Жидко-кристаллические дисплеи, их параметры. Эволюция телевизионных экранов

, планшетах , электронных переводчиках, калькуляторах , часах и т. п., а также во многих других электронных устройствах.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц , а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом .

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением , что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ , могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией ;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета . Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей . Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев , вообще не подверженных ей.
  • не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.
  • матрицы довольно хрупкие, а их замена весьма дорогостоящая

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Технологии

Основные технологии при изготовлении ЖК-дисплеев: TN+film, IPS (SFT, PLS) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённого в конкретных разработках.

Время отклика ЖК-мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс .

TN+film

TN + film (Twisted Nematic + film) - самая простая технология. Слово «film» в названии технологии означает «дополнительный слой», применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое малое время отклика среди современных матриц [когда? ] , а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

IPS (SFT)

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2), созданных по технологии S-IPS, разработанной консорциумом LG Display.

H-IPS A-TW (Horizontal IPS with Advanced True White Polarizer ) - разработана LG Display для корпорации NEC . Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Этот тип панелей используется при создании профессиональных мониторов высокого качества .

AFFS (Advanced Fringe Field Switching , неофициальное название - S-IPS Pro) - дальнейшее улучшение IPS, разработана компанией BOE Hydis в 2003 году. Увеличенная напряжённость электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

Развитие технологии «super fine TFT» от NEC
Название Краткое обозначение Год Преимущество Примечания
Super fine TFT SFT 1996 Широкие углы обзора, глубокий чёрный цвет . При улучшении цветопередачи яркость стала немного ниже.
Advanced SFT A-SFT 1998 Лучшее время отклика Технология эволюционировала до A-SFT (Advanced SFT, Nec Technologies Ltd. в 1998), значительно уменьшив время отклика.
Super-advanced SFT SA-SFT 2002 Высокая прозрачность SA-SFT, разработанная Nec Technologies Ltd. в 2002, позволила улучшить прозрачность в 1,4 раза по сравнению с A-SFT.
Ultra-advanced SFT UA-SFT 2004 Высокая прозрачность
Цветопередача
Высокая контрастность
Позволила достичь в 1,2 раза большей прозрачности по сравнению с SA-SFT, 70 % охвата цветового диапазона NTSC и увеличения контрастности.
Развитие технологии IPS фирмой Hitachi
Название Краткое обозначение Год Преимущество Прозрачность/
Контрастность
Примечания
Super TFT IPS 1996 Широкие углы обзора 100/100
Базовый уровень
Большинство панелей также поддерживают реалистичную цветопередачу (8 бит на канал) . Эти улучшения появились ценой более медленного времени отклика, изначально около 50 мс. IPS панели также были очень дороги.
Super-IPS S-IPS 1998 Отсутствует цветовой сдвиг 100/137 IPS был вытеснен S-IPS (Super-IPS, Hitachi Ltd. в 1998), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика
Advanced super-IPS AS-IPS 2002 Высокая прозрачность 130/250 AS-IPS, также разработанный Hitachi Ltd. в 2002, повышает, главным образом, контрастность традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.
IPS-provectus IPS-Pro 2004 Высокая контрастность 137/313 Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.
IPS alpha IPS-Pro 2008 Высокая контрастность Следующее поколение IPS-Pro
IPS alpha next gen IPS-Pro 2010 Высокая контрастность Hitachi передает технологию Panasonic
Развитие технологии IPS фирмой LG
Название Краткое обозначение Год Примечания
Super-IPS S-IPS 2001 LG Display остается одним из главных производителей панелей, основанных на технологии Hitachi Super-IPS.
Advanced super-IPS AS-IPS 2005 Улучшена контрастность с расширенной цветовой гаммой.
Horizontal IPS H-IPS 2007 Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана. Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
Enhanced IPS e-IPS 2009 Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.
Professional IPS P-IPS 2010 Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.
Advanced high performance IPS AH-IPS 2011 Улучшена цветопередача, увеличено разрешение и PPI , повышена яркость и понижено энергопотребление .

VA/MVA/PVA

Технология VA (сокр. от vertical alignment - вертикальное выравнивание) была представлена в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Наследницей технологии VA стала технология MVA (multi-domain vertical alignment ), разработанная компанией Fujitsu как компромисс между TN- и IPS-технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом, благодаря использованию технологий ускорения (RTC), эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля . Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (patterned vertical alignment ) от Samsung;
  • Super PVA от Sony-Samsung (S-LCD);
  • Super MVA от CMO;
  • ASV (advanced super view ), также называется ASVA (axially symmetric vertical alignment ) от Sharp.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

PLS

PLS-матрица (plane-to-line switching ) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS .

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN) [источник не указан 124 дня ] . Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

    Внешнее освещение

    Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени используют внешнее освещение (от Солнца, ламп комнатного освещения и так далее). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи , в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

    Подсветка лампами накаливания

    В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания . Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.

    Электролюминесцентная панель

    Монохромные ЖК-дисплеи некоторых часов и приборных индикаторов используют для подсветки электролюминесцентную панель. Эта панель представляет собой тонкий слой кристаллофосфора (например, сульфида цинка), в котором происходит электролюминесценция - свечение под действием тока. Обычно светится зеленовато-голубым или жёлто-оранжевым светом.

    Подсветка газоразрядными («плазменными») лампами

    В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких газоразрядных ламп (чаще всего с холодным катодом - CCFL , хотя недавно стали использоваться и EEFL). В этих лампах источником света является плазма, возникающая при электрическом разряде через газ. Такие дисплеи не следует путать с плазменными дисплеями , в которых каждый пиксель светится сам и является миниатюрной газоразрядной лампой.

  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями Материалы доклада на научно-технической конференции «Современное телевидение». Москва, март 2006.

В статье изложены особенности устройства и разновидности дисплеев на основе жидких кристаллов, TFT-матриц и органических пленок (OLED) производства Bolymin, Winstar, Wisetip. Рассматриваются основные параметры различных типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения.

ООО “РТЭК”, Украина, г. Киев

Для отображения информации в большинстве современных устройств используются дисплеи, содержащие в своей основе ту или иную вариацию жидкокристаллического вещества. Появление дисплеев на основе жидких кристаллов стало возможным благодаря работам австрийского ботаника Фридриха Рейнитзера (Friedrich Reinitzer). В ходе своих исследований в 1888 г. вещества, известного как cholesteryl benzoate, он обнаружил, что оно имеет две явные точки плавления. В своем эксперименте он увеличивал температуру твердого образца и наблюдал превращение кристалла в мутную жидкость. Дальнейшее увеличение температуры приводило к появлению чистой прозрачной жидкости, пропускающей свет. Благодаря этой ранней работе считается, что именно Рейнитзер открыл новую жидкокристаллическую фазу материи. Через много лет, в 1968 г., фирмой RCA был создан первый экспериментальный жидкокристаллический индикатор (ЖКИ).

