которые обозначаются следующим образом:

;
;

;
.

и
- смешанные частные производные.

Пример. Найти частные производные второго порядка для функции

.

Решение.
,
.

,
.

,
.

Задание .

1. Найти частные производные второго порядка для функций

,
;

2. Для функции
доказать, что
.

Полный дифференциал функции многих переменных.

При одновременном изменении величин х и у функция
изменится на величину, называемую полным приращением функцииz в точке
. Так же, как и в случае функции одной переменной, возникает задача о приближенной замене приращения
на линейную функцию от
и
. Роль линейного приближения выполняетполный дифференциал функции:

Полный дифференциал второго порядка:

=
.

=
.

В общем виде полный дифференциал п -го порядка имеет вид:

Производная по направлению. Градиент.

Пусть функция z = f (x , y ) определена в некоторой окрестности точки M(x , y ) и - некоторое направление, задаваемое единичным вектором
. Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

При перемещении точки M(x , y ) в данном направлении l в точку
функцияz получит приращение

называемое приращением функции в данном направлении l .

Если ММ 1 =∆l , то

Т

огда

О

пр
. Производной функции z = f (x , y ) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆l при стремлении последней к нулю:

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные ипредставляют собой производные по направлениям, параллельным осямOx и Oy . Нетрудно показать, что

Пример . Вычислить производную функции
в точке (1;1) по направлению
.

Опр . Градиентом функции z = f (x , y ) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов
и
:

Легко видеть, что
, т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления.

Поскольку
, то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема . Пусть задана дифференцируемая функция z = f (x , y ) и в точке
градиент функции не равен нулю:
. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

Локальный экстремум функции двух переменных

Пусть функция
определена и непрерывна в некоторой окрестности точки
.

Опр . Точка
называется точкой локального максимума функции
, если существует такая окрестность точки, в которой для любой точки
выполняется неравенство:

.

Аналогично вводится понятие локального минимума.

Теорема (необходимое условие локального экстремума) .

Для того, чтобы дифференцируемая функция
имела локальный экстремум в точке
, необходимо, чтобы все ее частные производные первого порядка в этой точке были равны нулю:

Итак, точками возможного наличия экстремума являются те точки, в которых функция дифференцируема, а ее градиент равен 0:
. Как и в случае функции одной переменной, такие точки называются стационарными.

До сих пор нами рассматривалась простейшая функциональная модель, в которой функция зависит от единственного аргумента . Но при изучении различных явлений окружающего мира мы часто сталкиваемся с одновременным изменением более чем двух величин, и многие процессы можно эффективно формализовать функцией нескольких переменных , где – аргументы или независимые переменные . Начнём разработку темы с наиболее распространенной на практике функции двух переменных .

Функцией двух переменных называется закон , по которому каждой паре значений независимых переменных (аргументов) из области определения соответствует значение зависимой переменной (функции).

Данную функцию обозначают следующим образом:

Либо , или же другой стандартной буквой:

Поскольку упорядоченная пара значений «икс» и «игрек» определяет точку на плоскости , то функцию также записывают через , где – точка плоскости с координатами . Такое обозначение широко используется в некоторых практических заданиях.

Геометрический смысл функции двух переменных очень прост. Если функции одной переменной соответствует определённая линия на плоскости (например, – всем знакомая школьная парабола), то график функции двух переменных располагается в трёхмерном пространстве. На практике чаще всего приходится иметь дело с поверхностью , но иногда график функции может представлять собой, например, пространственную прямую (ые) либо даже единственную точку.

С элементарным примером поверхности мы хорошо знакомы ещё из курса аналитической геометрии – это плоскость . Предполагая что , уравнение легко переписать в функциональном виде:

Важнейший атрибут функции 2 переменных – это уже озвученная область определения .

Областью определения функции двух переменных называется множество всех пар , для которых существует значение .

Графически область определения представляет собой всю плоскость либо её часть . Так, областью определения функции является вся координатная плоскость – по той причине, что для любой точки существует значение .

Но такой праздный расклад бывает, конечно же, не всегда:

Как двух переменных?

Рассматривая различные понятия функции нескольких переменных, полезно проводить аналогии с соответствующими понятиями функции одной переменной. В частности, при выяснении области определения мы обращали особое внимание на те функции, в которых есть дроби, корни чётной степени, логарифмы и т. д. Здесь всё точно так же!

