Поколения процессоров intel i. Семь фактов о Kaby Lake. Тестируем новое поколение процессоров Intel. Маркировка процессоров Intel

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.

В данной статье будут подробно рассмотрены последние поколения процессоров Intel на основе архитектуры Core. Данная компания занимает ведущее положение на рынке компьютерных систем. Большинство современных компьютеров собираются на чипах именно этой компании.

Intel: стратегия развития

Предыдущие поколения процессоров от компании Intel были подчинены двухлетнему циклу. Такая стратегия выпуска новых процессоров данной компании получила название «Тик-Так». Первый этап под названием «тик» заключается в переводе процессора на новый технологический процесс. Так, например, поколения «Иви бридж» (2-е поколение) и «Санди бридж» (3-е поколение) в плане архитектуры были идентичными. Однако технология производства первых базировалась на норме 22 нм, а вторых – 32 нм. То же самое можно сказать и про «Броад Велл» (5-го поколения) и «Хас Велл» (4-ое поколение). Этап «так» в свою очередь предполагает кардинальное изменение архитектуры полупроводниковых кристаллов и значительный прирост производительности. Можно привести следующие переходы в качестве примера:

— 1-ое поколение West merre и 2-ое поколение «Санди Бридж». В данном случае технологический процесс был идентичным (32 нм), а вот архитектура претерпела существенные изменения. На центральный процессор были перенесены северный мост материнской платы и встроенный графический усилитель;

— 4-е поколение «Хас Велл» и 3-е поколение «Иви Бридж». Был оптимизирован уровень энергопотребления компьютерной системы, а также повышены тактовые частоты чипов.

— 6-ое поколение «Скай Лайк» и 5-ое поколение «Броад Велл»: также были повышены тактовые частоты и улучшен уровень энергопотребления. Было добавлено несколько новых инструкций, улучшающих быстродействие.

Процессоры на базе архитектуры Core: сегментация

ЦПУ от компании Intel позиционируются на рынке следующим образом:

— Celeron– наиболее доступные решения. Подходят для использования в офисных компьютерах, предназначенных для решения наиболее простых задач.

— Pentium – практически полностью идентичны процессорам Celeron в архитектурном плане. Однако более высокие частоты и увеличенный кэш третьего уровня дают данным процессорным решениям определенное преимущество с точки зрения производительности. Данный ЦПУ относится к сегменту игровых ПК начального уровня.

— Corei3 – занимают средний сегмент ЦПУ от компании Intel. Два предыдущих типа процессоров, как правило, имеют два вычислительных блока. То же можно сказать про Corei3. Однако для двух первых семейств чипов отсутствует поддержка технологии «ГиперТрейдинг». У процессоров Corei3 она имеется. Таким образом на программном уровне два физических модуля могут быть преобразованы в четыре потока обработки программы. Это позволяет обеспечить существенное увеличение уровня быстродействия. На основе таких продуктов можно собрать собственный игровой персональный компьютер среднего уровня, сервер начального уровня или даже графическую станцию.

— Corei5 – занимают нишу решений выше среднего уровня, но ниже премиального сегмента. Данные полупроводниковые кристаллы могут похвастаться наличием сразу четырех физических ядер. Данная архитектурная особенность обеспечивает им преимущество в плане производительности. Более свежее поколение процессоров Corei5 обладает высокими тактовыми частотами, что позволяет постоянно получать прирост производительности.

— Corei7 – занимают нишу премиум-сегмента. В них количество вычислительных блоков такое же, как и в Corei5. Однако у них, так же, как и у Corei3 имеется поддержка технологии «Гипертрейдинг». По этой причине четыре ядра на программном уровне преобразуются в восемь обрабатываемых потоков. Именно эта особенность позволяет обеспечить феноменальный уровень производительности, которым может похвастаться любой персональный компьютер, собранный на основе Intel Corei7. Данные чипы имеют соответствующую стоимость.

Процессорные разъемы

Поколения процессоров Intel Coreмогут устанавливаться в различные типы сокетов. По этой причине не получится установить первые чипы на основе данной архитектуры в материнскую плату ЦПУ 6-го поколения. А чип с кодовым названием «СкайЛайк» не получится установить в системную плату для второго и первого поколения процессоров. Первый процессорный разъем носит название Сокет Н или LGA 1156. Цифра 1156 здесь указывает на количество контактов. Данный разъем был выпущен в 2009 году для первых центральных процессоров, изготовленных по нормам технологического процесса 45 нм и 32 нм. На сегодняшний день данный сокет считается уже морально и физически устаревшим. На смену LGA 1156 в 2010 году пришел LGA 1155 или Сокет Н1. Материнские платы данной серии поддерживают чипы Coreвторого и третьего поколений. Их кодовые названия соответственно «Санди Бридж» и «Иви Бридж». 2013 год был ознаменован выходом третьего сокета для чипов, созданный на основе архитектуры Core – LGA 1150 или Сокет Н2. В данный процессорный разъем можно было установить процессор четвертого и пятого поколений. В 2015 году на смену сокету LGA 1150 пришел актуальный сокет LGA 1151.

Чипы первого поколения

Наиболее доступными процессорами являлись чипы Celeron G1101 (работает с частотой 2.27 ГГц), Pentium G6950 (2,8 ГГц), Pentium G6990 (2.9 ГГц). У всех этих решений было по два ядра.Сегмент решений среднего уровня был занят процессорами Corei 3 с обозначением 5XX (два ядра/четыре потока для обработки информации). Выше на одну ступень находились процессоры с обозначением 6XX. Они имели идентичные параметры с Corei3, однако частота была выше. На той же ступени располагался процессор 7XX с четырьмя реальными ядрами. Самые производительные компьютерные системы были собраны на базе процессора Corei7. Данные модели обозначались как 8XX. В этом случае наиболее скоростной чип имел маркировку 875 К. Такой процессор за счет разблокированного множителя можно было разогнать. Однако и цена у него была соответствующая. Для данных процессоров можно получить значительный прирост быстродействия. Наличие приставки К в обозначении центрального процессорного устройства означает, что множитель процессора разблокирован и данная модель поддается разгону. Приставка S добавлялась в обозначение энергоэффективных чипов.

