Как происходит преобразование в цифро аналоговом преобразователе. Способы идентификации и коррекции погрешностей ЦАП. Связь между цифровыми и аналоговыми величинами

Иногда складывается впечатление, что цифровой мир практически полностью сливается с реальным. Но несмотря на появление таких систем как «gigaFLOPS», «22 nm» и многих других реальный мир упорно остается аналоговым и никак не цифровым, а мы по-прежнему должны работать с нашими цифровым системами, которые в современном мире присутствуют практически везде.

Цифро-аналоговый преобразователь ЦАП преобразовывает входной цифровой сигнал в аналоговый выходной. Понятие «точность» может варьироваться (в зависимости от производителя), но мы опишем цифро-аналоговые преобразователи с разрешением от 8 до 16 бит и скоростью до 10 Мвыборок/с. Данные цифро-аналоговые преобразователи ЦАП используются в различных системах – аудио- и видео аппаратуре, управление процессором, измерительные приборы, системы автоматизации, системы электропривода и многих других. У каждой отдельной системы существуют индивидуальные требования к ЦАП, например, разрешение, статические и динамические характеристики, потребляемая мощность и другие.

В параметрах и техническом описании указываются погрешность смещения, дифференциальная нелинейность (DNL), интегральная нелинейность (INL) и другие параметры, необходимые для обеспечения хорошей производительности в системах постоянного тока, например таких, как управления электроприводом или каким-то технологическим процессом.

Некоторые приложения, например, для генерации сигнала на экране монитора, подчеркивают необходимость хорошей производительности на переменном токе, который в техническом описании указывается в таких параметрах как время отставания, шумы и полоса частот пропускания. Сделать само устройство с применением ЦАП значительно сложнее, чем выбрать цифро-аналоговый преобразователь из каталога, ведь в систему помимо ЦАП будет входить еще много электронных компонентов, влияние которых также нужно учитывать. Ниже мы попытаемся это рассмотреть.
Содержание:

Три основные архитектуры для точных ЦАП

При выборе точности цифро-аналогового преобразователя для вашей системы необходимо, чтоб спецификация ЦАП соответствовала требованиям системы. По сравнению с изобилием архитектур аналого-цифровых преобразователей АЦП выбор цифро-аналогового преобразователя может показаться легкой задачей, так как в ЦАП имеется всего три основных архитектуры. Но это только кажется что задача легкая, ведь различие в производительности каждой из архитектур довольно существенны.

В ЦАП используют три основные архитектуры – струнная (последовательная), R-2R, умножающий ЦАП (multiplying DAC (MDAC)).

Струнный цифро-аналоговый преобразователь

Концепция, лежащая в основе струнного цифро-аналогового преобразователя, исходит от Лорда Кельвина с середины 1800 годов:

Входной декодер имеет несколько переключателей, по одному для каждой комбинации битов. Каждый цифровой вход подключается к соответствующему напряжению усилителя выходного напряжения.

N – битовый ЦАП состоит из последовательности 2 N соответствующих резисторов, а также источника напряжения на одном конце, и «земли» на другом. Трехбитный ЦАП (рисунок выше) требует восемь резисторов и семь переключателей, но эти цифры растут очень сильно с повышением разрядности и для 16 битного ЦАП необходимо уже 65536 резисторов!!! Это число очень большое, даже для современных систем. Для уменьшения количества резисторов используют интерполяционные усилители и ответвления на отдельные резисторы.

Струнные или последовательные цифро-аналоговые преобразователи вполне подходят для большинства точных приложений таких как, контроль перемещений, системы автоматического управления (в сервоприводах и при управлении электроприводом).

Выходное напряжение струнных ЦАП изначально монотонное с хорошей дифференциальной нелинейность (DNL), но его интегральная нелинейность (INL) не очень хороша, так как напрямую зависит от погрешности резистора. С точки зрения систем переменного тока струнные ЦАП демонстрируют более низкую производительность в сравнении с другими архитектурами, так как обладает довольно высоким уровнем шумов, что вызвано большим полным сопротивлением резисторов, а структура коммутации приводит к замедлению обработки сигналов при переходах, ограничивая при этом скорость обновлений.

Архитектура R-2R

Данная архитектура наиболее распространена среди цифро-аналоговых преобразователей и схема ее показана ниже:

Данная архитектура использует только резисторы с двумя различными сопротивлениями, соотношения между которыми определяются как 2 к 1.

При установке конкретного бита соответствующий 2R резистор переключается в положение V REF — H , в противном случае он устанавливается в положение V REF — L (земля). В результате получаем выходное напряжение, которое будет являться суммой всех лестничных напряжений 2R.

Архитектура R-2R хорошо подходит для применения в промышленных установках и устройствах. Они более точны, чем струнные цифро-аналоговые преобразователи, имеют более низкий уровень шумов из-за наличия меньшего результирующего сопротивления, а также у них лучше INL и DNL производительность.

Преобразование сигнала в преобразователе с архитектурой R-2R представляет собой переключение ножки 2R между V REF — H и V REF — L . Внутренние резисторы и переключатели внутри устройства не совпадают идеально, что может приводить к определенным сбоям в процессе переключения.

Умножающий цифро-аналоговый преобразователь MDAC

Умножающий преобразователь MDAC тоже использует архитектуру R-2R, но с опорным напряжением V REF . Схема ниже:

Когда бит установлен, соответствующий 2R резистор подключается к виртуальной «земле» — суммирующий операционный усилитель. Именно поэтому умножающий цифро-аналоговый преобразователь выдает не напряжение, а ток, при этом опорное напряжение V REF может превышать номинальное или вовсе быть отрицательным.

Источник V REF «видит» в MDAC постоянное сопротивление, равное R, поэтому имеет всегда постоянный выходной ток, что повышает производительность во время быстрых переходов, так как нет необходимости ждать пока восстановится величина опорного напряжения. В зависимости от цифрового кода текущий поток разделяется на выходной контакт, и контакт заземления. Это значит, что выходной импеданс будет различен, а это несколько затрудняет выбор внешнего операционного усилителя ОУ.

Для повышения производительности выхода MDAC включают в качестве обратной связи внутренний резистор с тепловой реакцией, примерно соответствующей внутреннему резистору ступени. Внутренний шум из умножающего цифро-аналогового преобразователя исходит как от сопротивлений ступеней, так и от сопротивления обратной связи. Поскольку выходное сопротивление является кодозависимым, то от него зависит и коэффициент усиления шумов, хотя уровень шумов у MDAC значительно ниже, чем у последовательных (струнных) ЦАП. Стоит отметить, что внешний операционный усилитель ОУ может быть с низким уровнем шумов.

Одним из недостатков является то, что входной сигнал является обратным выходному, что в свою очередь требует дополнительной операции инвертирования.

Понимание параметров производительности переменного тока

Для получения максимальной производительности при работе цифро-аналогового преобразователя на переменном токе нужно понять определенные тонкости, а также возможные шаги, которые можно сделать для оптимизации.

Время, необходимое для выхода операционного усилителя ОУ на окончательное значение, является одним из основных показателей качества ЦАП. Ниже показаны участки времени срабатывания цифро-аналогового преобразователя:

  • Мертвое время (Dead time ): это время, необходимое для достижения 10% от требуемого значения выходного аналогового сигнала, начиная с момента, когда цифровой код поступил на цифро-аналоговый преобразователь;
  • Время нарастания выходного сигнала(Slew time ): время, необходимое для возрастания аналогового выходного сигнала с 10% до 90%;
  • Время восстановления и установления(Recovery time, linear settling time ): перерегулирование и установление аналогового сигнала заданной формы;

После установления значения выходного аналогового сигнала в диапазоне допустимой ошибки процесс считается завершенным даже в случае, если сигнал все еще колеблется, но не выходит за пределы допустимой ошибки.

Ниже показан переходный процесс реального 18 битного, одноканального, R-2R цифро-аналогового преобразователя DAC988:

Время установления сигнала измеряется от момента перехода сигнала LDAC на низкий уровень, после чего начался переходный процесс в системе. Обратите внимание на то, что процесс убывания сигнала самый длительный, с долгим процессом восстановления и несущественным влиянием на него статического сигнала.

Ошибки переключения

Идеальное изменение выходного сигнала ЦАП – это монотонное его нарастание или спадания, но в реальности это не так, а изменения сигнала происходят скачкообразно. В отличии от времени установления, ошибка переключения вызвана не соответствием внутренних переключений (доминирующий фактор), или же емкостными связями между входными цифровыми и выходными аналоговыми сигналами:

Ошибка характеризуется площадью под положительным и отрицательным ложным импульсом и измеряется в вольт-секундах (чаще всего в мкВ∙с или нВ∙с).

С возрастанием количества параллельных переключателей возрастает и ошибка. Это один из недостатков архитектуры R-2R. Ошибки в архитектуре R-2R наиболее заметна при изменении всех битов или при переключении наиболее значащих битов, при переключении из 0x7FFF в 0x8000 (для 16-битных ЦАП).

Если уменьшить количество переключающихся последовательных резисторов нельзя, то применяют на выходе преобразователя, схемы показаны ниже:

На рисунке а) показан самый простой RC фильтр, который устанавливается на выходе и позволяет несколько снизить уровень амплитуды выходной ошибки, однако тем самым он затягивает скорость нарастания сигнала, чем увеличивает время отставания. На рисунке b) представлен вариант с добавлением выборки и удержанием цепи. Да, это позволяет снизить ошибку практически до нуля, однако реализовать такую схему чрезвычайно сложно, так как она накладывает жесткие требования к временным показателям срабатывания, а также жесткую синхронизацию с частотой обновления ЦАП.

Источники шума

Шум – один из важнейших компонентов производительности современного цифро-аналогового преобразователя на переменном токе. Существует три основных источника шума – внутренняя цепь резисторов, внутренние и внешние усилители, источники опорного напряжения. Влияние внутренних резисторов на шумы преобразователя рассматривалось ранее в этой статье, поэтому рассмотрим остальные два источника шумов.

Шум внешнего операционного усилителя ОУ

Выход усилителя ЦАП является еще одним источником шумов. MDAC использует внешний операционный усилитель, но другие архитектуры используют внутренний ОУ, чем влияют на общий коэффициент выходных шумов.

Шум в схеме операционных усилителей имеет три основных составляющих:

  • 1/f шума или фликкер-шум;
  • Шумы широкополосного напряжения или белый шум;
  • Шумы напряжений и токов на резисторах;

Первые два считаются внутренними свойствами самого операционного усилителя ОУ, а полоса пропускания ограничивается самим цифро-аналоговым преобразователем, что значительно снижает влияние широкополосных шумов. Для лучшей производительности на переменном токе следует обратить внимание на операционные усилители с низким уровнем 1/f шумов.

Шумы от внешнего опорного напряжения V REF

Выходные шумы ЦАП напрямую зависят от шумов в опорном напряжении, которое может быть как внешним, так и внутренним. Для обеспечения максимальной производительности и минимального уровня шумов необходимо использовать качественные источники опорного напряжения. Существует огромный выбор источников опорного напряжения от нескольких производителей.

Вывод

Получение максимальной производительности переменного тока от прецизионного ЦАП представляет собой сочетание понимания технических характеристик, выбора правильной архитектуры и добавления нужных внешних компонентов, и, конечно же, следование проверенным методикам выбора и расчета электронных компонентов.

    ЦАП с широтно-импульсной модуляцией

    Последовательный ЦАП на переключаемых конденсаторах

Параллельные ЦАП

  • ЦАП с cуммированием весовых токов

    ЦАП на источниках тока

    Формирование выходного сигнала в виде напряжения

    Параллельный ЦАП на переключаемых конденсаторах

    ЦАП с суммированием напряжений

Интерфейсы цифро-аналоговых преобразователей

Применение ЦАП

  • Обработка чисел, имеющих знак

    Перемножители и делители функций

    Аттенюаторы и интеграторы на ЦАП

    Системы прямого цифрового синтеза сигналов

Параметры ЦАП

Цифро-аналоговые преобразователи

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

  • По виду выходного сигнала: с токовым выходом и выходом в виде напряжения

    По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода

    По числу ЦАП на кристалле: одноканальные и многоканальные

    По быстродействию: умеренного и высокого быстродействия

Рис. 1. Классификация ЦАП

Цап с cуммированием весовых токов

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда – 2 2 =4, у второго – 2 1 =2 и у младшего (МЗР) – 2 0 =1. Если вес МЗРI МЗР =1 мА, тоI СЗР =8 мА, а максимальный выходной ток преобразователяI вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствоватьI вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k -м разряде должен быть меньше, чем

R / R =2 – k

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде – 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи =U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R . Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

а входной ток

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, … , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

Аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя, DAC).

Как правило, АЦП — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

Разрешение

Разрешение АЦП — минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП — связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных АЦП измеряется в битах, в троичных АЦП измеряется в тритах. Например, двоичный 8-ми разрядный АЦП, способен выдать 256 дискретных значений (0…255), поскольку , троичный 8-ми разрядный АЦП, способен выдать 6561 дискретное значение, поскольку .

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

    Диапазон входных значений = от 0 до 10 вольт

    Разрядность двоичного АЦП 12 бит: 212 = 4096 уровней квантования

    Разрешение двоичного АЦП по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ

    Разрядность троичного АЦП 12 трит: 312 = 531 441 уровень квантования

    Разрешение троичного АЦП по напряжению: (10-0)/531441 = 0,0188 мВ = 18,8 мкВ

    Диапазон входных значений = от −10 до +10 вольт

    Разрядность двоичного АЦП 14 бит: 214 = 16384 уровней квантования

    Разрешение двоичного АЦП по напряжению: (10-(-10))/16384 = 20/16384 = 0,00122 вольт = 1,22 мВ

    Разрядность троичного АЦП 14 трит: 314 = 4 782 969 уровней квантования

    Разрешение троичного АЦП по напряжению: (10-(-10))/4782969 = 0,00418 мВ = 4,18 мкВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (effective number of bits, ENOB), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение С/Ш входного сигнала должно быть примерно 6 дБ на каждый бит разрядности (6 дБ соответствует четырёхкратному изменению уровня сигнала).

Типы преобразования

По способу применяемых алгоритмов АЦП делят на:

Последовательные прямого перебора

Последовательного приближения

Последовательные с сигма-дельта-модуляцией

Параллельные одноступенчатые

Параллельные двух- и более ступенчатые (конвейерные)

Передаточная характеристика АЦП — зависимость числового эквивалента выходного двоичного кода от величины входного аналогового сигнала. Говорят о линейных и нелинейных АЦП. Такое деление условное. Обе передаточные характеристики — ступенчатые. Но для «линейных» АЦП всегда возможно провести такую прямую линию, чтобы все точки передаточной характеристики, соответствующие входным значениям delta*2^k (где delta — шаг дискретизации, k лежит в диапазоне 0..N, где N — разрядность АЦП) были от неё равноудалены.

Точность

Имеется несколько источников погрешности АЦП. Ошибки квантования и (считая, что АЦП должен быть линейным) нелинейности присущи любому аналого-цифровому преобразованию. Кроме того, существуют так называемые апертурные ошибки которые являются следствием джиттера (англ. jitter) тактового генератора, они проявляются при преобразовании сигнала в целом (а не одного отсчёта).

Эти ошибки измеряются в единицах, называемых МЗР — младший значащий разряд. В приведённом выше примере 8-битного двоичного АЦП ошибка в 1 МЗР составляет 1/256 от полного диапазона сигнала, то есть 0,4 %, в 5-тритном троичном АЦП ошибка в 1 МЗР составляет 1/243 от полного диапазона сигнала, то есть 0,412 %, в 8-тритном троичном АЦП ошибка в 1 МЗР составляет 1/6561, то есть 0,015 %.

Типы АЦП

Ниже перечислены основные способы построения электронных АЦП:

АЦП прямого преобразования:

    Параллельные АЦП прямого преобразования, полностью параллельные АЦП, содержат по одному компаратору на каждый дискретный уровень входного сигнала. В любой момент времени только компараторы, соответствующие уровням ниже уровня входного сигнала, выдают на своём выходе сигнал превышения. Сигналы со всех компараторов поступают либо прямо в параллельный регистр, тогда обработка кода осуществляется программно, либо на аппаратный логический шифратор, аппаратно генерирующий нужный цифровой код в зависимости от кода на входе шифратора. Данные с шифратора фиксируются в параллельном регистре. Частота дискретизации параллельных АЦП, в общем случае, зависит от аппаратных характеристик аналоговых и логических элементов, а также от требуемой частоты выборки значений.

Параллельные АЦП прямого преобразования — самые быстрые, но обычно имеют разрешение не более 8 бит, так как влекут за собой большие аппаратные затраты ( компараторов). АЦП этого типа имеют очень большой размер кристалла микросхемы, высокую входную ёмкость, и могут выдавать кратковременные ошибки на выходе. Часто используются для видео или других высокочастотных сигналов, а также широко применяются в промышленности для отслеживания быстро изменяющихся процессов в реальном времени.

    Конвейерная работа АЦП, применяется в параллельно-последовательных АЦП прямого преобразования, в отличие от обычного режима работы параллельно-последовательных АЦП прямого преобразования, в котором данные передаются после полного преобразования, при конвейерной работе данные частичных преобразований передаются по мере готовности до окончания полного преобразования.

АЦП последовательного приближения или АЦП с поразрядным уравновешиванием содержит компаратор, вспомогательный ЦАП и регистр последовательного приближения. АЦП преобразует аналоговый сигнал в цифровой за N шагов, где N — разрядность АЦП. На каждом шаге определяется по одному биту искомого цифрового значения, начиная от СЗР и заканчивая МЗР. Последовательность действий по определению очередного бита заключается в следующем. На вспомогательном ЦАП выставляется аналоговое значение, образованное из битов, уже определённых на предыдущих шагах; бит, который должен быть определён на этом шаге, выставляется в 1, более младшие биты установлены в 0. Полученное на вспомогательном ЦАП значение сравнивается с входным аналоговым значением. Если значение входного сигнала больше значения на вспомогательном ЦАП, то определяемый бит получает значение 1, в противном случае 0. Таким образом, определение итогового цифрового значения напоминает двоичный поиск. АЦП этого типа обладают одновременно высокой скоростью и хорошим разрешением. Однако при отсутствии устройства выборки хранения погрешность будет значительно больше (представьте, что после оцифровки самого большого разряда сигнал начал меняться).

АЦП дифференциального кодирования (англ. delta-encoded ADC) содержат реверсивный счётчик, код с которого поступает на вспомогательный ЦАП. Входной сигнал и сигнал со вспомогательного ЦАП сравниваются на компараторе. Благодаря отрицательной обратной связи с компаратора на счётчик код на счётчике постоянно меняется так, чтобы сигнал со вспомогательного ЦАП как можно меньше отличался от входного сигнала. По прошествии некоторого времени разница сигналов становится меньше, чем МЗР, при этом код счётчика считывается как выходной цифровой сигнал АЦП. АЦП этого типа имеют очень большой диапазон входного сигнала и высокое разрешение, но время преобразования зависит от входного сигнала, хотя и ограничено сверху. В худшем случае время преобразования равно Tmax=(2q)/fс, где q — разрядность АЦП, fс — частота тактового генератора счётчика. АЦП дифференциального кодирования обычно являются хорошим выбором для оцифровки сигналов реального мира, так как большинство сигналов в физических системах не склонны к скачкообразным изменениям. В некоторых АЦП применяется комбинированный подход: дифференциальное кодирование и последовательное приближение; это особенно хорошо работает в случаях, когда известно, что высокочастотные компоненты в сигнале относительно невелики.

АЦП сравнения с пилообразным сигналом (некоторыеАЦП этого типа называют Интегрирующие АЦП, также к ним относятся АЦП последовательного счета) содержат генератор пилообразного напряжения (в АЦП последовательного счета генератор ступенчатого напряжения, состоящий из счетчика и ЦАП), компаратор и счётчик времени. Пилообразный сигнал линейно нарастает от нижнего до верхнего уровня, затем быстро спадает до нижнего уровня. В момент начала нарастания запускается счётчик времени. Когда пилообразный сигнал достигает уровня входного сигнала, компаратор срабатывает и останавливает счётчик; значение считывается со счётчика и подаётся на выход АЦП. Данный тип АЦП является наиболее простым по структуре и содержит минимальное число элементов. Вместе с тем простейшие АЦП этого типа обладают довольно низкой точностью и чувствительны к температуре и другим внешним параметрам. Для увеличения точности генератор пилообразного сигнала может быть построен на основе счётчика и вспомогательного ЦАП, однако такая структура не имеет никаких других преимуществ по сравнению с АЦП последовательного приближения и АЦП дифференциального кодирования.

АЦП с уравновешиванием заряда (к ним относятся АЦП с двухстадийным интегрированием, АЦП с многостадийным интегрированием и некоторые другие) содержат генератор стабильного тока, компаратор, интегратор тока, тактовый генератор и счётчик импульсов. Преобразование происходит в два этапа (двухстадийное интегрирование). На первом этапе значение входного напряжения преобразуется в ток (пропорциональный входному напряжению), который подаётся на интегратор тока, заряд которого изначально равен нулю. Этот процесс длится в течение времени TN, где T — период тактового генератора, N — константа (большое целое число, определяет время накопления заряда). По прошествии этого времени вход интегратора отключается от входа АЦП и подключается к генератору стабильного тока. Полярность генератора такова, что он уменьшает заряд, накопленный в интеграторе. Процесс разряда длится до тех пор, пока заряд в интеграторе не уменьшится до нуля. Время разряда измеряется путём счёта тактовых импульсов от момента начала разряда до достижения нулевого заряда на интеграторе. Посчитанное количество тактовых импульсов и будет выходным кодом АЦП. Можно показать, что количество импульсов n, посчитанное за время разряда, равно: n=UвхN(RI0)−1, где Uвх — входное напряжение АЦП, N — число импульсов этапа накопления (определено выше), R — сопротивление резистора, преобразующего входное напряжение в ток, I0 — значение тока от генератора стабильного тока, разряжающего интегратор на втором этапе. Таким образом, потенциально нестабильные параметры системы (прежде всего, ёмкость конденсатора интегратора) не входят в итоговое выражение. Это является следствием двухстадийности процесса: погрешности, введённые на первом и втором этапах, взаимно вычитаются. Не предъявляются жёсткие требования даже к долговременной стабильности тактового генератора и напряжению смещения компаратора: эти параметры должны быть стабильны лишь кратковременно, то есть в течение каждого преобразования (не более 2TN). Фактически, принцип двухстадийного интегрирования позволяет напрямую преобразовывать отношение двух аналоговых величин (входного и образцового тока) в отношение числовых кодов (n и N в терминах, определённых выше) практически без внесения дополнительных ошибок. Типичная разрядность АЦП этого типа составляет от 10 до 18 двоичных разрядов. Дополнительным достоинством является возможность построения преобразователей, нечувствительных к периодическим помехам (например, помеха от сетевого питания) благодаря точному интегрированию входного сигнала за фиксированный временной интервал. Недостатком данного типа АЦП является низкая скорость преобразования. АЦП с уравновешиванием заряда используются в измерительных приборах высокой точности.

АЦП с промежуточным преобразованием в частоту следования импульсов. Сигнал с датчика проходит через преобразователь уровня, а затем через преобразователь напряжение-частота. Таким образом на вход непосредственно логической схемы поступает сигнал, характеристикой которого является лишь частота импульсов. Логический счётчик принимает эти импульсы на вход в течение времени выборки, таким образом, выдавая к её окончанию кодовую комбинацию, численно равную количеству импульсов, пришедших на преобразователь за время выборки. Такие АЦП довольно медленны и не очень точны, но тем не менее очень просты в исполнении и поэтому имеют низкую стоимость.

Сигма-дельта-АЦП (называемые также дельта-сигма АЦП) производит аналого-цифровое преобразование с частотой дискретизации, во много раз превышающей требуемую и путём фильтрации оставляет в сигнале только нужную спектральную полосу.

Неэлектронные АЦП обычно строятся на тех же принципах.

Коммерческие АЦП

Как правило, выпускаются в виде микросхем.

Для большинства АЦП разрядность составляет от 6 до 24 бит, частота дискретизации до 1 МГц. Мега- и гигагерцовые АЦП также доступны (февраль 2002). Мегагерцовые АЦП требуются в цифровых видеокамерах, устройствах видеозахвата и цифровых ТВ-тюнерах для оцифровки полного видеосигнала. Коммерческие АЦП обычно имеют выходную ошибку от ±0,5 до ±1,5 МЗР.

Один из факторов увеличивающих стоимость микросхем — это количество выводов, поскольку они вынуждают делать корпус микросхемы больше, и каждый вывод должен быть присоединён к кристаллу. Для уменьшения количества выводов часто АЦП, работающие на низких частотах дискретизации, имеют последовательный интерфейс. Применение АЦП с последовательным интерфейсом зачастую позволяет увеличить плотность монтажа и создать плату с меньшей площадью.

Часто микросхемы АЦП имеют несколько аналоговых входов, подключённых внутри микросхемы к единственному АЦП через аналоговый мультиплексор. Различные модели АЦП могут включать в себя устройства выборки-хранения, инструментальные усилители или высоковольтный дифференциальный вход и другие подобные цепи.

Другие применения

Аналого-цифровое преобразование используется везде, где требуется принимать аналоговый сигнал и обрабатывать его в цифровой форме.

Специальные видео-АЦП используются в компьютерных ТВ-тюнерах, платах видеовхода, видеокамерах для оцифровки видеосигнала. Микрофонные и линейные аудиовходы компьютеров подключены к аудио-АЦП.

АЦП являются составной частью систем сбора данных.

АЦП последовательного приближения разрядностью 8-12 бит и сигма-дельта-АЦП разрядностью 16-24 бита встраиваются в однокристальные микроконтроллеры.

Очень быстрые АЦП необходимы в цифровых осциллографах (используются параллельные и конвеерные АЦП)

Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика (сигма-дельта-АЦП).

АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора.

Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС.

Цифро-аналоговый преобразователь (ЦАП ) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток , напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

Аналого-цифровой преобразователь (АЦП) производит обратную операцию.

Звуковой ЦАП обычно получает на вход цифровой сигнал в импульсно-кодовой модуляции (англ. PCM, pulse-code modulation). Задача преобразования различных сжатых форматов в PCM выполняется соответствующими кодеками.

Применение

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

Широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

ЦАП передискретизации, такие как дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;

ЦАП взвешивающего типа, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R, называемой матрицей постоянного импеданса, которая имеет два вида включения: прямое — матрица токов и инверсное — матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды);

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

Разрядность — количество различных уровней выходного сигнала, которые ЦАП может воспроизвести. Обычно задается в битах; количество бит есть логарифм по основанию 2 от количества уровней. Например, однобитный ЦАП способен воспроизвести два () уровня, а восьмибитный — 256 () уровней. Разрядность тесно связана с эффективной разрядностью (англ. ENOB, Effective Number of Bits), которая показывает реальное разрешение, достижимое на данном ЦАП.

Максимальная частота дискретизации — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Найквиста — Шеннона (известной также как теорема Котельникова), для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешевых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.

Монотонность — свойство ЦАП увеличивать аналоговый выходной сигнал при увеличении входного кода.

THD+N (суммарные гармонические искажения + шум) — мера искажений и шума вносимых в сигнал ЦАПом. Выражается в процентах мощности гармоник и шума в выходном сигнале. Важный параметр при малосигнальных применениях ЦАП.

Динамический диапазон — соотношение наибольшего и наименьшего сигналов, которые может воспроизвести ЦАП, выражается в децибелах. Данный параметр связан с разрядностью и шумовым порогом.

Статические характеристики:

    DNL (дифференциальная нелинейность) — характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;

    INL (интегральная нелинейность) — характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;

    усиление;

    смещение.

Частотные характеристики:

    SNDR (отношение сигнал/шум+искажения) — характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;

    HDi (коэффициент i-й гармоники) — характеризует отношение i-й гармоники к основной гармонике;

    THD (коэффициент гармонических искажений) — отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники

Лекция №3

«Аналого-цифровое и цифро-аналоговое преобразование».

В микропроцессорных системах роль импульсного элемента выполняет аналого-цифровой преобразователь (АЦП), а роль экстраполятора – цифро-аналоговый преобразователь (ЦАП).

Аналого-цифровое преобразование заключается в преобразовании информации, содержащейся в аналоговом сигнале, в цифровой код. Цифро-аналоговое преобразование призвано выполнять обратную задачу, т.е. преобразовывать число, представленное в виде цифрового кода, в эквивалентный аналоговый сигнал.

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.3.1.


На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.3.2.


Входные сигналы могут принимать любые значения в диапазоне от – U max до U max , а выходные соответствуют восьми (2 3) дискретным уровням. Величина входного напряжения, при которой происходит переход от одного зачения выходного кода АЦП к другому соседнему значению, называется напряжением межкодового перехода . Разность между двумя смежными значениями межкодовых переходов называется шагом квантования или единицей младшего значащего разряда (МЗР) .Начальной точкой характеристики преобразования называется точка, определяемая значением входного сигнала, определяемого как

(3.1),

где U 0,1 – напряжение первого межкодового перехода, U LSB – шаг квантования (LSB – Least Significant Bit ). преобразования соответствует входному напряжению, определяемому соотношением

(3.2).

Область значений входного напряжения АЦП, ограниченная значениями U 0,1 и U N-1,N называется диапазоном входного напряжения .

(3.3).

Диапазон входного напряжения и величину младшего разряда N -разрядного АЦП и ЦАП связывает соотношение

(3.4).

Напряжение

(3.5)

называется напряжением полной шкалы (FSR – Full Scale Range ). Как правило, этот параметропределяется уровнем выходного сигнала источника опорного напряжения, подключенного к АЦП. Величина шага квантования или единицы младшего разряда т.о. равна

(3.6),

а величина единицы старшего значащего разряда

(3.7).

Как видно из рис.3.2, в процессе преобразования возникает ошибка, не превышающая по величине половины величины младшего разряда U LSB /2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В большинстве случаев эти характеристики антогонистичны друг другу. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные (Flash ) АЦП, «сигма-дельта» АЦП и др.

Структурная схема АЦП последовательных приближений представлена на рис.3.3.



Основными элементами устройства являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений. Очередность сравниваемых кодов удовлетворяет правилу половинного деления. В начале преобразования входной код ЦАП устанавливается в состояние, в котором все разряды кроме старшего равны 0, а старший равен 1. При этой комбинации на выходе ЦАП формируется напряжение, равное половине диапазона входного напряжения. Это напряжение сравнивается со входным напряжением на компараторе. Если входной сигнал больше сигнала, поступающего с ЦАП, то старший разряд выходного кода устанавливается в 1, в противном случае он сбрасывается в 0. На следующем такте частично сформированный таким образом код снова поступает на вход ЦАП, в нем устанавливается в единицу следующий разряд и сравнение повторяется. Процесс продолжается до сравнения младшего бита. Т.о. для формирования N -разрядного выходного кода необходимо N одинаковых элементарных тактов сравнения. Это означает, что при прочих равных условиях быстродействие такого АЦП уменьшается с ростом его разрядности. Внутренние элементы АЦП последовательных приближений (ЦАП и компаратор) должны обладать точностными показателями лучше величины половины младшего разряда АЦП.

Структурная схема параллельного (Flash ) АЦП представлена на рис.3.4.



В этом случае входное напряжение подается для сравнения на одноименные входы сразу N -1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Т.о. для обеспечения N -разрядного преобразования необходимо 2 N резисторов делителя и 2 N -1 компаратор. Это один из самых быстрых способов преобразования. Однако, при большой разрядности он требует больших аппаратных затрат. Точность всех резисторов делителя и компараторов снова должна быть лучше половины величины младшего разряда.

Структурная схема АЦП двойного интегрирования представлена на рис.3.5.



Основными элементами системы являются аналоговый коммутатор, состоящий из ключей SW 1, SW 2, SW 3, интегратор И, компаратор К и счетчик С. Процесс преобразования состоит из трех фаз (рис.3.6).



На первой фазе замкнут ключ SW 1, а остальные ключи разомкнуты. Через замкнутый ключ SW 1 входное напряжение подается на интегратор, который в течение фиксированного интервала времени интегрирует входной сигнал. По истечение этого интервала времени уровень выходного сигнала интегратора пропорционален значению входного сигнала. На втором этапе преобразования ключ SW 1 размыкается, а ключ SW 2 замыкается, и на вход интегратора подается сигнал с источника опорного напряжения. Конденсатор интегратора разряжается от напряжения, накопленного в первом интервале преобразования с постоянной скоростью, пропорциональной опорному напряжению. Этот этап длится до тех пор, пока выходное напряжение интегратора не упадет до нуля, о чем свидетельствует выходной сигнал компаратора, сравнивающего сигнал интегратора с нулем. Длительность второго этапа пропорциональна входному напряжению преобразователя. В течение всего второго этапа на счетчик помтупают высокочастотные импульсы с калиброванной частотой. Т.о. по истечению второго этапа цифровые показания счетчика пропорциональны входному напряжению. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. В часности, стабильность емкости интегратора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Болле того, ошибки дрейфа и смещения компарптора компенсируются благодаря тому, что каждый этап преобразования начинается и заканчивается на одном и том же напряжении. Для повышения точности используется третий этап преобразования, когда на вход интегратора через ключ SW 3 подается нулевой сигнал. Поскольку на этом этапе используется тот же интегратор и компаратор, то вычитание выходного значения ошибки при нуле из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Жесткие требования не предъявляются даже к частоте тактовых импульсов, поступающих на счетчик, т.к. фиксированный интервал времени на первом этапе преобразования формируется из тех же самых импульсов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуютя рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Уровню квантования, лежащему в окрестностях нуля входного сигнала соответствуют напряжения межкодовых переходов –0.5 U LSB и 0.5 U LSB (первый имеет место только в случае биполярного входного сигнала). Однако, в реальных устройствах, напряжения данных межкодовых переходов могут отличаться от этих идеальных значений. Отклонение реальных уровней этих напряжениймежкодовых переходов от их идеальных значений называется ошибкой биполярного смещения нуля (Bipolar Zero Error ) и ошибкой униполярного смещения нуля (Zero Offset Error ) соответственно. При биполярных диапазонах преобразования обычно используют ошибку смещения нуля, а при униполярных – ошибку униполярного смещения. Эта ошибка приводит к параллельному смещению реальной характеристики преобразования относительно идеальной характеристики вдорль оси абсцисс (рис.3.7).


Отклонение уровня входного сигнала соответствующего последнему межкодовому переходу от своего идеального значения U FSR -1.5 U LSB , называется ошибкой полной шкалы (Full Scale Error ).

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования (Gain Error ) (рис.3.7).Она включает ошибки на концах шкалы, но не включает ошибки нуля шкалы. Для униполярного диапазона она определяется как разность между ошибкой полной шкалы и ошибкой униполярного смещения нуля, а для биполярного диапазона – как разность между ошибкой полной шкалы и ошибкой биполярного смещения нуля. По сути дела в любом случае это отклонение идеального расстояния между последним и первым межкодовыми переходами (равного U FSR -2 U LSB ) от его реального значения.

Ошибки смещения нуля и коэффициента преобразования можно скомпенсировать подстройкой предварительного усилителя АЦП. Для этого необходимо иметь вольтметр с точностью не хуже 0.1 U LSB . Для независимости этих двух ошибок сначала корректируют ошибку смещения нуля, а затем, ошибку коэффициента преобразования. Для коррекции ошибки смещения нуля АЦП необходимо:

1. Установить входное напряжение точно на уровне 0.5 U LSB ;

2. Подстраивать смещение предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 00…01.

Для коррекции ошибки коэффициента преобразования необходимо:

1. Установить входное напряжение точно на уровне U FSR -1.5 U LSB ;

2. Подстраивать коэффициент усиления предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 11…1.

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны U LSB (рис.3.8).


Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования U LSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна U LSB , то у АЦП могут появиться так называемые “пропущенные коды” (рис.3.3). Это влечет локальное резкое изменение коэффициента передачи АЦП, что в замкнутых системах управления может привести к потере устойчивости.

Для тех приложений, где важно поддерживать выходной сигнал с заданной точностью, важно на солько точно выходные коды АЦП соответствуют напряжениям межкодовых переходов. Максимальное отклонение центра шага квантования на реальной характеристике АЦП от линеаризованной характеристики называется интегральной нелинейностью (INL – Integral Nonlinearity) или относительной точностью (Relative Accuracy) АЦП (рис.3.9).


Линеаризованная характеристика проводится через крайние точки реальной характеристики преобразования, после того, как они были откалиброваны, т.е. устранены ошибки смещения нуля и коэффициента преобразования.

Ошибки дифференциальной и интегральной нелинейности скомпенсировать простыми средствами практически невозможно.

Разрешающей способностью АЦП (Resolution ) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

(3.8).

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range ) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

(3.9).

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR =72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio ) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей. Для идеального N -разрядного АЦП, который генерирует лишь шум квантования SNR , выражаемый в децибелах, можно определить как


(3.10),

где N – разрядность АЦП. Так, для 12-разрядного идеального АЦП SNR =74 дБ. Это значение больше значения динамического диапазона такого же АЦП т.к. минимальный уровень воспринимаемого сигнала должен быть больше уровня шума. В данной формуле учитывается только шум квантования и не учитываются другие источники шума, существующие в реальных АЦП. Поэтому, значения SNR для реальных АЦП как правило ниже идеального. Типичным значением SNR для реального 12-разрядного АЦП является 68-70 дБ.

Если входной сигнал имеет размах меньше U FSR , то в последнюю формулу нужно внести корректировку

(3.11),

где К ОС – ослабление входного сигнала, выраженное в дБ. Так, если входной сигнал 12-разрядного АЦП имеет амплитуду в 10 раз меньше половины напряжения полной шкалы, то К ОС =-20 дБ и SNR =74 дБ – 20 дБ=54 дБ.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП (ENOB – Effective Number of Bits ). Оно определяется по формуле

(3.12).

Этот показатель может характеризовать действительную решающую способность реального АЦП, Так, 12-разрядный АЦП, у которого SNR =68 дБ для сигнала с К ОС =-20 дБ является на самом деле 7-разрядным (ENOB =7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник (THD – Total Harmonic Distortion ) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

(3.13),

где n обычно ограничивают на уровне 6 или 9. Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности (FPBW – Full Power Bandwidth ) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time ) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазонувходного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Вследствие различного рода погрешностей характеристика реального АЦП является нелинейной. Если на вход устройства с нелинейностями подать сигнал, спектр которого состоит из двух гармоник f a и f b , то в спектре выходного сигнала такого устройства кроме основных гармоник будут присутствовать интермодуляционные субгармоники с частотами , где m , n =1,2,3,… Субгармоники второго порядка – это f a + f b , f a - f b , субгармоники третьего порядка – это 2 f a + f b , 2 f a - f b , f a +2 f b , f a -2 f b . Если входные синусоиды имеют близкие частоты, расположенные вблизи верхнего края полосы пропускания, то субгармоники второго порядка далеко отстоят от входных синусоид и располагаются в области нижних частот, тогда как субгармоники третьего порядка имеют частоты, близкие к входным частотам.

Коэффициент интермодуляционных искажений (Intermodulatin Distortion ) – это отношение суммы среднеквадратических значений интермодуляционных субгармоник определенного порядка к сумме среднеквадратических значений основных гармоник, выраженное в дБ

(3.14).

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП (Conversion Time ) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).



Сигнал начала преобразования поступает в момент t 0 , а выходной код появляется в момент t 1 . За это время входной сигнал успел измениться на величину D U . Возникает неопределенность: какому уровню значения входного сигнала в диапазоне U 0 – U 0 + D U соответствует данный выходной код. Для сохранения точности преобразования на уровне единицы младшего разряда необходимо чтобы за время преобразования изменение значения сигнала на входе АЦП составило бы не более величины единицы младшего разряда

(3.15).

Изменение уровня сигнала за время преобразования можно приблизительно вычислить как

(3.16),

где U in – входное напряжение АЦП, T c – время преобразования. Подставляя (3.16) в (3.15) получим

(3.17).

Если на входе действует синусоидальный сигнал с частотой f

(3.18),

то его производная будет равна

(3.19).

Она принимает максимальное значение когда косинус равен 1. Подставляя с учетом этого (3.9) в (3.7) получим

, или

(3.20)

Конечное время преобразования АЦП приводит к требованию ограничения скорости изменения входного сигнала. Для того, чтобы уменьшить апертурную погрешность и т.о. ослабить ограничение на скорость изменения входного сигнала АЦП на входе преобразователя устанавливается т.н. «устройство выборки-хранения» (УВХ) (Track / Hold Unit ). Упрощенная схема УВХ представлена на рис.3.11.



Это устройство имеет два режима работы: режим выборки и режим фиксации. Режим выборки соответствует замкнутому состоянию ключа SW . В этом режиме выходное напряжение УВХ повторяет его входное напряжение. Режим фиксации включается по команде размыкающей ключ SW . При этом связь между входом и выходом УВХ прерывается, а выходной сигнал поддерживается на постоянном уровне, соответствующем уровню входного сигнала на момент поступления команды фиксации за счет заряда, накопленного на конденсаторе. Т.о., если подать команду фиксации непосредственно перед началом преобразования АЦП, то выходной сигнал УВХ будет поддерживаться на неизменном уровне в течение всего времени преобразования. После окончания преобразования УВХ снова переводится в режим выборки. Работа реального УВХ несколько отличается от идеального случая, который был описан (рис.3.12).



(3.21),

где f – частота входного сигнала, t A – величина апертурной неопределенности.

В реальных УВХ выходной сигнал не может оставаться абсолютно неизменным в течение конечного времени преобразования. Конденсатор будет постепенно разряжаться маленьким входным током выходного буфера. Для сохранения требуемой точности необходимо чтобы за время преобразования заряд конденсатора не изменился больше чем на 0.5 U LSB .

Цифро-аналоговые преобразователи устанавливаются обычно на выходе микропроцессорной системы для преобразования ее выходных кодов в аналоговый сигнал, подаваемый на непрерывный объект регулирования. Идеальная статическая характеристика 3-разрядного ЦАП представлена на рис.3.13.


Начальная точка характеристики определяетсякак точка, соответствующая первому (нулевому) входному коду U 00…0 . Конечная точка характеристики определяетсякак точка, соответствующая последнему входному коду U 11…1 . Определения диапазона выходного напряжения, единицы младшего разряда квантования, ошибки смещения нуля, ошибки коэффициента преобразования аналогичны соответствующим характеристикам АЦП.

С точки зрения структурной организации у ЦАП наблюдается гораздо меньшее разнообразие вариантов построения преобразователя. Основной структурой ЦАП является т.н. “цепная R -2 R схема” (рис.3.14).



Легко показать, что входной ток схемы равен I in = U REF / R , а токи последовательных звеньев цепи соответственно I in /2, I in /4, I in /8 и т.д. Для преобразования входного цифрового кода в выходной ток достаточно собрать все токи плечей, соответствующих единицам во входном коде, в выходной точке преобразователя (рис.3.15).



Если к выходной точке преобразователя подключить операционный усилитель, то выходное напряжение можно определить как

(3.22),

где K – входной цифровой код, N – разрядность ЦАП.

Все существующие ЦАП делятся на две больших группы: ЦАП с выходом по току и ЦАП с выходом по напряжению. Различие между ними заключается в отсутствии или наличии у микросхемы ЦАП оконечного каскада на операционном усилителе. ЦАП с выходом по напряжению являются более завершенными устройствами и требуют меньше дополнительных элементов для своей работы. Однако, оконечный каскад наряду с параметрами лесничной схемы определяет динамические и точностные параметры ЦАП. Выполнить точный быстродействующий операционный усилитель на одном кристалле с ЦАП часто бывает затруднительно. Поэтому большинство быстродействующих ЦАП имеют выход по току.

Дифференциальная нелинейность для ЦАП определяется как отклонение расстояния между двумя соседними уровнями выходного аналогового сигнала от идеального значения U LSB . Большое значение дифференциальной нелинейности может привести к тому, что ЦАП станет немонотонным. Это означает, что увеличение цифрового кода будет приводить к уменьшению выходного сигнала на каком нибудь участке характеристики (рис.3.16). Это может приводить к нежелательной генерации в системе.


Интегральная нелинейность для ЦАП определяется как наибольшее отклонение уровня аналогового выходного сигнала от прямой линии, проведенной через точки, соответствующие первому и последнему коду, после того, как они отрегулированы.

Время установления ЦАП определяется как время, за которое выходной сигал ЦАП установится на заданном уровне с погрешностью не более 0.5 U LSB после того, как входной код изменился со значения 00…0 до значения 11…1. Если ЦАП имеет входные регистры, то определенная часть времени установления обусловлена фиксированной задержкой прохождения цифровых сигналов, и лишь оставшаяся часть – инерционностью самой схемы ЦАП. Поэтому время установления измеряют обычно не от момента поступления нового кода на вход ЦАП, а от момента начала изменения выходного сигнала, соответствующего новому коду, до момента установления выходного сигнала с точностью 0.5U LSB (рис.3.17) .



В этом случае время установления определяет максимальную частоту стробирования ЦАП

(3.23),

где t S – время установления.

Входные цифровые цепи ЦАП имеют конечное быстродействие. В добавок, скорость распространения сигналов, соответствующих различным разрядом входного кода, неодинакова вследствие разброса параметров элементов и схемных особенностей. В результате этого плечи лестничной схемы ЦАП при поступлении нового кода переключаются не синхронно, а с некоторой задержкой один относительно другого. Это приводит к тому, что в диаграмме выходного напряжения ЦАП, при переходе от одного установившегося значения к другому наблюдаются выбросы различной амплитуды и направленности (рис.3.18).




Согласно алгоритму работы, ЦАП представляет из себя экстраполятор нулевого порядка, частотная характеристика которого может быть представлена выражением

(3.24),

где w s – частота дискретизации. Амплитудно-частотная характеристика ЦАП представлена на рис.3.20.



Как видно, на частоте 0.5 w s восстанавливаемый сигнал ослабляется на 3.92 дБ по сравнению с низкочастотными составляющими сигнала. Таким образом, имеет место небольшое искажение спектра восстанавливаемого сигнала. В большинстве случаев это небольшое искажение не сказывается значительно на параметрах системы. Однако, в тех случаях, когда необходима повышенная линейность спектральных характеристик системы (например в системах обработки звука), для выравнивания результирующего спектра на выходе ЦАП необходимо ставить специальный восстанавливающий фильтр с частотной характеристикой типа x / sin (x ).

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контролябольшое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в