Задача на нахождение области определения функции двух переменных практически со 100%-ной вероятностью встретится вам в тематической работе, поэтому я разберу приличное количество примеров:

Пример 1

Найти область определения функции

Решение : так как знаменатель не может обращаться в ноль, то:

Ответ : вся координатная плоскость кроме точек, принадлежащих прямой

Да-да, ответ лучше записать именно в таком стиле. Область определения функции двух переменных редко обозначают каким-либо символом, гораздо чаще используют словесное описание и/или чертёж .

Если бы по условию требовалось выполнить чертёж, то следовало бы изобразить координатную плоскость и пунктиром провести прямую . Пунктир сигнализирует о том, что линия не входит в область определения.

Как мы увидим чуть позже, в более трудных примерах без чертежа и вовсе не обойтись.

Пример 2

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Ответ : полуплоскость

Графическое изображение здесь тоже примитивно: чертим декартову систему координат, сплошной линией проводим прямую и штрихуем верхнюю полуплоскость . Сплошная линия указывает на тот факт, что она входит в область определения.

Внимание! Если вам ХОТЬ ЧТО-ТО не понятно по второму примеру, пожалуйста, подробно изучите/повторите урок Линейные неравенства – без него придётся очень туго!

Миниатюра для самостоятельного решения:

Пример 3

Найти область определения функции

Двухстрочное решение и ответ в конце урока.

Продолжаем разминаться:

Пример 4

И изобразить её на чертеже

Решение : легко понять, что такая формулировка задачи требует выполнения чертёжа (даже если область определения очень проста). Но сначала аналитика: подкоренное выражением должно быть неотрицательным: и, учитывая, что знаменатель не может обращаться в ноль, неравенство становится строгим:

Как определить область, которую задаёт неравенство ? Рекомендую тот же алгоритм действий, что и при решении линейных неравенств .

Сначала чертим линию , которую задаёт соответствующее равенство . Уравнение определяет окружность с центром в начале координат радиуса , которая делит координатную плоскость на две части – «внутренность» и «внешность» круга. Так как неравенство у нас строгое , то сама окружность заведомо не войдёт в область определения и поэтому её нужно провести пунктиром .

Теперь берём произвольную точку плоскости, не принадлежащую окружности , и подставляем её координаты в неравенство . Проще всего, конечно же, выбрать начало координат :

Получено неверное неравенство , таким образом, точка не удовлетворяет неравенству . Более того, данному неравенству не удовлетворяет и любая точка, лежащая внутри круга, и, стало быть, искомая область определения – внешняя его часть. Область определения традиционно штрихуется:

Желающие могут взять любую точку, принадлежащую заштрихованной области и убедиться, что её координаты удовлетворяют неравенству . Кстати, противоположное неравенство задаёт круг с центром в начале координат, радиуса .

Ответ : внешняя часть круга

Вернёмся к геометрическому смыслу задачи: вот мы нашли область определения и заштриховали её, что это значит? Это значит, что в каждой точке заштрихованной области существует значение «зет» и графически функция представляет собой следующую поверхность :

На схематическом чертеже хорошо видно, что данная поверхность местами расположена над плоскостью (ближний и дальний от нас октанты) , местами – под плоскостью (левый и правый относительно нас октанты) . Также поверхность проходит через оси . Но поведение функции как таковое нам сейчас не очень интересно – важно, что всё это происходит исключительно в области определения . Если мы возьмём любую точку , принадлежащую кругу – то никакой поверхности там не будет (т.к. не существует «зет») , о чём и говорит круглый пробел в середине рисунка.

Пожалуйста, хорошо осмыслите разобранный пример, поскольку в нём я подробнейшим образом разъяснил саму суть задачи.

Следующее задание для самостоятельного решения:

Пример 5


Краткое решение и чертёж в конце урока. Вообще, в рассматриваемой теме среди линий 2-го порядка наиболее популярна именно окружность, но, как вариант, в задачу могут «затолкать» эллипс , гиперболу или параболу .

Идём на повышение:

Пример 6

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным: и знаменатель не может равняться нулю: . Таким образом, область определения задаётся системой .

С первым условием разбираемся по стандартной схеме рассмотренной на уроке Линейные неравенства : чертим прямую и определяем полуплоскость, которая соответствует неравенству . Поскольку неравенство нестрогое , то сама прямая также будет являться решением.

Со вторым условием системы тоже всё просто: уравнение задаёт ось ординат, и коль скоро , то её следует исключить из области определения.