«Санди Бридж» и плановое обновление архитектуры

На смену первому поколению чипов на базе архитектуры Coreв 2010 году пришло новое решение с кодовым названием Sandy Bridge. Ключевой особенностью данного устройства являлся перенос встроенного графического ускорителя и северного моста на кремниевый кристалл процессора.

В нише более бюджетных процессорных решений был процессоры Celeron серий G5XX иG4XX. В первом случае использовалось сразу два вычислительных блока, а во втором кэш третьего уровня был урезан и присутствовало только одно ядро. На одну ступень выше расположились процессоры Pentiumмоделей G6XX иG8XX. В данном случае разница в производительности была обеспечена более высокими частотами. G8XX именно из за этой важной характеристики выглядели намного предпочтительнее в глазах пользователя. Линейка процессоров Corei3 была представлена моделями 21XX. У некоторых обозначений на конце появлялся индекс Т. Он обозначал наиболее энерго эффектиные решения, имеющие уменьшенную производительность. Решения Corei5 имели обозначения 25XX, 24XX, 23XX. Чем более высокую маркировку имеет модель, тем больший уровень производительности имеет ЦПУ. Если в конце наименования добавлена буква «S», то это означает промежуточный вариант по уровню энергопотребления между «Т»-версией и штатным кристаллом. Индекс «P»обозначает, что в устройстве отключен графический ускоритель. Чипы с индексом «К» обладали разблокированным множителем. Подобная маркировка остается актуальной и для третьего поколения данной архитектуры.

Новый прогрессивный технологический процесс

В 2013 году вышло третье поколение процессоров на основе данной архитектуры. Ключевым нововведением стал новый технологический процесс. В остальном никаких существенных нововведений не было. Все они физически совместимы с предыдущим поколением процессором. Их можно было устанавливать в те же самые материнские платы. Структура обозначений осталась прежней. Celeron имели обозначение G12XX, а Pentium–G22XX. В начале вместо «2» была «3». Это указывало на принадлежность к третьему поколению. Линейка Corei3 имела индексы 32XX. Более продвинутые процессоры Corei5 имели обозначения 33XX, 34XXи 35XX. Флагманские аппараты Core i7 имели маркировку 37XX.

Четвертое поколение архитектуры Core

Четвертое поколение процессоров Intel стало следующим этапом. В данном случае использовалась следующая маркировка. Центральные процессорные устройства эконом-класса обозначались как G18XX. Те же индексы имели и процессоры Pentium – 41XX и 43XX. Процессоры Corei5 можно было бы узнать по аббревиатурам 46XX, 45XXи 44XX. Для обозначения процессоров Corei7 использовалось обозначение 47XX. Пятое поколение процессоров Intel на базе этой архитектуры ориентировалось в основном на использование в мобильных устройствах. Для стационарных персональных компьютеров были выпущены только чипы, относящиеся к линейкам i7 иi5, причем только ограниченное число моделей. Первые из них обозначались как 57XX, а вторые – 56XX.

Перспективные решения

В начале осени 2015 года дебютировало шестое поколение процессоров Intel. На данный момент это наиболее актуальная процессорная архитектура. В этом случае чипы начального уровня обозначаются как G39XX для Celeron, G44XX и G45XX для Pentium. Процессоры Corei3 имеют обозначение 61XX и 63XX. Corei5 в свою очередь обозначаются как 64XX, 65XXи 66XX. На обозначение флагманских моделей выделено всего одно решение 67XX. Новое поколение процессорных решений от компании Intelпребывает только в начале разработки, так что такие решения будут оставаться актуальными еще долгое время.

Особенности разгона

Все чипы на основе данной архитектуры обладают заблокированным множителем. По этой причине разгон устройства может быть выполнен только за счет увеличения частоты системной шины. В последнем шестом поколении данную возможность увеличения быстродействия системы производители материнских плат должны будут отключить в BIOS. В данном плане процессоры серий Corei7 иCorei5 с индексом К являются исключением. У данных устройств множитель разблокирован. Это позволяет существенно увеличить производительность компьютерных систем, построенных на базе таких полупроводниковых продуктов.

Мнение пользователей

Все поколения процессоров Intel, перечисленные в данном материале, обладают высокой степенью энергоэффективности и феноменальным уровнем быстродействия. Их единственным недостатком является слишком высокая стоимость. Причина здесь заключается только в том, что прямой конкурент компании Intel компания AMD не может противопоставить стоящие решения. По этой причине компания Intel устанавливает ценник на свою продукцию исходя из собственных соображений.

Заключение

В данной статье были подробно рассмотрены поколения процессоров Intelдля настольных персональных компьютеров. Такого перечня будет вполне достаточно, чтобы разобраться в обозначениях и наименования процессоров. Также существуют варианты для компьютерных энтузиастов и различные мобильные сокеты. Это все сделано для того, чтобы конечный пользователь смог получить наиболее оптимальное процессорное решение. На сегодняшний день наиболее актуальными являются чипы шестого поколения. При сборке нового ПК стоит обращать внимание именно на эти модели.

Раньше, выбирая процессор для своего компьютера, пользователи в основном обращали внимание на бренд и на тактовую частоту. Сегодня ситуация немного изменилась. Нет, вам и сегодня нужно будет сделать выбор между двумя производителями – Intel и AMD, но на этом дело не закончится. Времена изменились и обе компании выпускают хороший качественный продукт, который может удовлетворить потребности практически любых требовательных пользователей.

Однако у каждого изделия производителей есть свои сильные и слабые стороны, проявляющиеся в быстродействии различных программных приложений, а также в разбросе цены и производительности. Плюс сегодня процессор с намного меньшей тактовой частотой может спокойно обойти более быстрого собрата, а многоядерный процессор может оказаться медленнее процессора созданного на основе старой архитектуры, при определенной нагрузке на систему.

Мы расскажем вам, чем отличаются друг от друга современные процессоры, а выбор уже за вами.

Характеристики современных процессоров

1. Тактовая частота процессора

Этот показатель, по которому определяется количество тактов (операций) которое может сделать процессор за секунду времени. Раньше этот показатель был решающим при выборе компьютера и субъективной оценке производительности процессора.

Сейчас же, настали времена, когда этот показатель у подавляющего большинства современных процессоров достаточен для выполнения стандартных задач, поэтому при работе со многими приложениями значительного роста производительности, из-за более высокой тактовой частоты не будет. Теперь производительность определяется другими параметрами.

2. Количество ядер

Большинство современных компьютерных процессоров имеет по два или более ядра, исключение могут составить только самые бюджетные модели. Здесь вроде все логично – больше ядер, выше производительность, но на деле оказывается, что не так все просто. В некоторых приложениях повышение производительности действительно может быть обусловлено количеством ядер, но в других приложениях многоядерный процессор может уступить своему предшественнику с меньшим количеством ядер.

3 Объем кэш-памяти у процессоров

Для того чтобы повысить скорость обмена данными с оперативной памятью компьютера, на производимые процессоры устанавливают дополнительные блоки памяти с высокой скоростью (так называемые кэши первого, второго, третьего уровней, или LI, L2, L3 cache). Опять, кажется все логично – чем больше объем кэш-памяти в процессоре, тем выше его производительность.

Но тут опять всплывают разные модели процессоров, которые, как правило, отличаются между собой сразу несколькими техническими параметрами, поэтому выявить прямую зависимость производительности от размера кэш-памяти чипа практически не представляется возможным.

Более того, от специфики кода программных приложений также многое зависит. Некоторые приложения при большом кэше, дают заметный прирост , другие наоборот начинают работать хуже из-за программного кода.

4 Ядро

Ядро является основой любого процессора, от которой и отталкиваются другие характеристики. Можно встретить два процессора с похожими на первый взгляд техническими характеристиками (количество ядер, тактовая частота), но с разной архитектурой и они будут показывать в тестах производительности и программных приложениях абсолютно разные результаты.

По традиции, процессоры, созданные на базе новых ядер, намного лучше для работы с различными программами и поэтому демонстрируют лучшую производительность по сравнению с моделями, созданными на основе устаревших технологий (даже если тактовые частоты совпадают).

5 Технический процесс

Это масштабы современных технологий, которые собственно и определяют размеры полупроводниковых элементов, служащих во внутренних цепях процессора. Чем миниатюрней эти элементы, тем совершенней применяемая технология. Это совсем не означает, что современный процессор, созданный на основе современного технического процесса, будет быстрее представителя старой серии. Просто он может, например, греться меньше, а значит, и работать более эффективно.

6 Front Side Bus (FSB)

Частота системной шины – это скорость, с которой ядро процессора обменивается данными с ОЗУ, дискретной видеокартой, и периферийными контролерами материнской платы компьютера. Здесь все просто. Чем выше пропускная способность, тем соответственно выше у компьютера производительность (при прочих равных технических характеристиках рассматриваемых компьютеров).

Расшифровка названий процессоров Intel

Научиться ориентироваться в огромной номенклатуре различных названий процессоров компании Intel довольно просто. Вначале нужно разобраться с позиционированием самих процессоров:

Core i7 – на данный момент топовая линия компании

Core i5 – отличаются высокой производительностью

Core i3 – невысокая цена, высокая/средняя производительность

Все процессоры Core i серии построены на основе ядра Sandy Bridge и относятся ко второму поколению процессоров Intel Core. Названия большинства моделей начинаются с цифры 2, а более современные модификации, созданные на основе последнего ядра Ivy Bridge, маркируются цифрой 3.

Теперь очень легко определить, какого поколения тот или иной процессор, и на основе какого ядра он создан. К примеру, Core i5-3450 принадлежит к третьему поколению на ядре Ivy Bridge, а Core i5-2310 – соответственно второе поколение на основе ядра Sandy Bridge.

Когда вы знаете тип ядра процессора, то уже можете приблизительно судить не только о его возможностях, но и о потенциальном тепловыделении при загрузке. Представители третьего поколения греются намного меньше своих предшественников благодаря более современному техпроцессу.

Помимо цифр, в названиях процессоров иногда используют суффиксы:

К – для процессоров с разблокированным коэффициентом умножения (это дает опытным пользователям, разбирающимся в компьютерах, самостоятельно разгонять процессор)

S -для продуктов с повышенной энергоэффективностью, Т – для самых экономичных процессоров.

Intel Core 2 Quad

Линия популярных четырехьядерных процессоров на базе уже устаревшего ядра Yorkfield (техпроцесс 45 нм), благодаря привлекательной низкой цене и достаточно высокой производительности, линия этих процессоров актуальна и в сегодняшние дни.

Intel Pentium и Celeron

При маркировке бюджетных процессоров Pentium и Celeron используют обозначения G860, G620 и некоторые другие. Чем выше число после буквы, тем соответственно процессор производительнее. Если маркировочные числа отличаются незначительно, то, скорее всего, речь идет о различных модификациях чипов в одной производственной линейке, обычно ними небольшая и заключается только в нескольких сотнях мегагерц тактовой частоты ядра. Иногда различаются и объем кэш-памяти, и даже в количество ядер, а это уже намного сильнее влияет на различия в мощности и производительности. Поэтому, будет лучше, если вы не будете полагаться на маркировку чипов, а уточните все технические характеристики на официальном сайте продавца или производителя, ведь это займет мало времени, но поможет сохранить нервы и деньги.

Показательным примером может являться то, что различающиеся по цене лишь на 200 рублей процессоры Celeron G440 и Celeron G530 на самом деле имеют разное количество ядер (Celeron G440 – одно, Celeron G530 – два), разную тактовую частоту ядра (у G530 на 800 МГц больше), также у G530 вдвое больший кэш. Однако тепловыделение у последнего процессора почти в два раза больше, хотя оба процессора созданы на основе одного ядра Sandy Bridge.

Технологии процессоров Intel

Процессоры от компании Intel, сегодня считаются самыми производительными, благодаря семейству Core i7 Extreme Edition. В зависимости от модели они могут иметь до 6 ядер одновременно, тактовую частоту до 3300 МГц и до 15 Мб кэш памяти L3. Самые популярные ядра в сегменте настольных процессоров создаются на основе Intel – Ivy Bridge и Sandy Bridge.

Также как и у конкурента, в процессорах компании Intel применяются фирменные технологии собственной разработки для повышения эффективности работы системы.

1. Hyper Threading – За счет этой технологии, каждое физическое ядро процессора способно обрабатывать по два потока вычислений одновременно, получается, что число логических ядер фактически удваивается.

2. Turbo Boost – Позволяет пользователю совершить автоматический разгон процессора, не превышая при этом максимально допустимый предел рабочей температуры ядер.

3. Intel QuickPath Interconnect (QPI) – Кольцевая шина QPI соединяет все компоненты процессора, за счет этого сводятся к минимуму все возможные задержки при обмене информацией.

4. Visualization Technology – Аппаратная поддержка решений виртуализации.

5. Intel Execute Disable Bit – Практически , она обеспечивает аппаратную защиту от возможных вирусных атак, в основе которых лежит технология переполнения буфера.

6. Intel SpeedStep -Инструмент позволяющий изменять уровень напряжения и частоты в зависимости от создаваемой нагрузки на процессор.

Расшифровка названий процессоров AMD

AMD FX

Топовая линейка компьютерных многоядерных процессоров со специально снятым ограничением на множитель (ради возможности самостоятельного разгона) для обеспечения высокой производительности при работе с требовательными приложениями. Исходя из первой цифры названия, можно сказать, сколько ядер установлено в процессор: FX-4100 – четыре ядра, FX-6100 соответственно шесть ядер и FX-8150 имеет восемь ядер. В линейке этих процессоров существует и несколько модификаций, несколько отличающихся тактовой частотой (у процессора FX-8150 она на 500 МГц выше, чем у процессора FX-8120). AMD А

Линия со встроенным внутрь процессора графическим ядром. Цифровое обозначение в названии указывает на принадлежность к конкретному классу производительности: АС – производительность, достаточная для подавляющего большинства стандартных ежедневных задач, А6 – производительность, достаточная для создания видеоконференции в высоком разрешении HD, А8 – производительность, достаточная для уверенного просмотра Blu-ray-фильмов с эффектом 3D или запуска современных 3D-игр в мультидисплейном режиме (с возможностью одновременного подключения четырех мониторов).

AMD Phenom II и Athlon II

Самые ранние процессоры из линейки AMD Phenom II были официально выпущены еще в далеком 2010 году, но благодаря низкой цене и достаточно большой производительности они и сегодня пользуются определенной популярностью.

На количество ядер у процессора указывает цифра в названии следующая сразу после символа X. К примеру, маркировка процессора AMD Phenom II Х4 Deneb говорит нам, что он принадлежит к семейству процессоров Phenom II, имеет четыре ядра и создан на базе ядра Deneb. Полностью аналогичные правила маркировки можно увидеть и в серии Athlon.

AMD Sempron

Под этим названием производитель выпускает бюджетные процессоры, предназначенные для настольных офисных компьютеров.

Технологии процессоров AMD

Самые топовые модели процессоров из линейки AMD FX, созданные на основе нового ядра Zambezi, могут предложить требовательному пользователю восемь ядер, 8-мегабайтный кэш L3 и тактовую частоту процессора до 4200 М Гц.

Большинство современных процессоров созданных компанией AMD по умолчанию поддерживают следующие технологии:

1. AMD Turbo CORE – Эта технология призвана автоматически регулировать производительность всех ядер процессора, за счет управляемого разгона (подобная технология у компании Intel имеет название TurboBoost).

2. AVX (Advanced Vector Extensions), ХОР и FMA4 – Инструмент, имеющий расширенный набор команд, специально созданных для работы с числами с плавающей точкой. Однозначно инструментарий.

3. AES (Advanced Encryption Standard) – В программных приложениях использующих шифрование данных, повышает производительность.

4. AMD Visualization (AMD-V) – Эта технология виртуализации, помогает обеспечить разделение ресурсов одного компьютера между несколькими виртуальными машинами.

5. AMD PowcrNow! – Технология управления питанием. Она помогают пользователю добиться повышения производительности, за счет динамической активации и деактивации части процессора.

6. NX Bit – Уникальная антивирусная технология, помогающая предотвратить инфицирование персонального компьютера определенными видами вредоносных программ.

Сравнение производительности процессоров

Просматривая прайс-листы с ценами и характеристиками современных процессоров, можно прийти в настоящее замешательство. Удивительно, но процессор большим количеством ядер на борту и с большей тактовой частотой может стоить дешевле, чем экземпляры с меньшим количеством ядер и с меньшими тактовыми частотами. Все дело в том, что настоящая производительность процессора зависит не только от основных характеристик, но и от эффективности работы самого ядра, поддержки современных технологий и конечно от возможностей самой платформы, для которой создан процессор (можно вспомнить про логику системной платы, про возможности видеосистемы, про пропускную способность шины и многое другое).

Именно поэтому, нельзя судить о производительности процессора, на основе одних только характеристик написанных на бумаге, нужно иметь данные и о результатах независимых тестов производительности (желательно с теми приложениями, с которыми планируется постоянно работать). В зависимости от типа создаваемой нагрузки похожие процессоры могут выдавать совершенно разные результаты, при работе с одними и теми же программами. Как же неподготовленному человеку разобраться, какой тип процессора подходит именно для него? Давайте попробуем в этом разобраться, проведя сравнительное тестирование процессоров с одинаковой розничной стоимостью в различных программных приложениях.

1. Работа с офисным программным обеспечением. При использовании привычных офисных приложений и браузеров прирост производительности можно достичь за счет большей тактовой частоты процессора. Большой объем кэш памяти или большое число ядер не даст ожидаемого прироста скорости работы приложений данного типа. К примеру, более дешевый по сравнению с Intel Celeron G440 процессор AMD Sempron 145 на основе 45-нм ядра Sargas показывает в тестах с офисными приложениями лучшую производительность, а ведь продукт Intel создан на более современном 32-нм ядре Sandy Bridge. Тактовая частота – вот залог успеха, при работе с офисными приложениями.

2. Компьютерные игры. Современные 3D-игры с выставленными на максимум настройками – одни из самых требовательных к комплектующим компьютера. Процессоры показывают прирост производительности в современных компьютерных играх по мере роста количества ядер и увеличения объема кэш-памяти (конечно если при этом, оперативная память и видеосистема удовлетворяют всем современным требованиям) . Взять хотя бы процессор AMD FX-8150 с 8 ядрами и 8 мегабайтами кэш-памяти третьего уровня. При тестировании он выдает лучший результат в компьютерных играх, чем практически одинаковый по цене Phenom II Х6 Black Thuban 1100T с 6 ядрами, но с 6 мегабайтами кэш-памяти третьего уровня. Как уже было подмечено выше, при тестировании офисных программ картина с производительностью прямо противоположная.

Если начать тестировать производительность в современных играх двух близких по цене процессоров марок FX-8150 и Core i5-2550К, то окажется, что последний демонстрирует лучшие результаты, несмотря на то, что у него меньше ядер, и он имеет меньшую тактовую частоту и даже объем кэш памяти у него меньше. Скорее всего, здесь, с точки зрения эффективности, основную роль сыграла более удачная архитектура самого ядра.

3. Растровая графика. Популярные графические приложения, такие как Adobe Photoshop, ACDSee и Image-Magick изначально созданы разработчиками с отличной многопоточной оптимизацией, это значит, что при постоянной работе с этими программами дополнительные ядра не будут лишними. Существует и большое количество программных пакетов, абсолютно не использующих многоядерность (Painishop или GIMP). Получается, нельзя однозначно утверждать, какой технический параметр у современных процессоров больше других влияет на увеличение скорости работы растровых редакторов . Разные программы, работающие с растровой графикой, требовательны к самым различным параметрам, таким как тактовая частота, количество ядер (особенно относится к реальной производительности одного ядра), и даже к объему кэш-памяти. Тем не менее, недорогой Core 13-2100 в тестах показывает намного большую производительность в такого рода приложениях, чем, например, тот же FX-6100, и это даже несмотря на то, что базовые характеристики у Intel немного проигрывают.

4. Векторная графика. В наше время процессоры очень странно проявляют себя, работая с такими популярными программными пакетами как CorelDraw и Illustrator. Общее количество ядер процессора практически никак не влияет на производительность приложений, это говорит об отсутствии у данного вида программного обеспечения многопоточной оптимизации. В теории для нормальной работы с векторными редакторами двухядерного процессора даже будет много, так как здесь на первый план выходит тактовая частота.

Примером может служить AMD Аб-3650, который с четырьмя ядрами, но с маленькой тактовой частотой не может соперничать в векторных редакторах с бюджетным двухядерным Pentium G860, у которого тактовая частота немного выше (при этом стоимость процессоров практически одинаковая).

5. Кодирование аудио. При работе с аудиоданными можно наблюдать абсолютно противоположные результаты. При кодировании звуковых файлов производительность растет по мере увеличения количества ядер процессора и по мере увеличения тактовой частоты. Вообще, для совершения операций такого плана вполне достаточно даже 512 мегабайт кэш-памяти, так как при обработке потоковых данных этот вид памяти практически не используется. Наглядным примером служит восьмиядерный процессор FX-8150, который при процессе конвертации аудиофайлов в разные форматы, показывает результат намного лучше, чем более дорогостоящий четырехъядерный Core 15-2500К, благодаря большему количеству ядер.

6. Кодирование видео. Архитектура ядра при в таких программных пакетах как Premier, Expression Encoder или Vegas Pro, играет большую роль. Здесь упор делается на быстрые ALU/FPU – это аппаратные вычислительные блоки ядра, ответственные за логические и арифметические операции при обработке данных. Ядра с разной архитектурой (даже если это разные линейки одного производителя) в зависимости от типа нагрузки, обеспечивают разный уровень производительности

Процессор Core i3-2120 на основе ядра Sandy Bridge от компании Intel, с меньшей тактовой частотой, меньшим объемом кэш-памяти и меньшим количеством ядер, выигрывает у процессора AMD FX-4100 построенного на ядре Zambezi, который стоит практически те же деньги. Такой необычный результат можно объяснить различиями в архитектуре ядра и лучшей оптимизацией под конкретные программные приложения.

7. Архивация. Если вы за своим компьютером часто занимаетесь архивированием и распаковкой объемных файлов в таких программах как WinRAR или 7-Zip, то обратите внимание на объем кэш-памяти своего процессора. В таких делах кэш-память имеет прямую пропорциональность: чем она больше, тем больше производительность компьютера при работе с архиваторами . Показателем служит, процессор AMD FX-6100 с установленными на борту 8 Мб кэш-памяти уровня 3. Он управляется с задачей архивирования намного быстрее, чем сопоставимые по цене процессоры Core i3-2120 с 3 мегабайтами кэш-памяти третьего уровня и Core 2 Quad Q8400 с 4 мегабайтами кэш памяти второго уровня.

8. Режим экстремальной многозадачности. Некоторые пользователи работают сразу с несколькими ресурсоемкими программными приложениями с параллельно активированными фоновыми операциями. Только подумайте, вы на своем компьютере распаковываете огромный RAR -архив, одновременно слушаете музыку, редактируете несколько документов и таблиц, при этом у вас запущен Skype и интернет-браузер с несколькими открытыми вкладками. При таком активном использовании компьютера очень важную роль играет возможность процессора выполнять несколько потоков операций параллельно. Получается, что первостепенное значение при таком использовании занимает количество ядер у процессора.

С многозадачностью справляются многоядерные процессоры AMD Phenom II Хб и FX-8xxx. Здесь стоит отметить, что AMD FX-8150 с восемью ядрами на борту, при одновременной работе нескольких приложений, имеет немного больший запас производительности, чем, к примеру, более дорогой процессор Core i5-2500K со всего четырьмя ядрами. Конечно, если требуется максимальная скорость, то лучше смотреть в сторону процессоров Core i7, которые способны легко обогнать FX-8150.

Вывод

В заключение можно сказать, что на общую производительность системы влияет огромное количество различных факторов. Конечно, хорошо иметь процессор с высокой тактовой частотой, большим количеством ядер и объемом кэш-памяти, плюс не плохо бы самую современную архитектуру, но все эти параметры имеют разное значение для разных типов задач.

Вывод напрашивается сам собой: если хотите с толком вложить деньги в обновление компьютера, то определите самые приоритетные задачи и представьте сценарии повседневного использования. Зная конкретные цели и задачи, вы сможете легко выбрать оптимальную модель, которая наилучшим образом подойдет именно под ваши потребности, работу и, самое главное, бюджет.

Выбор процессора является одним из наиболее важных решений, влияющих на работоспособность компьютера или ноутбука, поэтому вы должны по крайней мере знать, чего от него ожидать

При выборе, каждый хочет получить самый лучший. Здесь задач не много. Обычно спрашивают, как лучше производитель amd или производитель intel, какое поколение, какая линейка и какой производитель.

По поводу какой процессор лучше amd или intel, то все склоняются в сторону intel, а они соответственно дороже.

Обычно в поисках мечутся между intel core2 duo, pentium, celeron, atom, i3, i5, i7, но если выбирать, например, для игр, то не факт, что intel core i5, будет лучше i3, поскольку много тех и тех.

Неправильный выбор вычислительного устройство может привести к глубокому чувству неудовлетворенности, к примеру, когда вы игрок, и случайно купили модель строго для офиса.

К сожалению, безболезненно это не пройдет, так как озарение изменение приходит слишком поздно.

Среди систем, установленных в настольных ПК, есть существенные различия, что не позволяет быстро принять решение.

Количество ядер, запутанные символы, режим Turbo, мультипликаторы — такой поток информации, большинство покупателей приводит в ступор.

Они не могут понять, что к чему и полагаются на опыт розничных продавцов, которые не всегда компетентны в этих вопросах, но хорошо разбираются маркетинге.

Как самостоятельно выбрать лучший процессор Интел

Многие сайты публикует сравнение процессоров, хотя такие публикации, как правило, направлены на продвинутых читателей, осыпая их запутанными анализами, что простым пользователям не говорит ни о чем.

Если вы не имеете ни малейшего представления о компьютерных компонентах, то вам лучше сейчас немного посидеть перед монитором, а не полагаться на чьи-то мнения, так сказать освоить основы.

Вопреки видимости, выбирая «лучший процессор» для своего компьютера, это проще, чем вы могли бы подумать, просто немного технических знаний, для ориентации в категориях.

Начнем с упрощенной карты — процессоры Intel имеет очень разнообразное предложение, которое делится на несколько сегментов, начиная от бюджета.

Конечно, более быстрые модели более дорогие — предлагают более высокую производительность и дополнительные технологии.

Подробные характеристики каждой линейки найдете на этой странице ниже, что будет способствовать дальнейшему пониманию описания.

Какой лучше процессор Intel Celeron

Celeron — самые дешевые двухъядерные процессоры для офисных приложений и компьютеров с базовой функциональностью, то есть: для текстовых редакторов, простейших браузерных игр, серфинга в интернете или просмотра фильмов.

Pentium — двухъядерный, но и заметно быстрее, чем Celeron, но до сих пор не в первую очередь предназначен для решения сложных задач. Часто выбирают игроки со скромными требованиями.

Core i3 — очень универсальное устройство для работы и развлечений, имеет два ядра и Hyper Threading.

Core i5 — имеет четыре ядра и технологию Turbo Boost, поддерживает все типичные приложения, включая полупрофессиональные. Разработан можно сказать для игр.


Core i7 — самые быстрые модели, имеющие четыре или более ядер, Hyper Threading и режимы Turbo Boost, сочетающий в себе лучшие черты вышеупомянутых систем. Они обеспечивают бескомпромиссную производительность на каждом фронте.

Intel K-серии / X — процессоры с разблокированным множителем для оверклокеров и неограниченной мощности, который при необходимости может самостоятельно повысить их тактовую частоту, на более высокую чем стандартные настройки.

Серия Intel T / S — оба типа процессоров характеризуются пониженным TDP, который излучают меньше тепла. Их производительность ниже, чем в обычных моделях, но в то же время уменьшается спрос на электроэнергию.

Чтобы выбрать лучший процессор — определить свои потребности

Для начала необходимо ответить на основной вопрос — что будет в основном использоваться на компьютере?

Только тогда можете искать подходящее решение. Если вы находитесь в кругу интересов, где не требуют компьютерных игр и мощного программного обеспечения, достаточно для вас процессор с низким или средним диапазоном.

Ситуация совершенно другая для любителей развлечений, которые используют приложение с многопоточностью.

Здесь безусловно понадобится, современный блок самого лучшего произведения. Для процессоров, которые хорошо воспроизводят Battlefield 4, Crysis 3 tudzież Watch Dogs, а вы хотите релизы последних Grand Theft Auto V, Far Cry 4 и The Witcher 3: Wild Hunt, несомненно планку нужно поднять.

Процессор является наиболее важным, так как он несет ответственность за часть расчета, никакая другая система ее не выполняет.

Слабый процессор в сочетании с быстрой видеокартой будет ограничивать производительность всего компьютера. Давайте посмотрим, какие функции предлагают различные серии.

Hyper Threading — технология удвоения числа поддерживаемых потоков с целью повышения эффективности параллельных вычислений, то есть: двухъядерный процессор может выполнять четыре операции одновременно. Он доступен в моделях Core i3 и Core i7.

Turbo Boost — автоматически увеличивает тактовую частоту процессора до значения, указанного заводом — изготовителем, обеспечивая безопасный способ освободить производительность. Вам не нужно ничего настраивать. Она доступна в Core i5 и Core i7.

Intel Quick Sync — технология, которая использует специальные механизмы для создания и обработки мультимедиа, что ускоряет и облегчает их преобразование. Поддерживается всеми Celeron, Pentium, Core i3, Core i5 и Core i7 четвертого поколения.

Компоновка — все Intel Core сокет LGA 1150 на базе архитектуры Haswell имеет встроенный графический чип Intel HD, так что для запуска компьютера не требуется внешняя видеокарта. Производительность таких микросхем сильно варьируется.

Инструкции — набор запрограммированных команд для ускорения выполнения некоторых операций, которые оказывают весьма существенное влияние на производительность процессора.

Серия Core четвертого поколения в зависимости от модели поддерживает множество инструкций и их количество увеличивается с более высоким положением в иерархии продукта.

Нагружать «до максимума» — страховой процессор

Интересный сервис, о котором, вероятно, мало кто слышал — расширенная гарантия на процессорах Intel, которая обеспечивает при этом чрезвычайные ситуации по вине неисправности пользователя.

Дело в том, что процессоры «гибнут» крайне редко, однако, неправильные настройки могут вызвать, перегрев.

Если продукт будет работать в нормальном режиме, используйте обычную гарантию. Проблема может быть в случаи упомянутом выше, что не входит в стандартный договор.

Другими слова — расширенная служба обслуживания дает гарантию совершенно новую, для замены в случае повреждения.

Стоимость такой защиты находится в тесной зависимости от модели, начиная от $ 10 и поднимаются до 35 долларов.

Все действие направлены в первую очередь на оверклокеров, разных энтузиастов экспериментаторов и покрывает только блоки с разблокированным множителем (K или X версии).

Какой лучше процессор линейки Intel Celeron

Для настольных компьютеров самые дешевые двухъядерные процессоры Celeron, которые используют современную энергоэффективную архитектуру Хасуэлл, обеспечивая тем самым хорошую производительность в основных приложениях.

Работа с электронными таблицами, документами, тестами, путешествуя по сети или для просмотра фильмов с Celeron проблем не будет.

Важно отметить, что интегрированный Intel HD графический чип устраняет необходимость внешней видеокарты, что позволяет снизить затраты на ваш компьютер, если вы заинтересованы в играх.

  • Celeron G1840T — 2500 МГц ->
  • Celeron G1840 — 2800 МГц ->
  • Celeron G1850 — 2900 МГц -> два ядра / два потока / Intel HD.

Например, сборка Celeron G1840 пригодна для создания небольшого медиа центра, подключенного к телевизору или домашнего файлового сервера, забирая минимальное количество энергии, поэтому они могут охлаждаться пассивно.

Какой лучше процессор линейки Intel Pentium

Как и процессоры Celeron, Pentium двухъядерные, ориентированы на пользователей со скромными требованиями, которые нуждаются в ПК в основном для простых задач.

Их преимущества над более слабыми братьями в более высокой тактовой частоте, но цена все еще остается низкой.

Хотя производитель не создал их для развлечений, т.е. технически продвинутых игр, в сочетании с внешней видеокартой хорошо зарекомендовали себя в играх, которые не используют более двух ядер.

К сожалению, людям, которые смотрят в будущее следует рассмотреть вопрос о покупке чего-то быстрее. Pentium линейка включает в себя следующие модели:

  • Pentium G3240T — 2700 МГц -> 2 ядра / 2 потока / Intel HD.
  • Pentium G3440T — 2800 МГц -> 2 ядра / 2 потока / Intel HD.
  • Pentium G3240 — 3200 МГц -> 2 ядра / 2 потока / Intel HD.
  • Pentium G3258 — 3200 МГц -> 2 ядра / 2 потока / Intel HD.
  • Pentium G3440 — 3300 МГц -> 2 ядра / 2 потока / Intel HD.
  • Pentium G3450 — 3400 МГц -> 2 ядра / 2 потока / Intel HD.

Pentium недороги — цена зависит от конфигурации. Поскольку в них интегрировали Intel HD то они могут успешно работать без внешней видеокарты.

Это решения, по общему признанию слабое, но легко позволяет отобразить рабочий стол, смотреть фильм или играть в простую игру.

Новейший Pentium отметил свой двадцатый день рождения, который производитель отпраздновал выпуском ограниченного процессора G3258, который позволяет разгон. Это интересный выбор для экономных энтузиастов.

Какой лучше процессор линейки Intel Core i3

Core i3, безусловно, принадлежит к высшей лиге, чем процессор Celeron и Pentium. Он поддерживает технологии Hyper Threading, удвоение числа поддерживаемых потоков и повышение эффективности параллельных вычислений.

При этом двухъядерный процессор может выполнять до четырех операций одновременно. Но здесь вы должны ясно понимать, что такую функция должна поддерживать операционная система и запускаемое приложение.

Таким образом, преимущество Hyper Threading может работать не всегда, но на последних играх заметно сразу. Серия включает в себя следующие модели:

  1. i3-4150T — 3000 МГц ->
  2. i3-4350T — 3100 МГц ->
  3. i3-4150 — 3500 МГц -> два ядра / 4 потока / Intel 4400 HD.
  4. i3-4350 — 3600 МГц -> два ядра / 4 потока / Intel 4600 HD.
  5. i3-4360 — 3700 МГц -> два ядра / 4 потока / Intel 4600 HD.

Core i3 четвертое поколение которые можно использовать для различных задач. Хотя игроки рекомендуют инвестиции в Core i5 Quad, Core i3 также обеспечивают приличную ликвидность, особенно в сочетании графикой NVIDIA GeForce, чьи драйвера позволяют использовать Hyper Threading.

Кроме того, процессоры Core i3 имеют свои собственные интегрированные карты Intel HD 4000, которые намного быстрее, чем установленные в Celeron и Pentium, что позволяет запускать более современные игры.

Какой лучше процессор линейки Intel Core i5

Core i5 должен соответствовать ожиданиям подавляющего большинства компьютерных пользователей, которые ищут эффективные и перспективные решения.

Во-первых, они имеют четыре ядра (без Hyper Threading), которые имеет достаточную вычислительную мощность для каждого типа применения.

Во-вторых, они оснащены технологией Turbo Boost, автоматически увеличивая их синхронизацию. В целом, это дает очень мощное сочетание, особенно с архитектурой Intel Хасуэллам.

Сегодня четыре ядра постепенно становятся стандартом, поэтому вы должны рассмотреть возможность покупки их, особенно если хотите поиграть в Battlefied 4, Grand Theft Auto V или The Witcher 3: Wild Hunt. Серия включает в себя следующие модели:

  • i5-4460T — 1900 МГц -> 2700 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.
  • i5-4590T — 2000 МГц -> 3000 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.
  • i5-4690T — 2500 МГц -> 3500 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.
  • i5-4460S — 2900 МГц ->
  • i5-4590S — 3000 МГц ->
  • i5-4690S — 3200 МГц ->
  • i5-4460 — 3200 МГц -> 3400 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.
  • i5-4590 — 3300 МГц -> 3700 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.
  • i5-4690 — 3500 МГц -> 3900 МГц Turbo / 4 ядра / 4 потока / Intel 4600 HD.

Core i5 может быть с выделенной графической картой, что позволит комфортно играть. Но, как и в остальной части четвертого поколения процессоров Intel, Core i5 имеют интегрированный графический чип, что позволяет ему самостоятельно отобрать изображения.

Такие устройства не требуют, дополнительных инвестиций в другие компоненты. Оригинальной системы охлаждения вполне достаточно для них, а также питания среднего уровня и материнской платы.

Хотя цена Core i5 заметно выше, чем Core i3, в долгосрочной перспективе такая покупка будет оправданной. Хороший процессор в конце концов не меняется слишком часто.

Какой лучше процессор линейки Intel Core i7

Core i7 абсолютно верхняя полка предложений от Intel и предназначен для требовательных геймеров и профессионалов, объединив все положительные черты других моделей в одной системе.

Первый — четыре ядра и поддержка Hyper Threading, удвоение числа поддерживаемых потоков параллельно, то есть: четырёхъядерный процессор может выполнять до восьми операций одновременно.

Конечно, эту функцию должна поддерживать операционная система, а также запускаемое приложение. Вторая вещь — режим Turbo Boost, в котором тактовая частота автоматически увеличивается до очень высоких значений, доходя до 4400 МГц, обеспечивая владельцам бескомпромиссную производительность. Серия включает в себя модели:

  1. i7-4785T -> 2200 МГц — 3200 МГц Turbo / 4 ядра / 8 потоков / Intel 4600 HD.
  2. i7-4790T -> 2700 МГц — 3900 МГц Turbo / 4 ядра / 8 потоков / Intel 4600 HD.
  3. i7-4790S -> 3200 МГц — 4000 МГц Turbo / 4 ядра / 8 потоков / Intel 4600 HD.
  4. i7-4790 -> 3600 МГц — 4000 МГц Turbo / 4 ядра / 8 потоков / Intel 4600 HD.

До недавнего времени для Core i7 требовалось специализированное программное обеспечение, которое было в состоянии воспользоваться преимуществами Hyper Threading.

В настоящее время все больше и больше игр начинают использовать Hyper Threading, например, Crysis 3.

Процессоры Core i7 имеют интегрированную графику, это одни из самых быстрых среди всех моделей, предназначенных для рынка настольных систем.

Какой лучше процессор производителя Intel

Отдельная категория Core i5 и i7 сокета ядра LGA 1150 модели с буквой K, помещенной в названии (за исключением моделей серии Core i7 Extreme, предназначенная для абсолютных энтузиастов производительности) обеспечит свободный разгон с помощью множителя.

Несмотря на то, что до сих пор Pentium G3258 выпущен двадцатилетие, предлагает идентичную функциональность, это, безусловно, относится к нижнему сегменту рынка.

Итак, давайте сосредоточить внимание на указанные два. Какие преимущества принесут процессоры K?

Когда обнаружили, что компьютер недостаточно энергичный, можете вручную увеличить или освободить неиспользованную вычислительную мощность.

Обычные модели не допускают выполнение таких операций в любом отношении, а прибыль может достигать нескольких сот мегагерц, увеличивая общую производительность на десятки процентов. Серия включает в себя:

  • i5-4690K -> 3500 МГц — 3900 МГц Turbo / 4 ядра — 4 потока / Intel 4600 HD.
  • i7-4790K -> 4000 МГц — 4400 МГц Turbo / 4 ядра / 8 потоков / Intel 4600 HD.

За привилегию иметь процессор с разблокированным множителем вы должны заплатить немного дополнительно, но играть тогда будете на самых высоких настройках, подумайте о покупке по крайней мере сердечника i5-4690K.


Конечно, разгон полезный и требует немного знаний в этой области, лучшей материнской платы и системы охлаждения, так что это удовольствие для немного более продвинутых пользователей.

Не волнуйтесь — скоро я объясню, как безопасно выполнять такие действия. Только если очень боитесь повреждения процессора, можете воспользоваться расширенной гарантии, покрывающей несчастные случаи, например, когда сгорит через слишком высокие напряжения питания.

Хорошая игра, безусловно, стоит его, при чем в будущем игровые нагрузки будут только увеличиваться – в этом не сомневайтесь, но вы теперь вы знаете какой самый лучший процессор и какое лучше выбрать поколение: intel i5 или i7, celeron или intel pentium, intel или mediatek, пентиум или intel, mediatek или intel atom. Успехов.