В основе любого ЖК-дисплея лежит конструктивный принцип, описанный ниже. Основой для последующих слоев ЖКИ являются две параллельные стеклянные пластины с нанесенными на них поляризационными пленками. Различают верхний и нижний поляризаторы, сориентированные перпендикулярно друг другу. На стеклянные пластины в тех местах, где в дальнейшем будет формироваться изображение, наносится прозрачная металлическая окисная пленка (оксиды индия и олова - ITO), которая в дальнейшем служит электродами. На внутреннюю поверхность стекол и электроды наносятся полимерные выравнивающие слои, которые затем полируются, что способствует появлению на их поверхности, соприкасающейся с ЖК, микроскопических продольных канавок. Пространство между выравнивающими слоями заполняют ЖК-веществом. В результате молекулы ЖК выстраиваются в направлении полировки выравнивающего слоя. Направления полировки верхнего и нижнего выравнивающих слоев перпендикулярны (подобно ориентации поляризаторов). Это нужно для предварительного “скручивания” слоев молекул ЖК на 90° между стеклами. Когда напряжение на управляющие электроды не подано, поток света, пройдя через нижний поляризатор, двигается через слои жидких кристаллов, которые плавно меняют его поляризацию, поворачивая ее на угол 90°. В результате поток света после выхода из ЖК материала беспрепятственно проходит через верхний поляризатор (сориентированный перпендикулярно нижнему) и попадает к наблюдателю. Никакого формирования изображения не происходит. При подаче напряжения на электроды между ними создается электрическое поле, что вызывает переориентацию молекул. Молекулы стремятся выстроиться вдоль силовых линий поля в направлении от одного электрода к другому. Вследствие этого пропадает эффект “скручивания” поляризованного света, под электродом возникает область тени, повторяющая его контуры. Создается изображение, формируемое светлой фоновой областью и темной областью под включенным электродом. Путем варьирования контуров площади, занимаемой электродом, можно формировать самые различные изображения: буквы, цифры, иконки и пр. Так создаются символьные ЖКИ. А при создании массива электродов (ортогональной матрицы) можно получить графический ЖКИ с разрешением, определяемым количеством задействованных электродов.

Таблица 1. Основные параметры и характерные особенности различных технологий изготовления ЖКИ


Описанная конструкция ЖКИ представляет собой пассивный вариант дисплея. В зависимости от разновидности примененных в дисплее жидких кристаллов различают следующие типы ЖКИ: TN, STN, CTN, FSTN, HTN, DSTN и ECB (VAN). Отличительные особенности этих дисплеев отражены в табл. 1.

Для производства больших цветных дисплеев в настоящее время широко используются ЖКИ на основе TFT (тонкопленочные транзисторы). В основе структуры TFT-панели содержатся жидкие кристаллы, два поляризатора и две стеклянные пластины: верхняя подложка цветового фильтра и нижняя подложка массива TFT. Жидкокристаллическое вещество впрыскивается между этими стеклянными пластинами. Регулирование светового потока осуществляется путем изменения величины входного напряжения, подаваемого на ЖК. Тем самым изменяется расположение и ориентация ЖК-молекул, что приводит к соответствующему изменению объема светового потока, проходящего через них. При изготовлении такой панели с помощью высокоточных фотолитографических технологий на стеклянную подложку наносится узор для последовательного пошагового переноса изображений множества электродов ЖКИ. Количество транзисторов на стекле TFT равно числу подпикселей дисплея, при этом генерацию цвета обеспечивает стекло цветового фильтра с нанесенным на него фильтром цвета. Движение жидких кристаллов вызывается появлением разности потенциалов между электродами, находящимися на стекле TFT и стекле цветового фильтра, и именно это движение приводит к генерации цвета и изменению яркости ЖКИ.

В пределах одного выбранного периода времени переключатель замыкается, и на ЖК подается входное напряжение, что приводит к изменению ориентации жидкокристаллических молекул. После выключения переключателя в емкости Clc (эквивалентная емкость ЖК-вещества) сохраняется некоторый заряд, уменьшающийся с течением времени. Для увеличения продолжительности хранения заряда параллельно Clc добавляется запоминающий конденсатор Cst. Поскольку фактически управление жидкими кристаллами производится переменным напряжением, для активации ЖК напряжение подается только при включенном переключателе, после чего он немедленно отключается. В ряде случаев напряжение на ЖК будет падать из-за утечек. Для предотвращения этого и используется дополнительный конденсатор Сst, компенсирующий утечки. При достаточной его емкости напряжение на нем будет приближаться к идеальной форме меандра.

В TFT-панели тонкопленочный транзистор выполняет функцию рассмотренного переключателя. Вывод затвора TFT подключен к линии сканирования, вывод истока соединен с линией данных, а вывод стока с Clc и Сst . Когда затвор активизирован (выбран на линии сканирования), канал TFT открывается и данные об изображении записываются в Clc и Cst. Если затвор не выбран, TFT закрыт.

Технология LTPS TFT

Технология LTPS (низкотемпературная поликремневая) - это новейший производственный процесс изготовления TFT-панелей. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400 °С. Поликристаллический кремний - материал на основе кремния, содержащий множество кристаллов кремния размером от 0,1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 °С. Этот метод известен как SPC (Solid Phase Crystallization - кристаллизация твердой фазы). Очевидно, что такой метод не удастся применить при производстве индикаторных панелей, поскольку температура плавления стекла составляет 650 °С. Поэтому для создания ЖК-панелей идеально подходит новая низкотемпературная технология LTPS.

В отличие от технологии a-Si, LTPS технология характеризуется более чем в 300 раз большей подвижностью электронов. Это объясняет, почему каждый элемент LTPS индикатора имеет большую скорость реакции на воздействие и меньшие размеры, чем элементы, изготовленные по а-Si технологии.

Вот несколько отличий p-Si технологии от a-Si технологии:

Более высокая технологичность изготовления на подложке интегральной схемы драйвера управления;

Более высокое быстродействие TFT, меньший размер, меньше контактов и элементов;

Проще схемотехника;

Увеличение надежности панели;

Высокие апертурный коэффициент и разрешающая способность.

Дисплеи на основе органических пленок (OLED)

Сравнительно недавно на рынке появились дисплеи нового, отличного от ЖКИ типа, т.н. OLED (Organic Light Emitting Device). Дисплей OLED представляет собой электронное устройство, выполненное путем размещения ряда тонких органических пленок между проводниками. При подключении источника питания к выбранным элементам дисплея они излучают яркий свет. Технология OLED идеально подходит для изготовления дисплеев, используемых в портативных устройствах, позволяя создавать легкие, надежные и малопотребляющие дисплеи. Для получения OLED дисплеев требуется меньшее число производственных этапов и более дешевые материалы, в сравнении с ЖКИ. Ведущий лидер в производстве таких дисплеев, корпорация Universal Display (UDC) полагает, что технология OLED может заменить существующие технологии создания дисплеев во многих областях за счет следующих преимуществ перед ЖКИ:

Более высокая яркость;

Более высокое быстродействие, улучшающее качество отображения и динамику видеоизображений;

Расширенный угол обзора (до 180°);

Малый вес;

Меньшее энергопотребление;

Более широкий диапазон рабочих температур;

Меньшая совокупная стоимость.

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в “бутерброде” (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

Пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;

Отражающий (reflective) применяется в калькуляторах и часах;

Проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive)

В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка). По этой технологии изготовлено большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой.

Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м², при прямом солнечном свете - 1000 кд/м². Яркости в 300 кд/м² можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30 % энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света.

Полупрозрачный тип дисплея (transflective)

Похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется так называемый частично отражающий слой. Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.

Таблица 2. Алфавитно-цифровые ЖК-модули

(нажмите на таблицу, чтобы увеличить ее)



Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective)

Имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.

Таблица 3. TFT-модули

(нажмите на таблицу, чтобы увеличить ее)



Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90° видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора дает технология MVA).

Время отклика (инерционность) - время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come_up time) и времени на выключение (come_down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране FPS = 1 с/время отклика.

Таблица 4. Графические ЖК-модули

(нажмите на таблицу, чтобы увеличить ее)


Яркость - преимущество ЖК-дисплея, которое в среднем в два раза выше показателей ЭЛТ. С увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приводит к значительному усложнению ее конструкции и повышает электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м².

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки черного цвета, т.к. лампа подсветки включена постоянно и для получения темных тонов используется эффект поляризации. Черный цвет зависит от качества перекрытия светового потока подсветки.

Температурная компенсация LCD-дисплеев

Установки оптимальной контрастности LCD дисплеев сильно зависят от окружающей температуры. Для большинства применений эти изменения контрастности незначительны в диапазоне “нормальных” температур от 0 до +50 °С. Большинство LCD модулей допускают работу в расширенном температурном диапазоне от -20 до +70 °С. Изменения контрастности в столь широком диапазоне температур становятся заметными, что приводит к необходимости коррекции напряжения контрастности LCD в зависимости от температуры.

При уменьшении рабочей температуры LCD дисплеи требуют повышения рабочего напряжения для сохранения оптической контрастности. В сравнительных таблицах (табл. 2-4) приведены основные механические и электрические характеристики алфавитно-цифровых, графических и TFT-модулей ведущих производителей ЖК-индикаторов - Bolymin, Winstar, Wisetip.

Литература


1. WINSTARS" Data Sheets: (http://www.winstar.com.tw/)

2. WISETIPS" Data Sheets: (http://www.wisetip.com.tw)

3. BOLYMINS" Data Sheets: (http://www.bolymin.com.tw/)

Я. Белецкий,

ООО “РТЭК”, Украина, г. Киев,

Немного истории

Когда в 1907 году Максом Дикманном широкой публике был продемонстрирован телевизионный приемник, никто и представить себе не мог, что через 100 лет телевизор будет является необходимым устройством практически в каждой семье. Именно с помощью телевизора человек узнает самые свежие и необходимые новости. Тогда еще, более ста лет назад телевизионный приемник Дикманна имел смешной размер 3 на 3 сантиметра с частотой развертки кадров 10 кадров в секунду. В его основе для передачи изображения была использована трубка Брауна.

В дальнейшем, в процессе эволюции телевизионных технологий были использованы различные методы и изобретения с целью передачи изображений. Сейчас же, рынок телевизоров насыщен и способен удовлетворить любые желания потребителя. Не смотря на различие характеристик современных телевизоров (диагональ, яркость экрана, наличие определенных технологий, возможность использования в качестве монитора и т.д.) основным критерием выбора данного устройства покупателем служат тип и размер экрана. В современных телевизорах используются различные технологии, в которых простой потенциальный потребитель может легко запутаться, в следствие чего сделать неверный выбор.

Советская телеприставка «Б-2» с механической разверткой в экспозиции Музея нижегородской радиолаборатории

За все время развития телевизионных технологий были разработаны и введены в эксплуатацию следующие виды экранов телевизоров:

Рассмотрим каждый из этих типов экранов по подробнее.

Механический экран

Механический экран - разновидность экрана, использующего для разложения изображения на элементы электромеханические устройства. Самые первые телевизионные системы были механическими и чаще всего не предусматривали звукового сопровождения. В отличие от современного, полностью электронного телевидения, механическое предполагает наличие в передающем и приемном устройствах специального механизма для сканирования изображения и его воспроизведения. Из-за небольшого количества передаваемых элементов изображения, механическое телевидение иногда называют малострочным.

Телевизор «17ТН-13», СССР, 1939 год

В основе механического экрана лежит диск Нипкова (см. глоссарий), который имеет расположенных по спирали ряд отверстий. В передающей камере сзади диска, расположенного в фокальной плоскости съёмочного объектива, установлен фотоэлемент для регистрации попадающего на него света. В приёмнике вместо фотоэлектрического элемента используется источник модулированного света, обычно неоновая лампа, обладающая малой инерционностью. Каждое отверстие в своём движении образует одну линию развёртки с переменной яркостью, соответствующей яркости передаваемых участков объекта съёмки. Для передачи сигнала яркости от камеры к приёмнику используется радио. Передающие камеры с диском обладали рядом существенных недостатков: в частности, они закреплялись неподвижно из-за риска нарушения развёртки при сотрясении.

Некоторые ранние механические системы сканировали строки не по горизонтали, как это происходит сейчас, а по вертикали. В качестве примера можно привести британскую 30-строчную систему Бэрда (см. глоссарий). Эта система создавала вертикальное прямоугольное изображение (книжная ориентация), вместо горизонтального (альбомная ориентация), распространённого в наши дни. Направление линий зависит от расположения маски кадра относительно диска Нипкова: при расположении слева или справа линии развёртки вертикальные, сверху или снизу - горизонтальные. Из-за низкого разрешения изображений в системе Бэрда, достаточной только для более-менее чёткого изображения одного человека, вертикальная (портретная) ориентация становилась предпочтительней, нежели горизонтальная. Когда в изображении используется 60 или более линий, в кадре можно будет разместить несколько человек. Именно тогда маска была перенесена для создания горизонтального изображения, что и используется по сегодняшний день.

В определенное время технологии механического телевидения нашли применение в DLP-проекторах (см. глоссарий). В них используется матрица маленьких (16 квадратных миллиметров) электростатически заряженных зеркал, которые выборочно отражают свет для создания изображения. Многие дешёвые DLP-проекторы используют цветовое колесо для создания цветного изображения. Эта технология применялась также в электронном цветном телевидении до изобретения кинескопов с теневой маской.

Кинескопный экран

Кинескоп - электронно-лучевой прибор, преобразующий электрические сигналы в световые. Широко применяется в устройстве телевизоров, до 1990-х годов использовались телевизоры исключительно на основе кинескопа.

Кинескоп, в основе которого лежала электронная пушка, имел следующий принцип работы: в баллоне электронной пушки создан глубокий вакуум - сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер.


Для того, чтобы создать электронный луч, применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ (электронно-лучевая трубка, англ. cathode ray tube - CRT) для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки с сердечником), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом, представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ анод представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт. Далее луч проходит через отклоняющую систему, которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.

Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

В настоящий момент телевизоры и мониторы на основе кинескопа не производят ввиду технологического процесса и вреда для здоровья потребителя (ренгеновское излучение, излучение электромагнитного поля, вред зрению человека). На смену кинескопу пришли экраны на основе жидких кристаллов.

Жидкокристаллический экран

Конструктивно дисплей состоит из жидкокристаллической матрицы (ЖК-матрицы) (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. Если бы жидких кристаллов не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице (см. глоссарий) эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения.

Таким образом, полноценный монитор с ЖК-дисплеем состоит из высокоточной электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, например:

  • В отличие от дисплеев с электронно-лучевыми трубками, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости.
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп.
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация.
  • Существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.
  • Пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, вообще не подверженных ей.

LED-телевизор (LED TV, сокр. от Light Emitting Diode TeleVision) - это тот же самый ЖК-телевизор, подсветка экрана которого осуществляется светодиодной матрицей (LED).

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами), однако она встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

Органический светодиод (Organic Light-Emitting Diode, OLED) - органический светоизлучающий диод, полупроводниковый прибор, изготовленный из органических соединений, который эффективно излучает свет, если пропустить через него электрический ток.


Основное применение технология OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев.

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом, катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой - положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным.

Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.

В качестве материала анода обычно используется оксид индия, легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют алюминий, так как он обладает низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Главная проблема OLED - время непрерывной работы должно быть более 15 тыс. часов. Одна проблема, которая в настоящее время препятствует широкому распространению этой технологии в мониторах и телевизорах, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства.

Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени дисплеи, произведённые по OLED технологиям, с высокой вероятностью станут доминантными на рынке электроники народного потребления.

Жидкокристаллические матрицы в зависомости от технологии изготовления подразденяються на:

1. TM+film матрица (см. глоссарий). Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

2. IPS (SFT) матрица. Технология IPS (англ. In-Plane Switching), или SFT (Super Fine TFT), была разработана компаниями Hitachi и NEC. Эти компании пользуются этими двумя разными названиями одной технологии - NEC использует «SFT», а Hitachi - «IPS». Технология предназначалась для избавления от недостатков TN + film. Хотя с помощью IPS и удалось добиться увеличения угла обзора до 178°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

По состоянию на 2008 год, матрицы, изготовленные по технологии IPS (SFT), - единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. По состоянию на 2012 год выпущено уже много мониторов на IPS матрицах (e-IPS производства LG.Displays), имеющих 6 бит на канал. Старые TN-матрицы имеют 6-бит на канал, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение чёрного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а чёрным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

3. MVA/PVA матрицы. Матрицы MVA/PVA (VA - сокр. от vertical alignment - вертикальное выравнивание) считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

Технология MVA (Multi-domain Vertical Alignment) разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля. Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment) от Samsung
  • Super PVA от Sony-Samsung (S-LCD)
  • Super MVA от CMO

4. PLS матрицы. PLS-матрица (Plane-to-Line Switching) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS.

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN);
  • высокая яркость и хорошая цветопередача;
  • большие углы обзора;
  • полное покрытие диапазона sRGB;
  • низкое энергопотребление, сравнимое с TN.

Недостатки:

  • время отклика (5-10 мс) сравнимо с S-IPS, лучше чем у *VA, но хуже чем у TN;
  • более низкая контрастность (600:1), чем у всех остальных типов матриц;
  • неравномерная подсветка.

5. AMOLED матрицы - (Active Matrix Organic Light-Emitting Diode, AMOLED) - технология создания дисплеев для мобильных устройств, компьютерных мониторов и телевизоров. Технология подразумевает использование органических светодиодов в качестве светоизлучающих элементов и активной матрицы из тонкоплёночных транзисторов (TFT) для управления светодиодами.

В настоящее время все больше распространяется улучшенная технология - Super AMOLED.


Наглядной сравнение Super AMOLED-матрицы с обычной ЖК-матрицей

Super Active Matrix Organic Light-Emitting Diode (Super AMOLED) - улучшенная технология создания тачскринов на основе AMOLED. В отличие от предшественников, сенсорный слой приклеен к самому экрану, что позволяет избавиться от прослойки воздуха в промежутке между ними. Это повышает четкость, читаемость на солнце, насыщенность цветов, позволяет получить меньшую толщину дисплея.

Преимущества Super AMOLED перед AMOLED:

  • на 20% ярче предшественника;
  • на 80% меньше отражает солнечный свет;
  • на 20% снижено энергопотребление;
  • в промежуток между экраном и тачскрином не может попасть пыль.

Плазменный дисплей

Газоразрядный экран (плазменная панель) - устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.


Работа плазменной панели состоит из трех этапов:

  • Инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочивания.
  • Адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  • Подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация - адресация - подсветка» образует формирование одного подполя изображения. Складывая несколько полуполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми полуполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Плазменный экран имеет ряд преимуществ по сравнению со своим главным конкурентом – жидкокристаллическим дисплеем:

  • более насыщенные цвета (в особенности черный цвет на плазменных панелях для человеческого зрения является действительно черным, в то время как на ЖК-дисплеях черный цвет представляется ненасыщенным, а является по сути темно-серым);
  • меньшее энергопотребление;
  • отсутствие «битых пикселей»;
  • скорость обновления экрана.

Но, не смотря на ряд преимуществ, плазма имеет лишь один существенный недостаток – в случае отображения на экране статической картинки (логотип канала, рабочий стол и т.д.) на данном участке экрана происходит выгорание газа, что ведет к следующим последствиям: отображаемая статическая картинка в таком случае будет отображается на экране всю оставшуюся жизнь дисплея, не зависимо от того, какое изображение отображается на экране.

Лазерный дисплей

Лазерный телевизор - телевизор, созданный на основе технологии цветных лазеров.

проекции. Стандарт en:xvYCC (Extended Video YCC), предложенный в рамках технологии en:X.v.Colour компанией Sony, обеспечивает аналогичное (близкое к теоретическому пределу) расширение цветового охвата. Кроме того, преимущество лазерных телевизоров перед жидкокристаллическими заключается в том, что в последних возникают проблемы с передачей оттенков чёрного: при необходимости отображения черного цвета лазеры просто отключаются.

Лазерные телевизоры способны поддерживать высокую действительную частоту обновления изображения экрана - от 120 Гц, благодаря чему в комплекте с затворными стереоочками способны воспроизводить стереоизображение. Например, телевизоры Mitsubishi способны работать в качестве 3D-дисплея.

Срок службы лазеров практически неограничен, пиксели лазерных дисплеев не подвержены деградации или выгоранию.

Лазерный телевизор имеет толщину куда больше старых LCD (Liquid crystal display, рус. - жидкокристаллический дисплей) (38 см для 75" модели и 25 см для 65"), но имеет, примерно, в 4-5 раз меньшее энергопотребление в сравнении с LCD и плазменными телевизорами сопоставимых размеров экрана.


Принцип технологии заключается в том, что лазерный RGB пучок, подаётся на специальную микросхему, которая отражает как зеркало в определённых участках только нужные цвета, в заданном разрешении. Этот пучок проходит через фильтр удвоения кадров и линзы для распределения пучка по проецируемой поверхности (экрану). Зритель видит обратную сторону проекции. То есть принцип заключается в знакомой всем проекции, только лазерным светом и с обратной стороны.

Принцип работы лезерного телевизора: источник-микросхема-удвоитель кадров-линза

Технология впервые была представлена австралийской компанией Arasor на CES 2006, в виде прототипа. По договорённости с Mitsubishi Electric, в этом же году был выпущен ещё один прототип. Идею подхватили Seiko Epson, Samsung Electronics и Sony.

В настоящее время лазерная тезнология используется в DLP-проекторах.

Дисплей с автоэлектронной эмиссией

FED (англ. Field Emission Display, дисплей с автоэлектронной эмиссией) - одна из дисплейных технологий. Позволяет получать плоские экраны с большой диагональю. Название FED используется компаниями Sony и AU Optronics. Аналогичные дисплеи, создаемые компаниями Canon и Toshiba, носят название "SED-дисплей".

Особенностью тонких FED-экранов является низкое энергопотребление, широкий угол обзора и безынерционность. Как сообщается, FED-экраны могут обновлять «картинку» с частотой до 240 раз в секунду, что гораздо чаще, чем даже самые «продвинутые» жидкокристаллические экраны. Ещё одним достоинством FED-экранов является то, что даже при выходе из строя до 20 % излучателей электронов на дисплее не появятся «мёртвые» пиксели.

В 2008 году Sony продемонстрировала образец 19,2-дюймовой FED-панели, имеющую разрешение 1280x960 пикселей, яркость 400 кд/м?, уровень контрастности 20000:1 и частоту обновления 240 FPS. Картинка на экране такой панели формируется за счет электронных лучей, создаваемых в нанотрубках. Начало промышленного производства FED-телевизоров Sony было запланировано на 2009 год.

К концу 2009 года FED-дисплеи в продаже не появились. Японская компания FED, занимающаяся разработкой таких дисплеев, по некоторым данным закрылась. Таким образом, будущее дисплеев типа FED остается под вопросом. AU Optronics выкупила активы у Field Emission Technologies, соглашение распространяется на ряд патентов, ноу-хау, изобретения и оборудование, относящиихся к перспективной технологии плоcкопанельных дисплеев - Field Emission Display (FED).

Основой для FED послужил принцип работы обычного кинескопа. Электронно-лучевая пушка генерирует поток электронов, падающий на экран - покрытую люминофором поверхность. Под «электронной» бомбардировкой люминофор светится. Отклоняемый магнитными полями, поток электронов «обегает» (сканирует) построчно все точки экрана. Таким образом создается кадр. Это самое слабое место ЭЛТ-телевизора. Для эффективного управления потоком-лучом требуется значительное пространство, отчего кинескопы громоздки и тяжеловесны.

Технология FED лишена этого недостатка. Дисплей состоит из двух стеклянных панелей. От одного стекла до другого - считанные миллиметры.

На одной панели нанесены эмиттеры электронов - мини-аналоги электронно-лучевой пушки, на противоположной - люминофор, аналогичный используемому в обычных ЭЛТ. В отличие от обычного кинескопа каждому пикселю соответствует электронный эмиттер, отдельный для каждого из трех цветов - красного, зелёного, синего.

Именно поэтому экран не нуждается в едином потоке электронов, «обегающем» экран, что позволяет существенно сэкономить длину (глубину) «кинескопа».

Технология позволяет создавать легкие и тонкие стеклянные панели с широкими, формата 16:9 экранами. Экономически целесообразная диагональ - от 50 до (в перспективе) 100 дюймов.

FED наделен всеми преимуществами настоящего ЭЛТ-дисплея - сочным, красочным изображением, отличным отображением чёрного (с чем частенько имеют проблемы LCD) и, по информации производителей, отличной контрастностью - до 100000:1. Например, для большинства LCD контрастность 1000:1.

Благодаря особенностям технологии, время отклика достигает 1 мс - это пока абсолютно недостижимая для LCD величина, в какой бы системе ни проводились измерения. Поэтому, изначально исключаются «шлейфы», размытость и пр. дефекты изображения при просмотре сцен с быстрым движением.

Ещё одна непревзойденная характеристика FED - угол обзора. Он достигает теоретического максимума в 180 градусов. Потому что, в отличие от телевизоров с внутренним освещением (LCD, проекционных), свет не проецируется сквозь экран, а экран сам служит источником света.

В заключение

В настоящее время на рынке телевизоров наибольшую долю занимают продукты с ЖК-дисплеями (TN/TFT, PVA/MVA, IPS). Плазменные телевизоры в виду их ощутимого недостатка не так сильно распространены и их доля на рынке падает. OLED и лазерные дисплеи преимущественно используются на мобильных телефонах и планшетных компьютерах, плотно заняв в данном секторе рынка свою нишу.

В заключении хочется сказать, что чувствуется, что через 100 лет другой автор, который запланирует писать по развитие телевизионных технологий, на современные OLED будет смотреть так же, как и мы сейчас на древние механические экраны. Эволюция не стоит на месте, она двигается и развивается, притом в геометрической прогрессии.

Глоссарий

Механическое устройство для сканирования изображений, изобретённое Паулем Нипковым в 1884 году. Этот диск являлся неотъемлемой частью многих систем механического телевидения вплоть до 1930-х годов.

Джон Лоуги Бэрд - шотландский инженер, получивший известность за создание первой механической телевизионной системы.

DLP (Digital Light Processing) - технология, используемая в проекторах. Её создал Лари Хорнбек из компании Texas Instruments в 1987 году. В DLP-проекторах изображение создаётся микроскопически маленькими зеркалами, которые расположены в виде матрицы на полупроводниковом чипе, называемом Digital Micromirror Device (DMD, цифровое микрозеркальное устройство). Каждое такое зеркало представляет собой один пиксель в проецируемом изображении.

TN + film (Twisted Nematic + film) - самая простая технология, используемая и ЖК-дисплеях. Слово film в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку film часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

, электронных книгах , навигаторах , планшетах , электронных переводчиках, калькуляторах , часах и т. п., а также во многих других электронных устройствах.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц , а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом .

Гигантский скачок в развитии этой технологии произошел с появлением первых ноутбуков . Сначала матрицы были чёрно-белыми, потом цветными, но только «пассивного» типа. Они довольно сносно отображали статические изображения и рабочий стол ноутбука, но при малейшем движении «картинка» превращалась в сплошную мазню - на экране невозможно было что-либо разобрать. Естественно, это ограничивало сферы использования нового типа дисплеев . Дальнейшая эволюция жидкокристаллических матриц привела к созданию нового их типа - «активного». Такие дисплеи уже лучше справлялись с отображением на экране движущихся объектов, и это способствовало появлению стационарных мониторов. В начале ХХI столетия появились первые ЖК-телевизоры. Диагональ их была ещё маленькой - около 15 дюймов.

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

  • тип матрицы определяется технологией, по которой изготовлен ЖК-дисплей;
  • класс матрицы; стандарт ISO 13406-2 выделяет четыре класса матриц;
  • разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях . В отличие от ЭЛТ -мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек. Однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);
  • размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;
  • соотношение сторон экрана (пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);
  • видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: при одинаковой диагонали, монитор формата 4:3 имеет большую площадь, чем монитор формата 16:9;
  • контрастность - отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;
  • яркость - количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);
  • время отклика - минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:
    • время буферизации (input lag ). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20-50 ; в отдельных ранних моделях достигало Шаблон:Num ;
    • время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас (2016) практически во всех мониторах заявленное время переключения составляет 1-6 мс ;
  • угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в технических параметрах своих мониторов углы обзора, такие, к примеру, как: CR 5:1 - 176/176°, CR 10:1 - 170/160°. Аббревиатура CR (англ. contrast ratio ) обозначает уровень контрастности при указанных углах обзора относительно контрастности при взгляде перпендикулярно экрану. В приведённом примере, при углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже, чем 10:1, при углах обзора 176°/176° - не ниже, чем до значения 5:1.

Устройство

Конструктивно дисплей состоит из следующих элементов:

  • ЖК-матрицы (первоначально - плоский пакет стеклянных пластин, между слоями которого и располагаются жидкие кристаллы; в 2000-е годы начали применяться гибкие материалы на основе полимеров);
  • источников света для подсветки ;
  • контактного жгута (проводов);
  • корпуса, чаще пластикового , с металлической рамкой для придания жёсткости.

Состав пикселя ЖК-матрицы:

  • два прозрачных электрода ;
  • слой молекул, расположенный между электродами;
  • два поляризационных фильтра , плоскости поляризации которых (как правило) перпендикулярны.

Если бы жидких кристаллов между фильтрами не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения, это также стабилизирует свойства полученного изображения.

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением , что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ , могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией ;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета . Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей . Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет Шаблон:Num качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до Шаблон:Num пикселей на Шаблон:Num работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев , вообще не подверженных ей.
  • Не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Технологии

Основные технологии при изготовлении ЖК-дисплеев: TN+film, IPS (SFT, PLS) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённого в конкретных разработках.

Время отклика ЖК-мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до Шаблон:Num .

Шаблон:Якорь2

TN + film (Twisted Nematic + film) - самая простая технология. Слово «film» в названии технологии означает «дополнительный слой», применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое малое время отклика среди современных матрицШаблон:Когда? , а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

Шаблон:Якорь2

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2), созданных по технологии S-IPS, разработанной консорциумом LG Display.

H-IPS A-TW (Horizontal IPS with Advanced True White Polarizer ) - разработана LG Display для корпорации NEC . Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Этот тип панелей используется при создании профессиональных мониторов высокого качества .

AFFS (Advanced Fringe Field Switching , неофициальное название - S-IPS Pro) - дальнейшее улучшение IPS, разработана компанией BOE Hydis в 2003 году. Увеличенная напряжённость электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

Развитие технологии «super fine TFT» от NEC
Название Краткое обозначение Год Преимущество Примечания
Super fine TFT SFT 1996 Широкие углы обзора, глубокий чёрный цвет . При улучшении цветопередачи яркость стала немного ниже.
Advanced SFT A-SFT 1998 Лучшее время отклика Технология эволюционировала до A-SFT (Advanced SFT, Nec Technologies Ltd. в 1998), значительно уменьшив время отклика.
Super-advanced SFT SA-SFT 2002 Высокая прозрачность SA-SFT, разработанная Nec Technologies Ltd. в 2002, позволила улучшить прозрачность в 1,4 раза по сравнению с A-SFT.
Ultra-advanced SFT UA-SFT 2004 Высокая прозрачность
Цветопередача
Высокая контрастность
Позволила достичь в 1,2 раза большей прозрачности по сравнению с SA-SFT, 70 % охвата цветового диапазона NTSC и увеличения контрастности.
Развитие технологии IPS фирмой Hitachi
Название Краткое обозначение Год Преимущество Прозрачность/
Контрастность
Примечания
Super TFT IPS 1996 Широкие углы обзора 100/100
Базовый уровень
Большинство панелей также поддерживают реалистичную цветопередачу (8 бит на канал) . Эти улучшения появились ценой более медленного времени отклика, изначально около 50 мс. IPS панели также были очень дороги.
Super-IPS S-IPS 1998 Отсутствует цветовой сдвиг 100/137 IPS был вытеснен S-IPS (Super-IPS, Hitachi Ltd. в 1998), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика
Advanced super-IPS AS-IPS 2002 Высокая прозрачность 130/250 AS-IPS, также разработанный Hitachi Ltd. в 2002, повышает, главным образом, контрастность традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.
IPS-provectus IPS-Pro 2004 Высокая контрастность 137/313 Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.
IPS alpha IPS-Pro 2008 Высокая контрастность Следующее поколение IPS-Pro
IPS alpha next gen IPS-Pro 2010 Высокая контрастность Hitachi передает технологию Panasonic
Развитие технологии IPS фирмой LG
Название Краткое обозначение Год Примечания
Super-IPS S-IPS 2001 LG Display остается одним из главных производителей панелей, основанных на технологии Hitachi Super-IPS.
Advanced super-IPS AS-IPS 2005 Улучшена контрастность с расширенной цветовой гаммой.
Horizontal IPS H-IPS 2007 Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана. Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
Enhanced IPS e-IPS 2009 Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.
Professional IPS P-IPS 2010 Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.
Advanced high performance IPS AH-IPS 2011 Улучшена цветопередача, увеличено разрешение и PPI , повышена яркость и понижено энергопотребление .

Шаблон:Якорь2

Технология VA (сокр. от vertical alignment - вертикальное выравнивание) была представлена в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Наследницей технологии VA стала технология MVA (multi-domain vertical alignment ), разработанная компанией Fujitsu как компромисс между TN- и IPS-технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом, благодаря использованию технологий ускорения (RTC), эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля . Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (patterned vertical alignment ) от Samsung;
  • Super PVA от Sony-Samsung (S-LCD);
  • Super MVA от CMO;
  • ASV (advanced super view ), также называется ASVA (axially symmetric vertical alignment ) от Sharp.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

Шаблон:Якорь2

PLS-матрица (plane-to-line switching ) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS .

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN)
  1. Основное понятие и история создания.
  2. Технические характеристики.
  3. Устройство.
  4. Технологии:

4.2 IPS (In-Plane Switching)

4.3 Технология MVA (PVA) (Vertical Alignment)

  1. Ориентировочные характеристики технологий
  2. Применение.
  3. Преимущества и недостатки.

8. Перспективы

1. Основное понятие и история создания

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД, англ. Liquid crystal display, LCD ), также Жидкокристаллический монитор (ЖК-монитор) - плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея. Жидкокристаллические мониторы имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам. Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять поляризацию светового луча, проходящего сквозь них.

Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff ) компании RCA (Принстон, штат Нью-Джерси).

2. Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

  • Разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.
  • Размер точки (размер пиксела) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат) - отношение ширины к высоте (5:4, 4:3, 8:5, 5:3, 16:9 и др.)
  • Видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность - отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость - количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика - минимальное время, необходимое пикселю для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.

Усилиями компаний-производителей в голову потребителя прочно внедряется мысль, что единственным критерием отбора современного ЖК монитора является время отклика: чем оно меньше, тем лучше. При этом прочие параметры либо не принимаются во внимание, либо сознательно отодвигаются на задний план. На самом деле параметров, напрямую влияющих на удобство работы с монитором, гораздо больше.

Важнейшим параметром плоскопанельных дисплеев является стандартное (Native) разрешение. Оно соответствует числу пикселов по горизонтали и вертикали. Именно в стандартном разрешении ЖК-монитор воспроизводит изображение наиболее качественно. Разрешение определяется размером ячеек и диагональю панели. Сейчас производятся панели с ячейками размером 0,248-0,3 мм. Если панель ЖК-монитора поддерживает стандартное разрешение 1024x768, это значит, что на каждой из 768 линий расположено 1024x3 = 3072 ячейки. Заметим, что на ЭЛТ-мониторе можно установить разрешение больше стандартного (рекомендуемого) для данной величины диагонали экрана, а на ЖК-мониторе - нельзя в принципе. Как правило, в ЖК мониторах предусмотрена возможность использовать разрешение более низкое, чем стандартное. Обычно применяют метод растяжения (Expansion). Он основан на интерполяции изображения с низким разрешением на всю площадь экрана. Понятно, что интерполяция ухудшает резкость изображения и вносит цветовые искажения.

Яркость - максимальная удельная светимость поверхности экрана. Измеряется в нитах (nit). 1 нит = 1 кд/м2 (кандела на квадратный метр). Чем больше это значение, тем светлее изображение. Типовая яркость белого цвета для мониторов CRT составляет около 120 кд/м2 ; профессионалы, использующие при работе с графикой LCD-монитор, редко калибруют его так, чтобы яркость белого превышала 120 кд/м2 . Таким образом, даже яркость 220 кд/м2 , обеспечиваемая большинством продаваемых в настоящее время мониторов, является достаточной для повседневного использования. Средним считается значение яркости 220-250 кд/м2 , некоторые панели поддерживают более высокие значения.

Контрастность - это отношение разности яркостей отображаемых монитором белого и черного цветов к яркости белого цвета. Например, для дисплея, максимальная и минимальная яркости которого равны 200,5 кд/м2 и 0,5 кд/м2 соответственно, контрастность равна (200,5 - 0,5)/0,5 = 400:1.

Считается, что чем выше контрастность, тем лучше различимы детали изображения, выше его четкость и меньше утомляемость при работе с монитором. На самом деле это не совсем так. Возьмем Монитор №1 с соотношением яркостей, приведенным выше, и сравним его с Монитором №2, отличающимся только максимальной яркостью, которая составляет

400,5 кд/м2 . Контрастность Монитора №2 будет равна 800:1, тем не менее, отображение этим монитором черного цвета не улучшилось по сравнению с Монитором №1, а отображение белого стало более ослепляющим.

Поэтому важное значение имеет не собственно контрастность, а контрастность с учетом уровня черного цвета.

Цветовой охват современных ЖК-панелей достигает 16,7 млн. цветов.

Но в типовых панелях TN+Film (а это практически все 15-ти и 17-дюймовые мониторы) используется 18-битное представление цвета, сужающее цветовой диапазон.

Угол обзора (по вертикали и горизонтали) характеризует зону восприятия изображения на экране без существенных искажений. Нормальным считается угол обзора по горизонтали 160-170°, по вертикали 120° и больше. Нормальные углы обзора обеспечат комфортное восприятие картинки одним человеком, расположенным по центру экрана. Коллективный просмотр, удобный на телевизорах и ЭЛТ-мониторах, для ЖК-дисплеев не рекомендуется.

Слабым местом ЖК-дисплеев остается время отклика (скорость переключения между режимами черный - белый - черный), которое реально составляет 15мс. Официальные цифры характеризует максимальное быстродействие, то есть суммарное время, затрачиваемое на увеличение яркости элемента экрана от 10 % до 90 % и уменьшение обратно до 10 %. В режимах пониженной яркости (менее 100%) оно увеличивается в 5-7 раз, что приводит к смазыванию изображения. Увеличение времени отклика приводит к размытию движущихся объектов. Этот параметр рекомендуется подбирать следующим образом: для динамичных 3 D - и г р - матрицы со временем отклика 2 мс, для кино и графики достаточно 5 мс, для офисной работы достаточно 10 мс. Таким образом, к преимуществам ЖК-мониторов можно отнести малую глубину панели, действительно плоское изображение (без геометрических искажений), высокие значения яркости, низкое энергопотребление,

отсутствие электромагнитных излучений. Существенных недостатков четыре: высокая цена, искажение цветов, единственный режим разрешения, обеспечивающий хорошее качество, малые углы комфортного обзора. Если проанализировать недостатки ЖК-мониторов, можно прийти к такому выводу: главный недостаток технологии в том, что невозможно приобрести монитор универсального назначения. То есть для офисной работы надо подбирать монитор с одним набором параметров, для игр - с другим, для работы с цветом - с третьим.

3. Устройство

Субпиксел цветного ЖК-дисплея

Конструктивно дисплей состоит ЖК-матрицы (стеклянной пластины, между слоями которой и распологаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности.



Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения.

Жидкие кристаллы не могут сами излучать свет, а служат затворами, пропуская или не пропуская свет от ламп подсветки. ЖК-панель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. Позади них расположены одна-две лампы подсветки и система зеркал, равномерно рассеивающих свет по поверхности. Свет от ламп проходит сквозь первую подложку, служащую поляризационным фильтром. На обеих подложках проделаны параллельные бороздки, определяющие исходную ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Размещенные между бороздками капельки ЖК организованы в ячейки. Каждый пиксел изображения состоит из трех ячеек. Вторая подложка также является поляризационным фильтром, поэтому теоретически в исходном состоянии свет наружу не выпускается, так как его плоскость поляризации не совпадает с плоскостью фильтром.

Если молекулы жидких кристаллов попадают в электрическое поле, они выстраиваются между электродами. Электроды расположены на обоих подложках, поэтому поле разворачивает молекулы вдоль силовых линий. Чем сильнее разность потенциалов между электродами, тем меньше поворот вектора поляризации молекулами, тем меньше света выходит наружу. При максимальной разности потенциалов отклонения вовсе не происходит и свет наружу не пропускается.

Для управления свойствами ячеек к ним подключают электроды, создающие разные электрические поля в отдельных местах экрана (в ячейках). ЖК-кристаллы типа Super Twisted Nematic имеют увеличенный с 90° до 270° торсионный угол (угол кручения) ориентации, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

В активной матрице (Active Matrix) ячейки панели подключены к управляющим элементам, образующим матрицу из строк и столбцов.

Технология тонкопленочных транзисторов (Thin Film Transistor, TFT) позволила назначить каждой ячейке переключающий транзистор, к коллектору которого подключены резистор и конденсатор. Когда по выбранным строке и столбцу подается управляющее напряжение, оно заряжает конденсатор. Заряд хранится конденсатором до следующего обновления кадра изображения. То есть конденсатор вкупе с транзистором запоминают состояние ячейки после снятия напряжения. Время реакции дисплея с активной матрицей снижено в лучших образцах до 8-10 мс (для пассивной матрицы - около 300 мс). Яркость отдельного элемента изображения остается неизменной весь период демонстрации, поэтому эффекты ≪замыливания≫ и дрожания изображения отсутствуют. Именно поэтому для ЖК-мониторов достаточной считается частота регенерации 60 Гц.

Таким образом, полноценный монитор с ЖК-дисплеем состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

4. Технологии

4.1 TN + film

Молекулы в структурированном жидком кристалле имеют вытянутую цилиндрическую форму. Благодаря направляющим бороздкам молекулы у противоположных подложек-поляроидов оказываются перпендикулярными друг другу. Чем ближе к центру кристалла, тем меньше угол взаимного поворота молекул. В итоге молекулы образуют пространственную спираль, по которой сворачивается плоскость поляризации света и свет выходит наружу. Такая технология называется

скрученным нематическим кристаллом - Twisted Nematic (TN).

TN + film - самая простая технология. Часть film в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку film часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет не проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

Достоинства:

· самое маленькое время отклика среди современных матриц,

· невысокая себестоимость.

Недостатки:

· сложность обеспечения строго перпендикулярной ориентации молекул приводит к высокому уровню черного цвета и низкому контрасту изображения;

· недостаточные углы обзора по вертикали;

· неточная цветопередача.

4.2 IPS (In-Plane Switching)

Компании NEC и Hitachi разработали технологию производства жидкокристаллических матриц под названием In-Plane Switching (IPS). Согласно этой технологии оба электрода расположены на одной подложке, а молекулы жидких кристаллов поворачиваются единой плоскостью, не скручиваясь в спираль. В отсутствие напряжения свет полностью блокируется перпендикулярными подложками-фильтрами и на экране отображается почти идеальный черный цвет. Приложенное напряжение разворачивает плоскость поляризации молекул, и свет начинает проникать наружу.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение чёрного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а чёрным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

Технология предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS, - единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. Старые TN-матрицы имеют 6-бит на канал, как и часть MVA.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам ЭЛТ, контрастность всё равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20". LG.Philips, Dell и NEC остаются единственными производителями панелей по данной технологии.

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2) созданных по технологии S-IPS, разработанной консорциумом LG.Philips.

A-TW-IPS (Advanced True White IPS - расширенная IPS с настоящим белым) - разработана LG.Philips для корпорации NEC. Представляет собой S-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.

AFFS (Advanced Fringe Field Switching, неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

Новые разновидности IPS и их особенности. Некоторое время назад лишь немногие посвященные понимали, в чем заключается отличие между панелями производства LG.Display типов H-IPS и S-IPS – остальным пользователям было достаточно уже того, что оба варианта этой технологии обеспечивали на порядок более высокое качество изображения, чем TN+film. Тем не менее специалисты знали, что разница – в структуре жидкокристаллической ячейки, и на базе этой информации основывали свои предпочтения. С 2009 г. производитель изменил принципы обозначения, и теперь выпускаемые IPS-панели классифицируются по другим характеристикам. Так, матрицы p-IPS наиболее совершенные (но и самые дорогие), обладают расширенным цветовым охватом (>102%) и 10-битовой разрядностью. А e-IPS, символизируют собой попытку LG.Display продвинуть IPS-технологию на массовый рынок – цветовой охват здесь традиционный, разрядность 8 бит. При этом по структуре ЖК-ячеек и p-IPS, и e-IPS принадлежат к подвиду H-IPS – а S-IPS будет постепенно исключаться из производственного цикла.

Достоинства:

· обеспечение отличной цветопередачи.

· углы обзора около 170°.

Недостатки:

· дороговизна производства;

· сравнительно невысокие яркость и контрастность;

· сравнительно высокое время отклика.

4.3 Технология MVA (PVA) (Vertical Alignment)

Компания Fujitsu разработала технологию производства жидкокристаллических матриц Multi - Domain Vertical Alignment (MVA), совместившую особенности TN и IPS. Электроды подведены к обоим подложкам. Но сами подложки не плоские, а имеют выступы, благодаря которым жидкий кристалл разбивается на домены. Все домены переключаются одновременно, но продольные молекулы в них наклоняются в противоположных направлениях. Если необходимо воспроизвести 50% серого, половина молекул будет повернута ≪боком≫, а половина - ≪торцом≫. По центру все молекулы будут иметь одинаковый половинный наклон (в разные стороны), то есть пропускать половину света. Такую же технологию использует компания Samsung под названием PVA, компания Sharp под названием ASV.

Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинства:

· глубокий чёрный цвет

· отсутствие как винтовой структуры кристаллов,

· отсутствие двойного магнитного поля.

Недостатки:

· пропадание деталей в тенях при перпендикулярном взгляде,

· зависимость цветового баланса изображения от угла зрения

5. Ориентировочные характеристики технологий

Ориентировочные характеристики технологий TN-film, PVA/MVA и IPS (S-IPS и т.д.) приведенные в таблице, где:

красный цвет (-) - "удовлетворительно",

желтый (+/-) – "хорошо",

а зеленый (+) – "отлично".

6. Применение

Дисплей на жидких кристаллах используется для отображения графической информации в компьютерных мониторах (также и ноутбуков), телевизорах, телефонах, цифровых фотоаппаратах, * электронных книгах, навигаторах, также - электронных переводчиках, калькуляторах, часах и тп. (реже, в них в основном используются ЖКИ), а также во многих других электронных устройствах.

Изображение в нём формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы с дисплеем (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью RGB-триад.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом.

7. Преимущества и недостатки

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц.

Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

· В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320×200) вообще не могут быть отображены на многих мониторах[источник не указан 15 дней].

· Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).

· Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.

· Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).

· Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.

· Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.

· Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей.

· Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.

· Вопреки расхожему мнению пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, не подверженных деградации пикселей.

Искажение цветности и контрастности изображения на ЖК-мониторе с малым углом обзора матрицы при взгляде под большим углом к нормали

Макрофотография типичной ЖК-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

8. Перспективы

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами). С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.