Выполним чертёж, не забывая, что сплошная линия обозначает её вхождение в область определения, а пунктир – исключение из этой области:

Следует отметить, что здесь мы уже фактически вынуждены сделать чертёж. И такая ситуация типична – во многих задачах словесное описание области затруднено, а даже если и опишите, то, скорее всего, вас плохо поймут и заставят изобразить область.

Ответ : область определения:

К слову, такой ответ без чертежа действительно смотрится сыровато.

Ещё раз повторим геометрический смысл полученного результата: в заштрихованной области существует график функции , который представляет собой поверхность трёхмерного пространства . Эта поверхность может располагаться выше/ниже плоскости , может пересекать плоскость – в данном случае нам всё это параллельно. Важен сам факт существования поверхности, и важно правильно отыскать область, в которой она существует.

Пример 7

Найти область определения функции

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.

Не редкость, когда вроде бы простые на вид функции вызывают далеко не скороспелое решение:

Пример 8

Найти область определения функции

Решение : используя формулу разности квадратов , разложим подкоренное выражение на множители: .

Произведение двух множителей неотрицательно , когда оба множителя неотрицательны: ИЛИ когда оба неположительны: . Это типовая фишка. Таким образом, нужно решить две системы линейных неравенств и ОБЪЕДИНИТЬ полученные области. В похожей ситуации вместо стандартного алгоритма гораздо быстрее работает метод научного, а точнее, практического тыка =)

Чертим прямые , которые разбивают координатную плоскость на 4 «уголка». Берём какую-нибудь точку, принадлежащую верхнему «уголку», например, точку и подставляем её координаты в уравнения 1-й системы: . Получены верные неравенства, а значит, решением системы является весь верхний «уголок». Штрихуем.

Теперь берём точку , принадлежащую правому «уголку». Осталась 2-я система, в которую мы и подставляем координаты этой точки: . Второе неравенство неверно, следовательно, и весь правый «уголок» не является решением системы .

Аналогичная история с левым «уголком», который тоже не войдёт в область определения.

И, наконец, подставляем во 2-ю систему координаты подопытной точки нижнего «уголка»: . Оба неравенства верны, а значит, решением системы является и весь нижний «уголок», который тоже следует заштриховать.

В реальности так подробно расписывать, естественно, не надо – все закомментированные действия легко выполняются устно!

Ответ : область определения представляет собой объединение решений систем .

Как вы догадываетесь, без чертежа такой ответ вряд ли пройдёт, и это обстоятельство вынуждает взять в руки линейку с карандашом, хоть того и не требовало условие.

А это ваш орешек:

Пример 9

Найти область определения функции

Хороший студент всегда скучает по логарифмам:

Пример 10

Найти область определения функции

Решение : аргумент логарифма строго положителен, поэтому область определения задаётся системой .

Неравенство указывает на правую полуплоскость и исключает ось .

Со вторым условием ситуация более затейлива, но тоже прозрачна. Вспоминаем синусоиду . В качестве аргумента выступает «игрек», но это не должно смущать – игрек, так игрек, зю, так зю. Где синус больше нуля? Синус больше нуля, например, на интервале . Поскольку функция периодична, то таких интервалов бесконечно много и в свёрнутом виде решение неравенства запишется следующим образом:
, где – произвольное целое число.

Бесконечное количество промежутков, понятно, не изобразить, поэтому ограничимся интервалом и его соседями:

Выполним чертёж, не забывая, что согласно первому условию, наше поле деятельности ограничивается строго правой полуплоскостью:

мда …какой-то чертёж-призрак получился… доброе приведение высшей математики…

Ответ :

Следующий логарифм ваш:

Пример 11

Найти область определения функции

В ходе решения придётся построить параболу , которая поделит плоскость на 2 части – «внутренность», находящуюся между ветвями, и внешнюю часть. Методика нахождения нужной части неоднократно фигурировала в статье Линейные неравенства и предыдущих примерах этого урока.

Решение, чертёж и ответ в конце урока.

Заключительные орешки параграфа посвящены «аркам»:

Пример 12

Найти область определения функции

Решение : аргумент арксинуса должен находиться в следующих пределах:

Дальше есть две технические возможности: более подготовленные читатели по аналогии с последними примерами урока Область определения функции одной переменной могут «ворочать» двойное неравенство и оставить в середине «игрек». Чайникам же рекомендую преобразовать «паровозик» в равносильную систему неравенств :

Система решается как обычно – строим прямые и находим нужные полуплоскости. В результате:

Обратите внимание, что здесь границы входят в область определения и прямые проводятся сплошными линиями. За этим всегда нужно тщательно следить, чтобы не допустить грубой ошибки.

Ответ : область определения представляет собой решение системы

Пример 13

Найти область определения функции

В образце решения используется продвинутая техника – преобразуется двойное неравенство.

На практике также иногда встречаются задачи на нахождение области определения функции трёх переменных . Областью определения функции трёх переменных может являться всё трёхмерное пространство, либо его часть. В первом случае функция определена для любой точки пространства, во втором – только для тех точек , которые принадлежат некоторому пространственному объекту, чаще всего – телу . Это может быть прямоугольный параллелепипед, эллипсоид , «внутренность» параболического цилиндра и т.д. Задача отыскания области определения функции трёх переменных обычно состоит в нахождении этого тела и выполнении трёхмерного чертежа. Однако такие примеры довольно редкИ (нашёл у себя всего пару штук) , и поэтому я ограничусь лишь этим обзорным абзацем.

Линии уровня

Для лучшего понимания этого термина будем сравнивать ось с высотой : чем больше значение «зет» – тем больше высота, чем меньше значение «зет» – тем высота меньше. Также высота может быть и отрицательной.

Функция в своей области определения представляет собой пространственный график, для определённости и бОльшей наглядности будем считать, что это тривиальная поверхность. Что такое линии уровня ? Образно говоря, линии уровня – это горизонтальные «срезы» поверхности на различных высотах. Данные «срезы» или правильнее сказать, сечения проводятся плоскостями , после чего проецируются на плоскость .

Определение : линией уровня функции называется линия на плоскости , в каждой точке которой функция сохраняет постоянное значение: .

Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность – причём помогают без построения трёхмерного чертежа! Рассмотрим конкретную задачу:

Пример 14

Найти и построить несколько линий уровня графика функции

Решение : исследуем форму данной поверхности с помощью линий уровня. Для удобства развернём запись «задом наперёд»:

Очевидно, что в данном случае «зет» (высота) заведомо не может принимать отрицательные значения (так как сумма квадратов неотрицательна) . Таким образом, поверхность располагается в верхнем полупространстве (над плоскостью ).

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы вольнЫ выбрать несколько значений «зет» на своё усмотрение.

Исследуем поверхность на нулевой высоте, для этого поставим значение в равенство :

Решением данного уравнения является точка . То есть, при линия уровня представляет собой точку .

Поднимаемся на единичную высоту и «рассекаем» нашу поверхность плоскостью (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке единичного радиуса .

Напоминаю, что все «срезы» проецируются на плоскость , и поэтому у точек я записываю две, а не три координаты!

Теперь берём, например, плоскость и «разрезаем ей» исследуемую поверхность (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке радиуса .

И, давайте построим ещё одну линию уровня, скажем, для :

окружность с центром в точке радиуса 3 .

Линии уровня, как я уже акцентировал внимание, располагаются на плоскости , но каждая линия подписывается – какой высоте она соответствует:

Нетрудно понять, что другие линии уровня рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся вверх (увеличиваем значение «зет») – тем больше становится радиус. Таким образом, сама поверхность представляет собой бесконечную чашу с яйцевидным дном, вершина которой расположена на плоскости . Эта «чаша» вместе с осью «выходит прямо на вас» из экрана монитора, то есть вы смотрите в её дно =) И это неспроста! Только я так убойно наливаю на посошок =) =)

Ответ : линии уровня данной поверхности представляют собой концентрические окружности вида

Примечание : при получается вырожденная окружность нулевого радиуса (точка)

Само понятие линии уровня пришло из картографии. Перефразируя устоявшийся математический оборот, можно сказать, что линия уровня – это географическое место точек одинаковой высоты . Рассмотрим некую гору с линиями уровня 1000, 3000 и 5000 метров:

На рисунке хорошо видно, что левый верхний склон горы гораздо круче правого нижнего склона. Таким образом, линии уровня позволяют отразить рельеф местности на «плоской» карте. Кстати, здесь приобретают вполне конкретный смысл и отрицательные значения высоты – ведь некоторые участки поверхности Земли располагаются ниже нулевой отметки уровня мирового океана.

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче: