Производные сложных функций нескольких переменных. Функция двух и более переменных. Её область определения

Функции многих переменных

§1. Понятие функции многих переменных.

Пусть имеется n переменных величин . Каждый набор
обозначает точкуn - мерного множества
(п -мерный вектор).

Пусть даны множества
и
.

Опр . Если каждой точке
ставится в соответствие единственное число
, то говорят, что задана числовая функция n переменных:

.

называют областью определения,
- множеством значений данной функции.

В случае n =2 вместо
обычно пишутx , y , z . Тогда функция двух переменных имеет вид:

z = f (x , y ).

Например,
- функция двух переменных;

- функция трех переменных;

Линейная функция n переменных.

Опр . Графиком функции n переменных называется n - мерная гиперповерхность в пространстве
, каждая точка которой задается координатами

Например, графиком функции двух переменных z = f (x , y ) является поверхность в трехмерном пространстве, каждая точка которой задается координатами (x , y , z ) , где
, и
.

Поскольку график функции трех и более переменных изобразить не представляется возможным, в основном мы будем (для наглядности) рассматривать функции двух переменных.

Построение графиков функций двух переменных является довольно сложной задачей. Существенную помощь в ее решении может оказать построение так называемых линий уровня.

Опр . Линией уровня функции двух переменных z = f (x , y ) называется множество точек плоскости ХОУ , являющихся проекцией сечения графика функции плоскостью, параллельной ХОУ. В каждой точке линии уровня функция имеет одно и то же значение. Линии уровня описываются уравнением f (x , y )=с , где с – некоторое число. Линий уровня бесконечно много, и через каждую точку области определения можно провести одну из них.

Опр . Поверхностью уровня функции n переменных y = f (
) называется гиперповерхность в пространстве
, в каждой точке которой значение функции постоянно и равно некоторому значениюс . Уравнение поверхности уровня: f (
)=с.

Пример . Построить график функции двух переменных

.

.

При с=1:
;
.

При с=4:
;
.

При с=9:
;
.

Линии уровня – концентрические окружности, радиус которых уменьшается с ростом z .

§2. Предел и непрерывность функции многих переменных.

Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.

Опр . Число А называется пределом функции двух переменных z = f (x , y ) при
,
и обозначается
, если для любого положительного числанайдется положительное число, такое, что если точка
удалена от точки
на расстояние меньше, то величиныf (x , y ) и А отличаются меньше чем на .

Опр . Если функция z = f (x , y ) определена в точке
и имеет в этой точке предел, равный значению функции
, то она называется непрерывной в данной точке.

.

§3. Частные производные функции многих переменных.

Рассмотрим функцию двух переменных
.

Зафиксируем значение одного из ее аргументов, например , положив
. Тогда функция
есть функция одной переменной. Пусть она имеет производную в точке:

.

Данная производная называется частной производной (или частной производной первого порядка) функции
пов точке
и обозначается:
;
;
;
.

Разность называется частным приращением пои обозначается
:

Учитывая приведенные обозначения, можно записать


.

Аналогично определяется

.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

При нахождении частной производной по какому-либо аргументу другие аргументы считаются постоянными. Все правила и формулы дифференцирования функций одной переменной справедливы для частных производных функции многих переменных.

Заметим, что частные производные функции являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.

Например, функция
имеет четыре частных производных второго порядка, которые обозначаются следующим образом:

;
;

;
.

и
- смешанные частные производные.

Пример. Найти частные производные второго порядка для функции

.

Решение.
,
.

,
.

,
.

Задание .

1. Найти частные производные второго порядка для функций

,
;

2. Для функции
доказать, что
.

Полный дифференциал функции многих переменных.

При одновременном изменении величин х и у функция
изменится на величину, называемую полным приращением функцииz в точке
. Так же, как и в случае функции одной переменной, возникает задача о приближенной замене приращения
на линейную функцию от
и
. Роль линейного приближения выполняетполный дифференциал функции:

Полный дифференциал второго порядка:

=
.

=
.

В общем виде полный дифференциал п -го порядка имеет вид:

Производная по направлению. Градиент.

Пусть функция z = f (x , y ) определена в некоторой окрестности точки M(x , y ) и - некоторое направление, задаваемое единичным вектором
. Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

При перемещении точки M(x , y ) в данном направлении l в точку
функцияz получит приращение

называемое приращением функции в данном направлении l .

Если ММ 1 =∆l , то

Т

огда

О

пр
. Производной функции z = f (x , y ) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆l при стремлении последней к нулю:

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные ипредставляют собой производные по направлениям, параллельным осямOx и Oy . Нетрудно показать, что

Пример . Вычислить производную функции
в точке (1;1) по направлению
.

Опр . Градиентом функции z = f (x , y ) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов
и
:

Легко видеть, что
, т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления.

Поскольку
, то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема . Пусть задана дифференцируемая функция z = f (x , y ) и в точке
градиент функции не равен нулю:
. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

Локальный экстремум функции двух переменных

Пусть функция
определена и непрерывна в некоторой окрестности точки
.

Опр . Точка
называется точкой локального максимума функции
, если существует такая окрестность точки, в которой для любой точки
выполняется неравенство:

.

Аналогично вводится понятие локального минимума.

Теорема (необходимое условие локального экстремума) .

Для того, чтобы дифференцируемая функция
имела локальный экстремум в точке
, необходимо, чтобы все ее частные производные первого порядка в этой точке были равны нулю:

Итак, точками возможного наличия экстремума являются те точки, в которых функция дифференцируема, а ее градиент равен 0:
. Как и в случае функции одной переменной, такие точки называются стационарными.

Частные производные функции трёх переменных

Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных : первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите!

Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных . Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных обычно представляет собой некоторую поверхность в нашем трёхмерном пространстве.

Функция трёх переменных имеет вид , при этом переменные называются независимыми переменными или аргументами , переменная называется зависимой переменной или функцией . Например: – функция трёх переменных

А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет?
Ведь функция трёх переменных подразумевает четырехмерное пространство
(и действительно, переменных же три + сама функция). График функции трёх переменных представляет собой так называемую гиперповерхность . Представить её невозможно, поскольку мы живём в трехмерном пространстве (длина/ширина/высота). Чтобы вам со мной не было скучно, предлагаю викторину. Я задам несколько вопросов, а желающие могут попробовать на них ответить:

– Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

– Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

– Возможно ли путешествие в прошлое?

– Возможно ли путешествие в будущее?

– Существуют ли инопланетяне?

На любой вопрос можно выбрать один из четырёх ответов:
Да / Нет (наукой это запрещено) / Наукой это не запрещено / Не знаю

Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью;-)

Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры!

Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных . Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного!

Пример 1

Решение : Нетрудно догадаться –для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом:

Или – частная производная по «икс»;
или – частная производная по «игрек»;
или – частная производная по «зет».

В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс».

Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменные и считаются константами (постоянными числами) . А производная любой константы, о, благодать, равна нулю:

Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться.

(1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет».

(2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ.

Частная производная . Когда мы находим частную производную по «игрек», то переменные и считаются константами :

(1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно.

(2) Находим производные, не забывая, что константы. Далее упрощаем ответ.

И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменные и считаются константами :

Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами.

При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь пропущу)

Пример 2

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно.

Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

Верный ответ: Наукой это не запрещено . Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений.

Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =)

Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных . Навёрстываем упущенное:

Пример 3


Решение : вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться.

Разберём пример последовательно, чётко и понятно.

Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной:
или ещё можно записать так:

Это степенная функция со сложным основанием (синусом). По :

Теперь вспоминаем, что , таким образом:

На чистовике, конечно, решение следует оформить так:

Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной:

Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции :

Теперь вспоминаем нашу замену:

Таким образом:

На чистовике, понятно, оформление должно выглядеть, благообразно:

И зеркальный случай с частной производной по «зет» ( – константы):

При определенном опыте проведенный анализ можно проводить мысленно.

Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле:

В данном случае:

И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных.

Забавный пример для самостоятельного решения:

Пример 4

Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка

Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите . Такие примеры быстро не решаю даже я.

Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

Верный ответ: Да . Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно скомпилированная Эйнштейном по материалам трудов Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у него Нобелевская премия? В научном мире был нешуточный скандал, и Нобелевский комитет сформулировал заслугу троечника Эйнштейна примерно следующим образом: «За общий вклад в развитие физики». Дальнейшее, что называется, раскрутка и пиар.

К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве.

Разберём еще пару типовых задач:

Пример 5


Решение : Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий:
– нужно найти частные производные первого порядка;
– нужно вычислить значения частных производных 1-го порядка в точке .

Решаем:

(1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): .

(2) Используем свойства линейности.

(3) И берём оставшиеся производные, не забывая, что – константы.

По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную:

Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме:

Как видите, шаблон решения практически такой же.

Вычислим значение найденной частной производной в точке :

И, наконец, производная по «зет»:

Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке.

Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял.

Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое?

Верный ответ: Нет . Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину.

Пример 6

Найти частные производные первого порядка в точке

Пример 7

Найти частные производные первого порядка в точке

Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока.

Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами:

Пример 8

Найти частные производные первого порядка функции трёх переменных

Решение : Найдем частные производные первого порядка:

(1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы .

(2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения .

(3) С производной сложностей никаких, а вот производная является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм и домножить его на производную от вложения.

(4) Думаю, все уже освоились с простейшими примерами вроде – тут у нас «живой» только , производная которого равна

Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев:

Интереснее с производной по «зет», хотя, всё равно почти то же самое:

(1) Выносим константы за знак производной.

(2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения.

(3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции.

Пример 9

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока.

Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом:

Возможно ли путешествие в будущее?

Верный ответ: Наукой это не запрещено . Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой.

Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.

Частные производные второго порядка функции трёх переменных

Общий принцип нахождения частных производных второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных. Поэтому, если вы хорошо проработали урок Частные производные функции двух переменных , то будет всё очень просто.

Для того чтобы найти частные производные второго порядка, сначала необходимо найти частные производные первого порядка или в другой записи: .

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:
или – вторая производная по «икс»;
или – вторая производная по «игрек»;
или – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:
или – смешанная производная «икс по игрек»;
или – смешанная производная «игрек по икс»;
или – смешанная производная «икс по зет»;
или – смешанная производная «зет по икс»;
или – смешанная производная «игрек по зет»;
или – смешанная производная «зет по игрек».

Предел функции двух переменных.
Понятие и примеры решений

Добро пожаловать на третий урок по теме ФНП , где наконец-то начали сбываться все ваши опасения =) Как многие подозревали, понятие предела распространяется и на функцию произвольного количества аргументов, в чём нам сегодня и предстоит разобраться. Однако есть оптимистичная новость. Она состоит в том, что при предел в известной степени абстрактен и соответствующие задания крайне редко встречаются на практике. В этой связи наше внимание будет сосредоточено на пределах функции двух переменных или, как мы чаще её записываем: .

Многие идеи, принципы и методы схожи с теорией и практикой «обычных» пределов, а значит, на данный момент вы должны уметь находить пределы и самое главное ПОНИМАТЬ, что такое предел функции одной переменной . И, коль скоро судьба привела вас на эту страничку, то, скорее всего, уже немало понимаете-умеете. А если и нет – ничего страшного, все пробелы реально заполнить в считанные часы и даже минуты.

События этого занятия разворачиваются в нашем трёхмерном мире, и поэтому будет просто огромным упущением не принять в них живое участие. Сначала соорудим хорошо известную декартову систему координат в пространстве . Давайте встанем и немного походим по комнате… …пол, по которому вы ходите – это плоскость . Поставим где-нибудь ось … ну, например, в любом углу, чтобы не мешалась на пути. Отлично. Теперь, пожалуйста, посмотрите вверх и представьте, что там зависло расправленное одеяло. Это поверхность , заданная функцией . Наше перемещение по полу, как нетрудно понять, имитирует изменение независимых переменных , и мы можем передвигаться исключительно под одеялом, т.е. в области определения функции двух переменных . Но самое интересное только начинается. Прямо над кончиком вашего носа по одеялу ползает маленький тараканчик, куда вы – туда и он. Назовём его Фредди. Его перемещение имитирует изменение соответствующих значений функции (за исключением тех случаев, когда поверхность либо её фрагменты параллельны плоскости и высота не меняется) . Уважаемый читатель с именем Фредди, не обижайся, так надо для науки.

Возьмём в руки шило и проткнём одеяло в произвольной точке, высоту которой обозначим через , после чего строго под отверстием воткнём инструмент в пол – это будет точка . Теперь начинаем бесконечно близко приближаться к данной точке , причём приближаться мы имеем право ПО ЛЮБОЙ траектории (каждая точка которой, разумеется, входит в область определения) . Если ВО ВСЕХ случаях Фредди будет бесконечно близко подползать к проколу на высоту и ИМЕННО НА ЭТУ ВЫСОТУ, то функция имеет предел в точке при :

Если при указанных условиях проколотая точка расположена на краю одеяла, то предел всё равно будет существовать – важно, чтобы в сколь угодно малой окрестности острия шила были хоть какие-то точки из области определения функции. Кроме того, как и в случае с пределом функции одной переменной , не имеет значения , определена ли функция в точке или нет. То есть наш прокол можно залепить жвачкой (считать, что функция двух переменных непрерывна ) и это не повлияет на ситуацию – вспоминаем, что сама суть предела подразумевает бесконечно близкое приближение , а не «точный заход» в точку.

Однако безоблачная жизнь омрачается тем фактом, что в отличие от своего младшего брата, предел гораздо более часто не существует. Это связано с тем, что к той или иной точке на плоскости обычно существует очень много путей, и каждый из них должен приводить Фредди строго к проколу (опционально «залепленному жвачкой») и строго на высоту . А причудливых поверхностей с не менее причудливыми разрывами хоть отбавляй, что приводит к нарушению этого жёсткого условия в некоторых точках.

Организуем простейший пример – возьмём в руки нож и разрежем одеяло таким образом, чтобы проколотая точка лежала на линии разреза. Заметьте, что предел всё ещё существует, единственное, мы потеряли право ступать в точки под линией разреза, так как этот участок «выпал» из области определения функции . Теперь аккуратно приподнимем левую часть одеяла вдоль оси , а правую его часть, наоборот – сдвинем вниз или даже оставим её на месте. Что изменилось? А принципиально изменилось следующее: если сейчас мы будем подходить к точке слева, то Фредди окажется на бОльшей высоте, чем, если бы мы приближались к данной точке справа. Таким образом, предела не существует.

И, конечно же, замечательные пределы , куда без них. Рассмотрим поучительный во всех смыслах пример:

Пример 11

Используем до боли знакомую тригонометрическую формулу , где и стандартным искусственным приёмом организуем первые замечательные пределы :

Перейдём к полярным координатам:
Если , то

Казалось бы, решение идёт к закономерной развязке и ничто не предвещает неприятностей, однако в самом конце существует большой риск допустить серьёзный недочёт, о характере которого я уже чуть-чуть намекнул в Примере 3 и подробно расписал после Примера 6. Сначала концовка, затем комментарий:

Давайте разберёмся, почему будет плохо записать просто «бесконечность» или «плюс бесконечность». Посмотрим на знаменатель: так как , то полярный радиус стремится к бесконечно малому положительному значению: . Кроме того, . Таким образом, знак знаменателя и всего предела зависит только от косинуса:
, если полярный угол (2-я и 3-я координатные четверти: );
, если полярный угол (1-я и 4-я координатные четверти: ) .

Геометрически это означает, что если приближаться к началу координат слева, то поверхность, заданная функцией , простирается до бесконечности вниз:

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .