Обработка сигналов в условиях воздействия импульсных помех. Энергетический спектр модулированных сигналов

Борьба с шумами и помехами является основной задачей во многих областях радиотехники. Обеспечить высокую помехоустойчивость систем передачи информации можно разными путями. Например, создают такие устройства для обработки, которые некоторым наилучшим образом выделяют сигнал, искаженный присутствием помехи. Другой путь заключается в совершенствовании структуры передаваемых сигналов, использовании помехоустойчивых способов кодирования и модуляции. Примерами таких помехоустойчивых сигналов служат коды Баркера и сигналы с линейной частотной модуляцией, изученные в гл. 3, 4.

16.1. Выделение полезного сигнала с помощью линейного частотного фильтра

Чтобы выделить полезный сигнал, искаженный наличием шума, можно прибегнуть к частотной фильтрации. Пусть частотный коэффициент передачи линейного стационарного фильтра выбран так, что значения величины велики в области частот, где сконцентрирована основная доля энергии сигнала, и малы там, где велика спектральная плотность мощности шума. Следует ожидать что, подав на вход такого фильтра сумму сигнала и шума, на выходе можно получить заметное увеличение относительной доли полезного сигнала.

Отношение сигнал/шум.

Придадим данному положению количественную формулировку. Пусть на входе линейного фильтра присутствует входной сигнал

являющийся суммой полезного сигнала и шума Здесь и в дальнейшем предполагается, что оба эти сигнала являются узкополосными с одинаковыми центральными частотами . Считается, что сигналы некоррелированы в том смысле, что среднее значение произведения

Будем также предполагать стационарность этих сигналов на неограниченно протяженном интервале времени.

Интенсивность колебаний на входе фильтра можно характеризовать величиной среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (16.2) есть сумма средних квадратов полезного сигнала и шума:

где - дисперсия входного шума.

Для описания относительного уровня сигнала принято вводить так называемое отношение сигнал/шум на входе фильтра по формуле

или в логарифмических единицах (дБ)

Отметим, что безразмерное число характеризует уровень сигнала по отношению к уровню шума весьма приближенно и неполно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что реализации сигнала и шума в каком-нибудь содержательном смысле «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации данного шума представляют собой квазигармонические колебания. Естественно, что в этом случае можно пользоваться формулой (16.4) для оценки уровня полезных модулированных сигналов вида AM или ЧМ.

Пример 16.1. На входе фильтра присутствует однотональный AM-сигнал и гауссов шум односторонний спектр мощности которого

Найти отношение сигнал/шум на входе фильтра.

Среднюю мощность сигнала получим, усредняя его квадрат по времени:

Здесь первое слагаемое соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать, что

Дисперсия шума на входе фильтра

Отношение сигнал/шум

оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Отношение сигнал/шум на выходе фильтра.

Линейный фильтр подчиняется принципу суперпозиции. Сигнал и шум обрабатываются таким фильтром независимо и создают на выходе сигнал со средним квадратом

Это дает возможность ввести отношение сигнал/шум на выходе фильтра:

Будем называть выигрышем фильтра по отношению сигнал/шум величину

которая также может быть выражена в децибелах:

(16.10)

Ясно, что если то фильтрация суммы сигнала и шума приводит к благоприятному результату в смысле принятого нами критерия - повышению относительного уровня полезного сигнала на выходе.

Ответ на вопрос о том, какое отношение сигнал/шум следует считать достаточным для нормального функционирования радиосистемы, целиком зависит от назначения этой системы и всей совокупности предъявляемых технических требований.

Средняя мощность узкополосного сигнала.

Понятие средней мощности целесообразно вводить только по отношению к узкополосным сигналам, неограниченно протяженным во времени. Удобной и достаточно общей математической моделью такого сигнала является сумма

(16.11)

в которой амплитуды и фазы произвольны, а все частоты сосредоточены в узкой полосе вокруг опорной частоты Мгновенная мощность такого сигнала

Среднюю мощность полезного сигнала можно получить, проведя усреднение по времени:

Очевидно, что вклад в сумму дадут только слагаемые с совпадающими индексами, когда Отсюда следует, что

(16.12)

Влияние частотного коэффициента переда и фильтра на отношение сигнал/шум.

Если сигнал вида (16.11) проходит через линейный фильтр с частотным коэффициентом передачи , то средняя мощность сигнала на выходе

Дисперсия выходного шума

Отсюда находим выражение для отношения сигнал/шум на выходе фильтра:

Данная формула содержит полное решение поставленной задачи и позволяет в принципе, зная спектры сигнала и шума, так подобрать АЧХ фильтра, чтобы получить ощутимый выигрыш. Следует, однако, иметь в виду, что полезный сигнал, как правило, сам претерпевает некоторые, порой значительные искажения.

В случае периодического сигнала целесообразно использовать его накопление в течении ряда периодов. Покажем, как может быть получен существенный выигрыш в отношении сигнал/шум на выходе фильтра. На периодическом сигнале этот выигрыш может быть реализован в статических свойствах сигнала и шума (который по прежнему будем считать«белым»). В частности, может быть использовано различие в корреляционных функциях детерминированного сигнала и шума. При этом мы рассмотрим последовательно два варианта построения «корреляционных фильтров». В первом - будем считать, что сигнал периодический, но период не известен;во-втором - период сигнала известен, но не известна его «фаза».

Рассмотрим первый вариант.

4.1 Выделение периодического сигнала из аддитивной его смеси с шумом, когда период не известен.

Используем алгоритм оценки корреляционной функции

Здесь и автокорреляционные функции сигнала и шума, а и - взаимокорреляционные функции сигнала и шума. Так как сигнал и шум можно считать не зависимыми процессами, то взаимно корреляционные функции и равны нулю.

При вычислении интеграла будем различать два случая: и . Напомним, что - задержка выборочных значений (сдвиг аргумента) второго сомножителя в подынтегральной функции (4.1). Знаменатель подынтегральной функции имеет два корня: .

Вычисляя этот интеграл по формуле разложения , по вычетам, получаем с учетом знания , явный вид:

(4.3)

Полагая , получаем мощность шума на выходе:

(4.4)

Напомним, что этот результат был получен и ранее,формула (3.22).

Значение функции корреляции для периодического сигнала было приведено выше (1.14). Учитывая его, получаем значение искомой корреляционной функции:

Членимеет смысл «шума», обусловлен величиной суммы при конечном времени интегрирования и усреднения,стремится к нулю при увеличении T и t . Обращаясь к (4.5) видим, что при увеличении сдвига-задержки первое слагаемое (сумма) описывает неубывающую осциллирующую функцию, полезный сигнал по аргументу (а не t ) , второе - экспоненциально убывает. Таким образом обеспечивается принципиальная возможность выделить осциллирующий член - полезный сигнал из аддитивной смеси сигнала и шума, имеющейся на входе фильтра. Следует обратить внимание, что для реализации рассмотренного способа необходимо на каждом шаге изменения вычислять соответствующие интегралы по интервалу Т, чтобы обеспечить малую величину приближенных величин взаимокорреляционных функций и . (см. рис. 10)


Рис. 10

. (4.6).

Конечная величина интервала интегрирования приводит к тому, что величина D (t ) 0 будет «шумом».Величину такого рода «шума» достаточно просто оценить для случая, когда период полезного сигнала известен.

4.2 Выделение гармонического сигнала из шума, когда его период известен.

Рассмотрим теперь случай, когда период полезного сигнала известен, но неизвестна его «фаза», да и само наличие под вопросом. В этом варианте целесообразно использовать алгоритм вычисления взаимокорреляционной функции аддитивной смеси полезного сигнала и шума и опорным сигналом, период которого равен периоду полезного сигнала. Возможный выигрыш в отношении сигнал/шум рассмотрим на примере гармонического сигнала. Опорный сигнал тоже положим гармоническим, но с другой амплитудой и фазой . Шум будем считать «белым».

; (4.7)

Таким образом искомая взаимокорреляционная функция будет

Второй член в (4.8) можно рассматривать, как фон при конечном времени интегрирования, тогда, как третий интеграл имеет смысл «шума».

И «фон» и «шум» убывают при увеличении времени интегрирования Т. Очевидно, что «фон» убывает как 1/Т. Характер убывания «шума» при увеличении Т рассмотрим более подробно, отдельно.

Для оценки величины «шума» используем соотношение Хинчина :

Здесь - корреляционная функция случайного процесса, x(t) - детерминированная функция. Примем условия рассмотренного выше примера: шум на входе будем полагать «белым» со спектральной плотностью мощности , на входе корреляционного фильтра включен RC фильтр с коэффициентом передачи.

.

Выше было показано, что корреляционная функция случайного процесса на выходе такого RC фильтре имеет вид:

(4.3)

Подставляя эти функции в (4.9) и вычисляя двойной интеграл, получаем громоздкое выражение (см.приложение), включающее члены, имеющие различное убывание при увеличении интервала интегрирования Т.

Если учесть только наиболее медленно убывающий член 1/T, то приближенно получаем:

(4.10).

Эта формула и описывает мощность «шума» на выходе корреляционного фильтра, обусловленного конечным временем интегрирования Т. «Амплитуда шума» соответственно:

(4.11).

Заметим, что роль частотного интервала здесь играет величина 1/T Величина же просто безрамерный коэффициент.

Обращаясь к (4.8), напомним, что первый член описывает взаимокорреляционную функцию детерминированных сигналов, полезного и опорногои, следовательно, имеет смысл полезного сигнала на выходе корреляционного фильтра:

(4.12).

Очевидно, что отношение сигнал/шум, (предполагая, что выбирается так,чтобы ), будет:

(4.13).

Это важный результат: при накоплении периодического сигнала, которое можно вести на протяжении ряда периодов, отношение амплитуд сигнал/шум на выходе корреляционного фильтра увеличивается пропорционально корню квадратному от времени интегрирования. (). Понятно, что полученная зависимость сигнал/шум от времени интегрирования (как ) сохранится и в случае сложного периодического (импульсного) сигнала. Заметим, что в этом случае и опорный сигнал должен иметь спектр такой же, как и спектр полезного сигнала.

Реализовать описанный алгоритм возможно используя преобразование суммарного входного сигнала в цифровую форму, что позволит далее производить все операции вычисления с помощью программ на ЭВМ. При необходимости иметь выходной сигнал в аналоговой форме нужно использовать цифроаналоговый преобразователь. Кроме того, для ограничения спектра шума по входу необходимо сохранить, аналоговый фильтр, подобный рассмотренному в данном примере .

В заключение этого раздела отметим, что результат здесь был получен на «временном языке», т. е. отношение сигнал/шум на выходе корреляционного фильтра, выражено как функция времени накопления (интегрирования). Но при этом пока неочевидно каков будет коэффициент передачи корреляционного фильтра в частотной области.

Ответ на этот вопрос удобно получить, рассмотрев аналоговый вариант корреляционного фильтра.

4.3 Аналоговый вариант корреляционного фильтра .

В радиотехнических терминах такой корреляционный фильтр реализуется схемой фазового детектора. Действительно, функционально схема фазового детектора реализует алгоритм определения взаимной корреляционной функции.

Эта схема содержит входной фильтр , генератор опорного сигнала, перемножитель входного сигнала с опорным и накопитель- инерционный узкополосный фильтр , выполняющий приближенно операцию интегрирования.

Рассмотрим функционирование этой схемы, обращая внимание на преобразование спектра принимаемого (входного) сигнала.

Пусть есть резонансный RLC фильтр

(4.14)

, (4.15)

Удобно ввести ширину полосы пропускания фильтра при заданной неравномерности , примем . Тогда , -добротность, следовательно,

(4.16)

Заметим, что на резонансной частоте имеем и

(4.17)

Рассмотрим прохождение белого шума через такой резонансный фильтр , считая, что его спектральная плотность мощности- .

Используя (2.3) , имеем выражение для спектральной плотности мощности шума на выходе резонансного фильтра , на входе перемножителя.

В качестве второго сомножителя на перемножитель подается гармонический сигнал. Здесь возможны два варианта: первый - частота опорного сигнала равна частоте полезного сигнала (). В этом случае фильтр должен быть фильтром НЧ. Полезный выходной сигнал будет представлен постоянной составляющей. Второй вариант- частота опорного сигнала . Здесь выходной фильтр должен быть резонансным на частоте .

Рассмотрим первый вариант: , опорный гармонический сигнал

Его спектр

Убедимся, что спектр (4.20) связан преобразованием Фурье с (4.19)

Здесь использовано известное свойство d (x) функции:.

Итак, имеем спектры сомножителей, хотим найти спектр произведения - спектр на входе перемножителя. Используем формулу свертки в частотной области :

(4.22)

Спектры сомножителей (4.19) и (4.20) изображены на рис.13

Подставив значения спектральных функций (4.18) и (4.20) в (4.22) , получим спектральную плотность мощности шума на выходе перемножителя:

Наконец, спектральная плотность мощности шума на выходе узкополосного НЧ фильтра будет содержать только полосу спектра вблизи . Это дает:

(4.24)

Теперь легко найти мощность шума, имеющую такой спектр. Это удобно сделать так:

найти автокорреляционную функцию, соответствующую этому спектру и устремить t -> 0

(4.25)

Полоса фильтра выбирается много меньше, чем у фильтра , то есть , при этом (4.25) приблизительно дает:

(4.26)

Таким образом, мощность шума на выходе фазового детектора -корреляционного фильтра пропорциональна узкой полосе выходного фильтра равной DW Аналогично оценим величину и мощность полезного сигнала. Функция взаимной корреляции полезного гармонического сигнала была определена ранее (4.8),(4.12). Она описывает величину выходного полезного сигнала, в данном случае величину постоянной составляющей как функции задержки опорного сигнала .

(4.12)

Максимум сигнала на выходе фазового детектора получается при значениях

где n- целое число. Следует обратить внимание, что формула (4.12) описывает не мощность сигнала , а его величину («амплитуду»). Множителю следует придать смысл коэффициента усиления. Этот множитель присутствует и в выражении, оценивающем мощность шума. (). Поэтому мощность сигнала (его максимального значения при) будет описываться так

А отношение сигнал/шум по мощности (см 4.26) есть:

соответственно, отношения сигнал/шум по амплитуде на выходе корреляционного фильтра - фазового детектора будет

4.4. Супергетеродинный приёмник - аналоговый корреляционный фильтр

Коротко рассмотрим отмеченный выше второй вариант: частота опорного генератора отлична от частоты полезного сигнала здесь после перемножения полезного сигнала с опорным получим сумму двух гармонических сигналов на суммарной и разностной частотах

Фаза опорного сигнала. Здесь сомножителями участвовали сигналы:

В качестве узкополосного интегрирующего фильтра в этом случае нужно использовать резонансный фильтр - (усилитель), настроенный на суммарную или разностною частоту. Отличием от рассмотренного выше варианта является то, что при изменении фазы опорного сигнала относительно фазы входного (полезного) сигнала амплитуда гармонического сигнала на разностной и суммарной частоте будет оставаться постоянной. Изменяться будет только фаза сигнала на этих частотах. Функционально схема, изображенная на рис.11 ., включающая. в качестве фильтра К2 резонансный фильтр, настроенный на , является типовой схемой супергетеродинного приёмника в высокочастотной её части и работает как аналоговый корреляционный фильтр. Преобразование шума в этом варианте фильтра легко оценить совершенно также, как это было сделано выше, только размещение полос спектра шума по диапазону будет другим.

Не повторяя очевидных выкладок качественно поясним это рисунком (Рис.14), на котором по осям частот указаны частоты сигналов и полосы спектра шума. Соотношение сигнал/шум и в этом случае будут также определятся выражениями (4.28) и (4.29):

Формула (4.28) дает ответ и на вопрос об оптимальном комплексном коэффициенте передачи корреляционного фильтра. Для гармонического сигнала - это коэффициент , описывающий узкополосный выходной (интегрирующий) фильтр. В случае, когда частота опорного сигнала совпадает с частотой полезного это будет низкочастотный фильтр.(3.16) или (3.32). Если частота опорного отлична от частоты сигнала - это будет резонансный фильтр(4.15), настроенный на суммарную или разностную частоту . В этом случае целесообразно совместить функцию фильтрации с усилением, т.е. в качестве интегрирующего элемента использовать резонансный усилитель. Однако на отношение сигнал/шум величина этого усиления влиять не будет: и шум и сигнал усиливаются одинаково.

Отметим, что рассмотренные выше примеры, когда в качестве полезного сигнала рассматривается неограниченный во времени гармонический сигнал не представляет непосредственного интереса: здесь время накопления формально может стремиться к бесконечности, а полоса пропускания фильтра к нулю. (Время установления сигнала в таком фильтре будет стремиться к бесконечности).

Однако полученные результаты являются основой для оценки отношения сигнал/шум при ограниченном времени интегрирования или конечной полосе фильтра. Уместно напомнить, что полоса фильтра и время установления связаны соотношением: .

Так, например, задавшись временем наблюдения, (можно приравнять его времени установления в наиболее узкополосном звене), получаем необходимую ширину полосы узкополосного фильтра (). А при заданных величинах входного сигнала и спектральной плотности мощности шума , определяем и отношение сигнал/шум на выходе. Наоборот, задавшись желаемым соотношением сигнал/шум на выходе (при известных данных входных и ), получаем величину требуемого времени установления (наблюдения) или полосу интегрирующего узкополосного фильтра. Оценка отношения сигнал / шум будет продолжена при рассмотрении конкретной схемы оптимального фильтра в разделе 4.5.2

4.5 Оптимальный прием сложного периодического сигнала

Гораздо более интересным является случай, когда полезный сигнал является сложным периодическим сигналом. Для такого сигнала будут рассмотрены два вопроса:

    Какой вид будет иметь взаимно-корреляционная функция, как функция временного сдвига опорного сигнала относительно входного, полезного?

    Какова будет АЧХ оптимального фильтра для сложного (импульсного) периодического сигнала и как будет зависеть отношение сигнал/шум от параметров фильтра?

Получив ответы на эти вопросы, окажется возможным оценить выигрыш в отношении сигнал/шум при ограниченном времени наблюдения. Например, при приеме "пачки" из n импульсов на заданном временном интервале.

Отдельно надо будет оценить необходимую разрядность аналого-цифрового преобразователя, способного реализовать требуемый выигрыш в отношении сигнал/шум.

4.5.1 Периодическая последовательность прямоугольных импульсов

В качестве первого примера рассмотрим выделение полезного сигнала , представляющего периодическую последовательность прямоугольных импульсов, которая принимается на фоне шума .

В роли приемного устройства, обеспечивающего желаемый выигрыш в отношении сигнал/шум, будем использовать корреляционный аналоговый фильтр, описанный выше. В качестве опорного сигнала будет использоваться аналогичная периодическая последовательность прямоугольных импульсов с той же частотой повторения, но, возможно другой длительности. Работу перемножителя в данном случае можно представлять как действие ключа: во время опорного импульса ключ замкнут, в его отсутствии - разомкнут. Коэффициент передачи перемножающего устройства периодически изменяется от единицы до нуля.

Для нахождения , как и ранее, используем соотношение Фурье (2.1), найдя сначала соответствующую спектральную функцию . Для этого можно вначале определить спектр произведения одиночных импульсов, а затем, используя известную связь спектра одиночного и периодического сигналов, найти искомый спектр произведения периодических сигналов.

Принятые обозначения параметров импульсов изображены на рисунке

Изображения этих одиночных импульсов будут соответственно

, (4.31)

Изображение произведения временных функций определим, используя формулу свертки в частной области

(4.32)

Заметим, что при интегрировании (4.32) точку Х на вещественной оси и комплексную точку Р следует взять настолько далеко вправо, чтобы для точки S, перемещающейся по прямой интегрирования (от до ) соблюдались два условия: во-первых, чтобы S оставалось в полуплоскости сходимости изображения , и во-вторых, чтобы P-S оставалось в полуплоскости изображения [ Дёч ]

Подставляя (4.31) в (4.32) получаем, что необходимо вычислить четыре интеграла

,

, (4.33)

Значения этих интегралов зависят от знака показателя экспоненты. Покажем, как он влияет на примере вычисления , используя формулу разложения , , т. е. считая его по вычетам. Знаменатель в (4.33) имеет два корня S=0 и S=P , второй корень следует считать расположенным правее исходного контура интегрирования, (в правой полуплоскости S). При , в соответствии с леммой Жордана, можем исходный контур замкнуть полуокружностью бесконечно большого радиуса в левой полуплоскости S. При этом в образовавшемся замкнутом контуре окажется только полюс в точке S=0. Что дает:

Если же , то лемма Жордана позволяет замкнуть исходный контур полуокружностью в правой полуплоскости S, теперь в замкнутом контуре окажется полюс S=P. Вычисляя этот вычет (с учетом знака (-)из-за изменения направления обхода по замкнутому контуру L), получаем:

Аналогично вычисляются и остальные интегралы (, и ).

Результаты вычисления представлены в таблице 1.

Таблица 1

Очевидно, что искомое изображение (4.32) на выходе перемножителя-ключа получается суммированием с учетом взаимного положения и во времени. Наглядно этот результат представлен на рисунке (в случаях B,C,D,E не выписаны сокращающиеся слагаемые).

Приведенные данные позволяют построить и функцию взаимной корреляции на выходе узкополосного, интегрирующего звена , выделяющего (в данном примере) постоянную составляющую, величина которой зависит от взаимного положения импульсов во времени. Учитывая, что при изменении сдвига-задержки опорного сигнала на входе звена меняется длительность импульса и учитывая, что постоянная составляющая в спектре пропорциональна , имеем:

(4.35)

Получаем, что при изменении временного положения опорного импульса относительно сигнала взаимокорреляционная функция будет иметь вид или трапеции (при ), или видтреугольника () (см. рис.17). Теперь перейдем к анализу процессов в описанном фильтре при приеме периодической последовательн

ости импульсов. Проведем рассмотрение со спектральной точки зрения. Используем известную связь между спектральной плотностью одиночного импульса и дискретным спектром периодической последовательности таких импульсов, который описывается рядом Фурье. Связь такова:

И (4.36),

где - комплексная амплитуда катой гармоники спектра периодической последовательности, T- период следования импульсов, .

Из формулы следует, что амплитуды гармоник периодической последовательности, умноженные на период Т, равны значениям функции модуля спектра одиночного импульса на частотах .

Для обеспечения оптимального приема периодической последовательности используем опорный сигнал также представляющий периодическую последовательность импульсов с тем же периодом. Таким образом, спектр опорного сигнала будет также дискретным; его гармоники будут иметь те же частоты, что и гармоники спектра входного сигнала.

Каков же будет спектр на выходе умножителя?

Каждая гармоника спектра опорного сигнала в результате перемножения дает суммарную и разностную частоту со всеми гармониками спектра сигнала. Если далее включен фильтр НЧ () с полосой более узкой, чем дистанция между гармониками спектров (), то будет выделена сумма постоянных составляющих, получающихся в результате перемножения гармоник спектров на совпадающих частотах. Все остальные комбинационные частоты не будут пропущены таким узкополосным фильтром. Следовательно, суммарный сигнал (как сумма постоянных составляющих) в результате перемножения и фильтрации одинаковых гармоник спектров входного и опорного сигналов будет

Сравнивая (4.37) с (1.14), видим, что данная сумма описывает взаимокорреляционную функцию периодических сигналов, имеющих одинаковые периоды Т.

Заметим, что данная взаимокорреляционная функция будет описывать периодическое повторение (по переменной t ) полученной выше корреляционной функции для одиночных сигналов (4.34).

Какова же будет амплитудно-частотная характеристика такого фильтра?

В результате простого модельного эксперимента убеждаемся, что рассматриваемый фильтр будет иметь гребенчатую амплитудно-частотную (АЧХ) характеристику. Действительно, представим, что для определения АЧХ подаем на вход испытательный гармонический сигнал с медленно изменяющейся во времени частотой. Так медленно изменяющейся, чтобы успевал устанавливаться переходной процесс в узкополосном усилителе. При этом обеспечим, что ширина полосы пропускания НЧ фильтра будет много меньше, чем частотный интервал между гармониками в спектре опорного периодического импульсного сигнала. Очевидно, что всякий раз, когда разность частоты какой либо гармоники спектра опорного сигнала и изменяющейся частоты испытательного сигнала оказывается в полосе пропускания НЧ фильтра, на его выходе появляется сигнал. Изменение амплитуды этого сигнала во времени приближенно описывает АЧХ этого низкочастотного фильтра. И так будет всякий раз при прохождении изменяющейся частоты испытательного сигнала по интервалам , где - частоты гармоник спектра () опорного сигнала. Таким образом, в целом полученная АЧХ будет иметь вид «гребенки». Максимумы зубцов этой гребенки будут лежать на частотах , ширина же и форма каждого зубца определяются АЧХ узкополосного фильтра, интервалы между зубцами равны интервалам, между гармониками опорного сигнала.

4.5.2 Оптимальный фильтр для периодической последовательности радиоимпульсов

Особенно явно преимущества корреляционного фильтра, использующего импульсный опорный сигнал, проявятся при приеме радиоимпульсов с высокочастотным заполнением. В этом случае в качестве узкополосного элемента целесообразно использовать резонансный усилитель, обеспечивающий и необходимое усиление сигнала. В этом варианте корреляционный фильтр - это известный супергетеродинный приемник, но с импульсным гетеродином и достаточно узкополосным усилителем промежуточной частоты.

Легко убедиться, что если опорный, (гетеродинный) сигнал это радиоимпульс с несущей частотой и частотой повторения , то данный приемник-фильтр будет иметь гребенчатую характеристику.

Действительно, будем снимать АЧХ устройства, опять подавая на вход смесителя испытательный гармонический сигнал с медленно изменяющейся частотой. При этом будем использовать импульсный гетеродин и обеспечим, что ширина полосы пропускания резонансного усилителя будет много меньше, чем частотный интервал между гармониками в спектре опорного сигнала - гетеродина . Тогда всякий раз, когда разность (или сумма) текущей частоты испытательного сигнала с некоторой гармоникой гетеродина оказывается равной (в пределах полосы ) сигнал проходит через узкополосный усилитель. Это будет гармонический сигнал промежуточной частоты с частотой . И так будет повторяться каждый раз, когда разность или сумма частот испытательного сигнала и какой либо изгармоник (n) гетеродина равны . Таким образом, очевидно, что амплитудно-частотная характеристика приемника-фильтра будет иметь вид «гребенки». Ширина и форма «зубца» определяется частотной характеристикой узкополосного резонансного усилителя, а положение «зубцов» на шкале частот - положением гармоник гетеродина и номиналом . Теперь рассмотрим процесс в приемнике-фильтре при включении на его вход периодической последовательности радиоимпульсов. Анализ будем проводить с двух точек зрения: временной и спектральной.

Начнем с временной. Предположим, что последовательность импульсов опорного сигнала-гетеродина медленно смещается относительно последовательности входных радиоимпульсов. Такое предположение означает, что частоты повторения импульсов в этих последовательностях отличаются, но так что бы .

На рисунке 19 изображены три относительных положений импульсов во времени.

Импульсы частично перекрываются во времени, импульсы совпадают, импульсы разнесены. Очевидно, что во втором случае сигнал промежуточной частоты будет иметь максимальное значение, при разносе их во времени , а при частичном перекрытии (||) выходной сигнал будет иметь отличное от нуля значение, но . Зависимость амплитуды гармонического сигнала промежуточной частоты от величины их «задержки» - относительного положения во времени будет описываться корреляционной функцией, как это было показано выше для одиночных сигналов. Только теперь эта корреляционная функция будет периодической функцией с периодом Т.

Рассмотрим теперь этот процесс с частотной, спектральной точки зрения. Так как оба сигнала, и входящий, и опорный являются радиоимпульсами с различной несущей ( и ), но с одинаковыми частотами повторения , то каждому соответствует линейчатый (дискретный) спектр с некоторой эффективной шириной. Их спектры разнесены по шкале частот на номинал промежуточной частоты.

Для определенности будем считать, что . Очевидно, что в результате перемножения входного и опорного каждая из гармоник даст сумму гармонических сигналов на частотах . Так как полоса резонансного фильтра принята меньше, чем интервал между гармониками (), то из богатого спектра комбинационных частот после умножителя узкополосным фильтром будут отфильтрованы только гармонические сигналы с частотами равными промежуточной, т.е.

Результирующий гармонический сигнал промежуточной частоты на выходе резонансного фильтра есть векторная сумма „парциальных“ сигналов, получаемых от взаимодействия каждой гармоники спектра с соответствующей гармоникой спектра опорного гетеродина .

Фазы этих „парциальных“ векторов будут различны и изменяться при изменении относительного положения импульсов сигнала и гетеродина во времени. Здесь нужно различать способы формирования опорного (гетеродинного) радиоимпульса.

Первый способ - ударное возбуждение радиоимпульса: фаза ВЧ заполнения жестко привязана к огибающей. При изменении задержки такой импульс смещается как целое. Фазы гармоник его спектра изменяются так , т. е. все вектора, представляющие парциальные сигналы, вращаются, но разной „скоростью“.

Векторная сумма зависит от взаимного положения „парциальных“ векторов, от их взаимных разностей фаз Качественно картина меняется так: при разносе импульсов во времени эти вектора расположены „веером“ так, что их векторная сумма равна нулю. При частичном перекрытии „веер“ частично „схлопывается“, что дает некоторую отличную от нуля амплитуду суммарного сигнала. Наконец, при совпадении импульсов во времени „веер“ складывается, все „парциальные“ вектора оказываются в фазе, что обеспечивает максимальное значение результирующей амплитуды сигнала промежуточной частоты.

Заметим, что фаза результирующего сигнала промежуточной частоты (положение суммарного вектора) будет изменяться на всем интервале изменения задержки , от начала „перекрытия“ импульсов () во времени, до полного их разноса ().

Сказанное качественно иллюстрируется рис. 21,22.

Рассмотрим другой способ формирования опорных радиоимпульсов, импульсов гетеродина. При этом способе из непрерывного гармонического сигнала на частоте путем импульсной амплитудной модуляции формируется также периодическая последовательность опорных радиоимпульсов. Очевидно, что в этом варианте фаза и огибающая опорных импульсов не будут жестко связаны. Покажем, что при этом фаза сигнала промежуточной частицы на выходе узкополосного резонансного фильтра не будет зависеть от взаимного временного положения периодических последовательностей входного и опорного сигналов. Дело в том, что при формировании опорных импульсов путем модуляции при изменении задержки модулирующего видеоимпульса фаза гармоники на центральной частоте спектра остается постоянной. Гармоники же в верхней и нижней полосах этого спектра будут получать при изменении приращения фаз разных знаков . Это приводит к тому, что после перемножения со входным сигналом и фильтрации узкополосным резонансным фильтром „парциальных“ сигналов на частоте результирующий сигнал на этой частоте не будет изменять своей фазы при изменении задержки. Это утверждение справедливо при условии, что спектры как принимаемого , так и опорного (гетеродинного) сигналов симметричны относительно своих несущих частиц ВЧ заполнения. Качественно зависимость параметров выходного сигнала от задержки так же удобно проиллюстрировать с помощью векторных диаграмм, аналогичных рассмотренным выше.

Различие будет лишь в том, что направление (аргумент) вектора парциального сигнала от взаимодействия центральных частот спектров входного и опорного сигналов остается постоянным при изменении задержки на интервале . Тогда как „парциальные“ вектора, соответствующие верхней и нижней полосам спектров при изменении теперь вращаются в разные стороны, образуя опять „веера“. Понятно, что векторная сумма будет зависеть от степени раскрытия такого»веера «, причем аргумент суммарного вектора будет сохранять свою величину, так как „парциальные“ вектора, соответствующие верхней и нижней полосе спектра, получают симметричные приращения, но разных знаков, „Веер“ остается симметричным с неподвижным центральным вектором. Модуль суммарного вектора будет описываться взаимокорреляционной функцией и , зависящей от .

Рассмотрим теперь возможный вариант, когда значения частот заполнения радиоимпульсов принимаемого и опорного совпадают. В этом случае после перемножителя следует включить узкополосный низкочастотный фильтр, выделяющий „постоянную“ составляющую, величина и знак которой будут изменяться при изменении относительного положения принимаемого и опорного импульсов во времени. Такой выходной сигнал будет описываться взаимокорреляционной функцией. Вид этой функции (при равной длительности импульсов) качественно изображен на рис 23. ,а описывается она формулой (4.34). Выходной сигнал в этом случае описывается осциллирующей функцией по аргументу t - относительному сдвигу этих импульсов во времени. Понятно, что для периодически повторяющихся импульсов их взаимокорреляционная функция будет также периодической по t

Относительно гармоник спектра сигнала выше было показано, что при совмещении во времени радиоимпульсов входной и опорной последовательностей радиоимпульсов все гармоники парциальных составляющих спектра на частоте . суммируются в фазе. („веер“ парциальных векторов схлопывается). Составляющие шума, прошедшие отдельные зубцы гребёнки тоже сложатся, но по мощности! Поэтому можно считать, что эффективная полоса для шума будет определяться суммой полос отдельных полос зубцов гребёнки: (4.30).

Число членов в этой сумме ограничено и определяется эффективной шириной спектра опорных радиоимпульсов (импульсов гетеродина). Кроме того, ширина спектра мощности шума ограничивается входным полосовым фильтром. Поэтому искомое отношение сигнал/шум на выходе оптимального корреляционного фильтра определится так:

По мощности: , а по амплитуде (4.31)

В заключение обратим внимание, что в рассмотренном варианте гребёнчатая АЧХ реализуется за счёт линейчатого спектра (с некоторой эффективной шириной) импульсного опорного сигнала и единственного узкополосного резонансного усилителя промежуточной частоты. При этом, ширина полосы этого усилителя должна быть много меньше, чем интервал между частотами гармоник опорного сигнала (гетеродина).

Такой аналоговый коррелятор был реализован и практически использовался в станции наклонного зондирования ионосферы средневолнового диапазона. Для возможности оценки не только амплитуды и групповой задержки, но и фазы высокочастотного заполнения отраженных от ионосферы радиоимпульсов после узкополосного усилителя сигнал промежуточной частоты подавался на два параллельных фазовых детектора. Опорные гармонические сигналы на фазовых детекторах имели номинал и были сдвинуты по фазе на . Таким образом, на выходах фазовых детекторов получались синусная и косинусная составляющие огибающих суммарного сигнала. Это позволяло оценить соответствующие фазовые сдвиги высокочастотного заполнения „земного“ и отраженного радиоимпульсов, при условии, что эти радиоимпульсы были разделены во времени.

Пример наблюдаемой картинки на экране индикатора станции приведен на рис. Далее этот сигнал оцифровывался с помощью АЦП и поступал в ЭВМ для обработки.

При используемых параметрах зондирующих радиоимпульсов в диапазоне средних волн „земной“ и отраженный от ионосферы сигналы уверенно разделялись во времени. Величина задержки отраженного сигнала в приводимом эксперименте порядка 220 мкс.

Частота ВЧ заполнения радиоимпульсов приблизительно 350 кГц, приём велся на удалении 220 км. Приёмная аппаратура аналогово коррелятора имела узкополосный усилитель с шириной полосы 5 Гц, при частоте повторения излучаемых импульсов 625 Гц. Это позволяло надёжно выделить полезные сигналы на фоне шумов и помех в весьма загруженном СВ диапазоне, обеспечивался выигрыш в отношении сигнал/шум более30-тина выходе приёмного аналогово коррелятора по отношению ко входу. Очевидно, что располагая сигналом в цифровой форме было возможно и дальнейшее повышение отношения сигнал/шум, используя накопление.

4.5.3. Оценка возможного выигрыша в отношении сигнал / шум при дискретной записи сигнала.

Выше было показано, что для периодического сигнала отношение сигнал / шум может быть улучшено накоплением. Возможный выигрыш пропорционален квадратному корню из времени накопления и обратно пропорционален полосе аналогово фильтра. В случае дискретных отсчётов сигнала - аддитивной смеси сигнал + шум, очевидно, что выигрыш будет пропорционален , где n число равноотстоящих отсчётов. Процесс накопления удобно реализовать с помощью алгоритма - программы на ЭВМ. При практической реализации этого способа следует иметь в виду, что число накапливаемых выборок, дающих желаемый выигрыш будет ограничено разрядностью применяемого аналого-цифрового преобразователя (АЦП). Можно задаться вопросом о необходимой разрядности АЦП, если задан требуемый выигрыш С / Ш. Или оценить возможный выигрыш, если АЦП уже выбран. Тот факт, что АЦП присущи собственные шумы в данном пособии рассматриваться не будет. Эти вопросы освещены в специальной литературе. Будут учтены только» шумы дискретизации «.

В этом приближении рассмотрим связь возможного выигрыша С/ Ш при накоплении на АЦП с заданной разрядностью.

Пусть мгновенное значение входной величины есть:

V = U + z и отношение С / Ш ,

Где U -величина сигнала, - среднеквадратичная величина шума.

Интересуемся случаем, когда a соответствует максимальному значению числа., минимальный код 1 (число > 0). Считаем, что шумы распределены по нормальному закону.. Ограничим диапазон АЦП утроенной среднеквадратичной величиной шума (3), что будет соответствовать максимальному коду. Уровень 3 при нормальном законе распределения ограничит значения шума только в 0.1% случаев. Считая, что динамический диапазон преобразователя установлен 3s . Приравнивая эти величины, имеем:

или (4.37).

Таким образом реальная величина «шума оцифровки» оказывается меньше.

Обработка сигналов в условиях воздействия импульсных помех

2.6.1. Обработка сигналов в условиях воздействия
несинхронных импульсных помех

При работе РЛС могут заметно сказываться взаимные импульсные помехи. Различают несинхронные и синхронные взаимные импульсные помехи. Несинхронные помехи образуются, если периоды повторения импульсов мешающего источника не совпадают с периодом повторения полезных сигналов. На индикаторах с большим послесвечением несинхронная помеха при большой разнице в периодах повторения создает эффект наличия большого числа целей. По мере сближения частот повторения, изображение несинхронной помехи на экране индикатора принимает вид спирали. При полностью синхронном излучении спирали вырождаются в окружности. В этом случае говорят о синхронной помехе.

Признаком, по которому несинхронную помеху можно отличить от цели, является иной, чем у цели, интервал между соседними импульсами. Существует ряд способов, позволяющих исключить из обработки помеховые сигналы. Наиболее употребительны два способа, базирующиеся на регулярности отраженных сигналов от ВС и случайным временным положением сигналов несинхронных импульсных помех (НИП). Первый способ основан на рециркуляции задержки сигналов, второй - на эффекте «движущееся окно». Рассмотрим оба
способа обработки.

Несинхронные помехи образуются, если периоды повторения мешающего источника не совпадают с периодом повторения сигналов от ВС. Следовательно, различительным признаком сигнала и помехи является интервал между соседними импульсами. Для ослабления НИП может быть использовано перемножение незадержанных и задержанных на период следования сигналов в схеме селекции по периоду следования (рис. 2.146). Если перемножение осуще-

Рис. 2.146. Схема селекции по периоду следования.

ствляется на видеочастоте, через схему пройдут сигналы, имеющие известный период повторения Т n , и не пройдут сигналы, для которых период следования отличается от Т n . В таких схемах могут быть применены потенциалоскопы.

Разновидностью устройства селекции по периоду следования может являться следующее (рис. 2.147).

Рис. 2.147. Простейший подавитель НИП

В течении первого периода зондирования на выход электронного ключа обрабатываемый сигнал не походит, поскольку нет разрешающего сигнала со схемы совпадений. Входной сигнал первого зондирования запоминается устройством задержки на время периода повторения Т n . В момент излучения следующего зондирующего импульса вновь поступает принятый сигнал, который непосредственно приходит на схему совпадений одновременно с сигналом от устройства задержки. В моменты прихода полезных сигналов, повторяющихся в соседних периодах зондирования, на выходе схемы совпадений появляется
разрешающий импульс, благодаря чему открывается электронный ключ и пропускает на выход схемы импульс цели.

В данной схеме реализован алгоритм 2/2, то есть, если имеется 2 сигнала в одном и том же дискрете дальности на текущем и предшествующем периодах зондирования, то принимается решение о том, что это сигнал цели. Значительно большей эффективностью обладают подавители, реализующие алгоритм 4/4.

Еще один вариант схемы селекции по периоду повторения - рециркуля-
тор, который осуществляет и функцию накопления сигнала. Схема такого устройства изображена на рис. 2.148.

На вход рециркулятора поступают нормированные сигналы полезные и
НИП. Цепь обратной связи образована линией задержки на время Т n и усилителем b(K ус. < 1).

Суммарный сигнал на выходе накопителя

Рис. 2.3. Рециркулятор и графики, поясняющие его работу.

Сигналы от ВС регулярны, следуют через Т n и будут накапливаться на
выходе накопителя. Период следования сигналов НИП отличается от Т n и такие сигналы накапливаться не будут. Дальнейшая пороговая обработка исключает сигналы НИП и выделяет накопленные сигналы от ВС.

Метод "скользящего окна" заключается в следующем. Зона обнаружения первичной РЛС разбита по дальности на отдельные дискреты DД (рис.2.149).

Рис. 2.149. Скользящее окно.

На рисунке показана только часть обзора, причем увеличены для наглядности временные промежутки между соседними зондированиями (они обозначены цифрами 1, 2, ...). При наличии сигналов в каком-либо дискрете дальности они будут обнаружены в соответствующих ячейках (сигналы обозначены +). Дальнейшая обработка предполагает проверку критерия "k/m". Если в данном дискрете дальности в окне, включающем т соседних зондирований, находится l ³ k: входных сигналов, делается вывод о том, что это не случайный набор, а упорядоченная группа сигналов (пачка импульсов от ВС). Если l становится меньше k (сигналы НИП), то критерий не выполняется и сигналы исключаются из обработки.

2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех

2.6.2.1. Понятие о динамическом диапазоне сигналов и помех
и необходимости их нормирования

Системы обработки сигналов на фоне шума и помех должны обеспечить заданный уровень вероятности правильного обнаружения при фиксированной вероятности ложных тревог. Последние вызываются как выбросами шума, так и импульсными и иными помехами. Импульсные помехи очень распространены и часто по своему уровню значительно превосходят полезные сигналы, что затрудняет их надежное выделение. Поэтому приходится использовать нелинейные и иные методы обработки сигналов на фоне шумов и помех. Простейшим и весьма эффективным из них является амплитудное ограничение. Обычно ограничитель выбирается жестким, т. е. уровень ограничения выбирается меньше среднеквадратического значения s шума. При его применении уровни сигнала, шума и помехи становятся одинаковыми. Чтобы уменьшить искажения сигналов, после амплитудного ограничителя ставят фильтр, выделяющий его первую гармонику.

Поскольку ограничитель устраняет все амплитудные различия между
сигналом, шумом и помехами, последующая обработка должна использовать
иные различия между сигналом, с одной стороны, и шумом и помехами, с другой. Если применяются простые сигналы, то такими различиями могут быть или длительности их импульсов, или ширина их спектров, определяемая этими длительностями, а в случае сложных сигналов - их фазовая структура, т. е. законы фазовой модуляции или манипуляции.

Очевидно, требуемые характеристики работы радиосистемы будут гарантированы, если обеспечить высокое отношение сигнал-шум и малое отношение помеха-шум. Поскольку импульсные помехи могут быть очень сильными, их уровень необходимо нормировать к среднеквадратическому уровню шума. Иначе говоря, необходимо обеспечить высокий динамический диапазон сигналов и нормирование динамического диапазона помех.



Под динамическим диапазоном сигналов понимается отношение уровней максимального и минимально различимого сигналов. Последний определяется уровнем шума, характером сигнала и применяемым алгоритмом его обработки. Поэтому динамический диапазон сигналов можно характеризовать отношением амплитуды максимального сигнала к среднеквадратическому уровню шума.

Аналогично динамический диапазон помехи описывается отношением
амплитуды максимальной помехи к среднеквадратическому уровню шума. Поэтому нормирование динамического диапазона помех сводится к нормированию уровня этих помех. В дальнейшем под помехой будем понимать немодулированную импульсную помеху, частота которой совпадает с частотой сигнала. При этом будет рассматриваться самый неблагоприятный с точки зрения подавления помехи случай, поскольку спектры сигнала и помех полностью перекрываются, что исключает применение частотной фильтрации. Амплитуды помехи и сигнала будем считать столь большими относительно среднеквадратического уровня шума, что в течение их действия на ограничитель влиянием шума можно пренебречь.

Заметим, что в данной главе, как это и следует из ее названия, рассматривается только внутрипериодная обработка сигналов на фоне шума и сильных импульсных помех. Дальнейшее подавление импульсных помех возможно путем череспериодного накопления сигналов в процессе их межпериодной обработки на фоне шума и указанных помех и достигается вследствие несинхронного характера импульсных помех.

2.6.2.2. Нормирование уровня длинных импульсных помех
с помощью схемы ШОУ

Схема ШОУ (рис. 2.150,а) состоит из широкополосного фильтра Ш, ограничителя О, узкополосного фильтра У. Рассмотрим воздействие на нее радиоимпульсного сигнала длительностью t 1 шума и помехи длительностью t п1 . Пренебрегаем искажениями сигнала и помехи в широкополосном фильтре, что вполне допустимо при его большой полосе. Узкополосный фильтр будем считать оптимальным для сигнала. Тогда отношение сигнал-шум на его выходе

,

где Ез - энергия сигнала на входе этого фильтра;

N 03 - спектральная интенсивность шума на его входе.

Рис. 2.150. Схема ШОУ (широкая полоса - ограничитель-узкая полоса)

При идеальном ограничении входного колебания (рис. 2.151) выходное
колебание имеет вид меандра, принимающего значения ±Uо. При этом энергия сигнала на выходе этого ограничителя (т.е. на входе узкополосного фильтра) Ез= 1/2 V 2 з t 1 =1/2(a 1 U 0) 2 t 1 , а спектральная интенсивность шума N 03 =W ш3 /DF ш =1/DF ш х 1/2(a 1 U 0) 2 , где a 1 = 4/p - коэффициент первой гармоники образовавшегося при ограничении колебания в виде меандра, а W ш3 - мощность шума на входе узкополосного фильтра. Подставляя два последних выражения в им предшествующее, получаем

где n = DF ш t 1 @ DF ш / DF у - отношение полос пропускания широкопо-
лосного и узкополосного фильтров.

Чем больше это отношение, тем больше отношение сигнал-шум на выходе рассматриваемой схемы. Физически это объясняется тем, что с расширением полосы широкополосного фильтра уменьшается спектральная интенсивность шума после ограничения и мощность после узкополосной фильтрации.

Рис. 2.152. Прохождение сигнала,
короткой и длинной помех через схему
ШОУ

Рассмотрим прохождение радиоимпульсов сигнала, короткой и длинной помех (различающихся тем, что длительности короткой помехи t¢ п1 меньше, а длинной помехи t" п1 больше длительности сигнала t 1 через систему ШОУ, в качестве узкополосного фильтра которой применяется оптимальный фильтр для импульсного сигнала указанной длительности.

Анализ временных диаграмм амплитуд напряжений (рис.2.152) в различных точках структурной схемы (рис. 2.150, б) показывает, что сигнал,
короткая и длинная помехи имеют соответственно амплитуды напряжений на выходе системы

V 4 =1/b V 3 t 1,

U¢ п4 =1/b U п3 t п1,

U" п4 =1/b U п3 t 1,

где (b - постоянная времени контура ВИРУ, связанная, с его полосой
пропускания DF соотношением b = (pDF) -1 , причем b » t 1 и b » t п1 , а V 3 и U п3
- амплитуды сигнала и помех на выходе ограничителя. Ввиду равенства последних (V 3 = U п3) амплитуды сигнала и длинной помехи совпадают:

V 4 = U" п4 , а амплитуда короткой помехи U¢ п4 = V 4 (t¢ п1 /t 1).

рис. 2.153. Зависимость отношения помеха-шум на выходе схемы ШОУ от длительности входной помехи

Все это - следствие того, что совокупность задерживающего и вычитающего устройств в оптимальном фильтре ограничивает время интегрирования любого входного колебания длительностью t 1 сигнала на входе.

Следовательно, если длительность помехи равна или больше длительности сигнала, то ее амплитуда на выходе узкополосного фильтра совпадает с амплитудой сигнала. Если же длительность помехи меньше длительности сигнала, то ее амплитуда и отношение помеха-шум пропорциональны длительности помехи.

Таким образом, отношение помеха-шум на выходе (рис. 2.153)

При t п1 ≤t 1

При t п1 >t 1

Важно отметить, что уровень помехи на выходе совершенно не зависит
от ее амплитуды на входе (если она, конечно, достаточно велика). Схема ШОУ осуществляет селекцию импульсных помех по длительности. Помеха нормируется к уровню шума (r 4 £1), если ее длительность удовлетворяет условию

Следовательно, схема ШОУ защищает только от достаточно коротких настроенных импульсных помех.

С точки зрения лучшего нормирования помех, а также уменьшения числа взаимных помех, создаваемых радиосистемами с близкими несущими частотами, которые попадают в полосу пропускания предограничительного
фильтра, отношение n следует выбирать меньше. Но при этом уменьшается отношение сигнал-шум, а следовательно, и вероятность обнаружения сигнала. Кроме того, при уменьшении n увеличиваются потери из-за нелинейности обработки, обусловленные уменьшением степени нормализации шумов в узкополосном фильтре после ограничения. Расчеты показывают, что если при n =100 они составляют 1,5 дБ, то при n=10 возрастают до 5 дБ. На практике динамический диапазон сигналов выбирают q = 5 ¸ 10 из условия нормальной работы индикатора кругового обзора, что соответствует n = 12,5 ¸ 50.

2.6.2.3. Нормирование уровня длинных импульсных помех
с помощью схемы РОС

Схема РОС (расширяющий фильтр - ограничитель - сжимающий фильтр) работает по принципу: расширение сигнала Р - ограничение О- сжатие сигнала С и представляет собой последовательное соединение двух
дисперсионных линий задержки ДЛЗ с сопряженными (т. е. различающимися знаками) фазо-частотными характеристиками и ограничителем между ними (рис. 2.154). Полосы пропускания ДЛЗ DF 1 выбираются равными ширине спектра полезного сигнала (на уровне 2/p): DF 1 = П=1/t 1 , а длительность Т p импульсной характеристики значительно больше длительности сигнала, т. е.

Сигнал, действуя на первую ДЛЗ, расширяется по длительности до Т p и приобретает ЛЧМ с девиацией DF= П. Он становится сложным, ибо произведение его ширины спектра на длительность

D p =П Т p = Т p /t 1 »1,

где D p - коэффициент растяжения сигнала в ДЛЗ. После прохождения
ограничителя он, будучи сложным, сжимается во второй ДЛЗ до прежней длительности 1/DF = t 1), а его амплитуда увеличивается в раза по сравнению с амплитудой на выходе ограничителя, которая совпадает с амплитудой окружающего шума. Поэтому отношение сигнал-шум.

Прохождение помехи через рассматриваемую систему существенно зависит от ее длительности t п1 . Ее спектр на уровне 2/p имеет ширину П 1 =1/t п1 (см.рис. 2.155,а). Так как полоса пропускания ДЛЗ составляет лишь DF 1 =1/t 1 , то ширина П 2 спектра короткой помехи на ее выходе ограничивается этой величиной (см. рис. 2.155,6):

П 2 =DF 1 = 1/t 1 , При t п1 П 2 = 1/t п1 При t п1 ³t 1

При t п1 >t 1 весь спектр помехи (на уровне 2/p) попадает в полосу пропускания ДЛЗ, которая вследствие своей дисперсионности задерживает различные гармонические составляющие на разное время, определяемое дисперсионной характеристикой этой ДЛЗ. Время задержки наиболее сильно различается на крайних (максимальной и минимальной) частотах спектра помехи. Разность этих временных задержек определяет длительность импульса помехи t п2 на выходе, которая, как это следует из подобия треугольников abc и deg на дисперсионной характеристике ДЛЗ (рис. 2.156), составляет

t п2 = Т p П2/DF 1 = Т p t 1 /t п1

и уменьшается с увеличением t п1 (рис. 2.15 5,в). Последние физически объясняется сужением спектра помехи. Но длительность импульса на выходе

растягивающего фильтра не может быть меньше длительности импульса на

Минимальную величину определим из условия
из которого следует

При действии более длительной помехи последняя не меняет
своей длительности.

Итак, величина Тщ является минимально возможной длительностью импульсной помехи на выходе ДЛЗ. Кроме того, она представляет собой
длительность основного переходного процесса на выходе ДЛЗ (т. е. оптимального фильтра для ЛЧМ сигнала с длительностью Тр и девиацией частоты ар]), вызванного действием достаточно длинной немодулированной настроенной импульсной помехи.

Из предыдущего следует, что коэффициент сложности D2 помехи на выходе первой ДЛЗ, т. е. произведение ее ширины спектра П2 на длительность , зависит от длительности помехи следующим образом (рис. 2.15 5,г):

Поэтому после прохождения ограничителя, который сделает равными

т < т
уровни помехи и шума, помеха во второй ДЛЗ при сожмется по длительности в D2 раз, увеличится по амплитуде в раз и при этом в раз превысит среднеквадратическое значение шума. При иной длительности помеха пройдет через ДЛЗ, не меняя амплитуды и длительности. Таким образом, отношение помеха-шум на выходе составляет (рис. 2.155, д).

Следовательно, помехи, длительность которых превосходит
нормируются рассматриваемой схемой к уровню шума. Физически это объясняется тем, что столь длительные помехи, обладая сравнительно узким спектром, проходят через обе ДЛЗ, не подвергаясь растяжению и сжатию. Поэтому после ограничения они становятся на уровне шума. Таким образом, схема РОС осуществляет селекцию импульсных помех по ширине спектра.

Итак, если схема ШОУ нормирует уровень коротких импульсных помех, то схема РОС - уровень длинных импульсных помех. Возникает естественное стремление совместить достоинства обеих схем в единой системе обработки.
Эта возможность и рассматривается ниже.

2.6.2.4. Нормирование уровня коротких и длинных помех
с помощью схемы ШОУ-РОС

Для нормирования уровня как коротких, так и длинных импульсных помех целесообразно применить систему ШОУ-

РОС - совокупность последовательно соединенных схем ШОУ и РОС (рис. 2.157). Комбинацию РОС-ШОУ, образованную в результате другой последовательности соединения указанных схем, использовать не имеет смысла, так как в схеме РОС полоса пропускания равняется ширине спектра полезного сигнала и использование широкополосного фильтра последнее будет бесполезным.

Приближенный анализ прохождения сигнала, шума и импульсных помех , выполненный для случая, когда отношение п полос пропускания фильтров схемы ШОУ совпадает с коэффициентом Dр растяжения сигнала в первой ДЛЗ схемы РОС (п-Dр), позволяет получить следующую зависимость отношения помеха-шум на выходе системы ШОУ-РОС от длительности помехи на ее входе:

Анализ этой зависимости (рис. 11.9) показывает, что указанная система
нормирует уровень как коротких, так и длинных импульсных помех к уровню шума.

2.6.2.5. Нормирование уровня импульсных помех
при обработке сложных сигналов

В качестве сложного сигнала возьмем сначала ЛЧМ импульс. Оптимальный фильтр для такого сигнала состоит из полосового фильтра ПФ и дисперсионной линии задержки ДЛЗ, которая фактически выполняет функции фазового компенсатора ФК. Пусть этот фильтр располагается после ограничителя, которому предшествует лишь широкополосный фильтр (рис. 2.159, а).

Поскольку полосовой фильтр можно рассматривать в качестве узкополосного, то схема до фазового компенсатора представляет собой схему ШОУ с шириной полосы «узкополосного» фильтра -девиация частоты ЛЧМ сигнала. Поэтому на ее выходе, т. е. на входе фазового компенсатора, отношение сигнал-шум составляет , а отношение помеха-шум

Амплитуда ЛЧМ сигнала увеличивается в ДУЛЗ фазовом компенсаторе в
раз, а мощность шума не претерпевает изменений. Поэтому на выходе фазового компенсатора отношение сигнал-шум составляет При длительности помехи меньшей длительности сжатого в ДЛЗ ЛЧМ

импульса, длительность ее на выходе полосового фильтра равна . На выходе ДЛЗ помеха в этом случае расширяется до длительности ЛЧМ импульса а ее амплитуда уменьшается в раз. Поэтому

При длительности помехи, меньшей длительности переходного процесса

в ДЛЗ , помеха расширяется в ДЛЗ до и амплитуда ее на

выходе уменьшается в раз. В этом случае (при ) отношение помеха-шум составляет

При помеха проходит через ДЛЗ, не изменяя своей длительности и амплитуды. Поэтому отношение помеха-шум на выходе ДЛЗ совпадает с этим отношением на выходе полосового фильтра, которое равно

Следовательно, отношение помеха-шум на выходе

Поскольку , отношение помеха-шум будет меньше единицы, если ее
длительность удовлетворяет условию

Это условие нормирования помехи к уровню шума.

Далее пусть сложным сигналом является рассмотренный ФМ сигнал общей длительности Ть составленный из радиоимпульсов длительностью , которые различаются временным положением и могут различаться начальной фазой Последняя принимает одно из двух значений: 0 и π. Тогда полосовой фильтр ПФ на схеме (см. рис. 2.159, а), который будем считать «узкополосным», представляет собой оптимальный фильтр для радиоимпульса длительностью , а фазовый компенсатор ФК -
совокупность линии задержки на время равномерно расположенными отводами, N фазовращателей на угол и сумматора (рис. 2.160). Тогда на входе фазового компенсатора, как_на выходе схемы ШОУ,отношение сигнал-шум составит , а отношение помеха-шум

где в данном случае

Шум после прохождения полосового фильтра, являющегося оптимальным фильтром для радиоимпульса длительностью , будет иметь треугольную АКФ с шириной основания 2 . Поэтому шумы на входах сумматора не коррелированы и суммируются в нем по мощности, ввиду чего .
Поскольку сигнал возрастает в фазовом компенсаторе в N раз по амплитуде и в
раз по мощности, то отношение сигнал-шум на его выходе составит

Помеха малой длительности растягивается полосовым фильтром
до длительности То элементарного импульса, а если длительность помехи превышает указанное значение, то фильтр оставит ее без изменения.

Поэтому при помехи на.входах сумматора могут накладываются друг на друга только фронтами, что не приведет к увеличению амплитуды помехи на выходе. Вследствие этого и того, что мощность шумов возрастает, отношение помеха-шум на выходе фазового компенсатора уменьшится в раз:

Если длительность помехи не менее длительности сигнала
то помехи на входах сумматора будут перекрываться, вследствие чего амплитуда помехи на выходе будет больше в раз, чем на входе. Суммирование помех по мощности, а не по напряжению объясняется квазислучайным законом изменения коэффициентов передачи фазовращателей, который обусловлен псевдослучайным характером используемого кода. Вследствие того, что в данном случае и помеха, и шум возрастают в одинаковой степени, их отношения
не меняются:

По-видимому, в промежуточном случае имеем

Отношение помеха-шум на выходе

Поскольку при отношение помеха-шум не больше
единицы, если длительность этой помехи удовлетворяет условию

Это условие нормирования помех к уровню шума. Оно выполняется только для
достаточно коротких помех.

Таким образом, рассматриваемая система обработки (см. рис.
2.159,а) с оптимальной фильтрацией после ограничения нормирует к уровню
шума только достаточно короткие импульсные помехи. В этом и заключается
ее существенный недостаток, который объясняется тем, что помехи, ограниченные до уровня шума в ограничителе, накапливаются в узкополосном поло-
совом фильтре. Поэтому устранить указанный недостаток можно только путем
ликвидации этого накопления (интегрирования) помех.

Поскольку совсем убрать полосовой фильтр ПФ невозможно, ибо
он осуществляет абсолютно необходимую оптимальную частотную фильтрацию сигналов от шумов, то поставим его перед ограничителем

(см. рис. 2.159, б). При таком построении схемы необходимость в применении широкополосного фильтра отпадает. Указанный полосовой фильтр осуществляет первую основную операцию оптимальной фильтрации - частотную фильтрацию. Вторая операция - компенсация фазовых сдвигов между спектральными составляющими сигнала - производится фазовым компенсатором. Полоса пропускания последнего может быть неограниченно большой.
Поэтому накопление помех (и сигналов) в нем можно полностью устранить, ввиду чего его вполне можно поставить после ограничителя.

Рассмотрим действие сигнала, помех и шумов на систему, в которой полосовой фильтр предшествует ограничителю, а фазовый компенсатор стоит после него (см. рис. 2.159,6).

Так как уровни сигнала, шума и помехи на выходе ограничителя
одинаковы, то отношение сигнал-шум и отношение помеха-шум составляют

В случае ЛЧМ сигнала его амплитуда увеличивается фазовым компенсатором в раз, а уровень шума остается неизменным. Поэтому отношение
сигнал-шум на выходе В случае ФМ_сигнала его амплитуда возрастает в фазовом компенсаторе в раз, а среднеквадратическое значение шума

В N раз, ввиду чего отношение сигнал-шум на выходе .

Как следует из предыдущего, фазовый компенсатор может только оставить без изменения или даже уменьшить отношение помеха-шум

Следовательно, система обработки сложного сигнала, состоящая из узкополосного полосового фильтра, ограничителя и широкополосного фазового компенсатора, позволяет нормировать к уровню шума импульсные помехи любой длительности. В этом и заключается ее несомненное достоинство. Она реализует одно из основных преимуществ системы со сложными сигналами ее помехозащищенность, обусловленную сложной фазовой структурой этих сигналов.

Первый тип искажений сравнительно легко устраним, поскольку в технологии CDMA предусмотрены возможности многопользовательского детектирования и сложения разнесенных сигналов с помощью Rake-приемника (см. «Сети», 2000, б№ 8, с. 20 и б№ 9, с. 22). С помехами от внешних источников борются при помощи расширения спектра передаваемого сигнала. Теоретически, увеличение базы сигнала (B) позволяет уменьшить помеху до сколь угодно малого уровня.

Системам на базе CDMA присуще одно важное свойство: способность эффективно бороться с помехами, особенно узкополосными. Именно благодаря этому технология CDMA долгие годы применялась преимущественно в военных системах, обычно работающих в сложной помеховой обстановке и условиях радиоподавления.

Методы борьбы с помехами принципиально отличаются от используемых при устранении многолучевых искажений. Структура мешающих многолучевых сигналов заведомо известна, и это во многом облегчает задачу; структура внешних помех не известна заранее, а следовательно, полностью их подавить практически невозможно. И хотя сегодня существует множество способов устранения отдельных видов помех, в целом задача борьбы с ними еще не решена. Кроме того, нет универсального метода, который был бы одинаково эффективен при подавлении различных помех (см. ).

В настоящее время можно выделить несколько основных способов борьбы с помехами:

  • увеличение энергетического потенциала радиолинии (мощности передатчика, коэффициента усиления антенны);
  • снижение уровня собственных шумов приемника;
  • снижение уровня внешних помех на входе приемника за счет их компенсации;
  • применение совместной обработки помехи и сигнала, основанной на определении различий между полезным сигналом и помехой;
  • повышение отношения сигнал/помеха за счет использования помехозащитных методов модуляции и кодирования.

Развитие технических решений, обеспечивающих защиту от помех, идет в направлении комплексного применения указанных выше и других методов, однако реализация таких решений требует определенного усложнения аппаратуры, а значит – увеличения ее стоимости. Поэтому на практике не стремятся создавать устройства с предельно достижимой (потенциальной) помехоустойчивостью. Чаще всего конечный продукт представляет собой компромиссный вариант, оптимизированный по критерию «стоимость – эффективность». Сопоставление реальной и потенциальной помехоустойчивости позволяет судить об эффективности того или иного метода доступа, а также целесообразности его дальнейшего совершенствования.

Основным показателем качества передачи информации в условиях помех, по которому сравнивают различные методы цифровой модуляции и кодирования информации, является безразмерная величина – отношение сигнал/шум, определяемое как h 2 =E b /N о (где E b – энергия на один бит информации, а N o – спектральная плотность мощности шума).

Как известно, пропускная способность CDMA-каналов ограничена уровнем взаимных помех активных абонентов. Это означает, что существует обратно пропорциональная зависимость между числом активных абонентов системы и отношением сигнал/шум. Чем больше абонентов работает в системе, тем меньше значение данного отношения и, соответственно, «запас» помехозащищенности. Безусловно, существует пороговое значение, ниже которого опускаться нельзя и которое определяет предельную дальность связи при заданной мощности передатчика. Скажем, для системы, построенной на базе стандарта cdmaOne, такое значение равно 6–7 дБ, что существенно ниже, чем в других радиосистемах (GSM – 9 дБ, DECT – 12 дБ).

Решающую роль в борьбе с помехами играет выбор структуры сигналов (они должны обладать хорошими взаимокорреляционными свойствами) и оптимального способа приема. Поэтому при планировании структуры сигналов стремятся к тому, чтобы они как можно больше отличались друг от друга, – тогда действующая в системе помеха будет в наименьшей степени влиять на полезный сигнал. Приемник же должен максимально очистить сигнал от искажений, вызванных воздействием помех. Очевидно, что используются различные способы реализации указанных требований, поэтому существующие системы по-разному реагируют на отдельные виды помех.

В случае применения классического метода расширения спектра, основанного на технологии DS-CDMA, помехозащищенность в условиях воздействия шумовых помех с равномерной спектральной плотностью не зависит от типа используемых сигналов, а полностью определяется базой сигнала и отношением сигнал/помеха. Грубо говоря, в системах DS-CDMA в целях подавления помех их мощность «размазывают» по широкой полосе частот.

Если распределение помехи подчиняется нормальному случайному закону с равномерной спектральной плотностью («белый шум»), то различные элементы шумоподобного сигнала (ШПС) «поражаются» в одинаковой степени. Такой вид помех для широкополосных систем особо опасен, причем чем больше мощность помехи, тем сильнее подавляется полезный сигнал.

В наименьшей степени широкополосный сигнал DS-CDMA страдает от узкополосных помех. Одночастотная гармоническая помеха способна исказить сигнал лишь в относительно узкой полосе частот, а полезная информация полностью восстанавливается по «неповрежденным» участкам спектра. Любая сосредоточенная в спектре помеха на выходе корреляционного приемника преобразуется в широкополосную и эффективно подавляется (благодаря тому, что по форме она не соответствует полезному сигналу; см. «Сети», 2000, б№ 5, с. 59, рис. 2). Конечно, в этом случае происходит незначительное снижение отношения сигнал/шум, однако оно настолько мало, что положительный эффект несоизмерим с потерями качества, которые имеют место при использовании других классических методов доступа (TDMA или FDMA).

Таким образом, если помехи имеют распределение, отличное от нормального, то элементы шумоподобного сигнала начинают искажаться по-разному – одни сильнее, а другие слабее. В этой ситуации оптимальный приемник позволит увеличить значение отношения сигнал/помеха. Теоретически доказано, что если известна структура помехи, для нее всегда можно создать такой оптимальный приемник, который обеспечит максимальную величину отношения сигнал/помеха. На практике же все несколько сложнее. Вид помехи не известен заранее, а следовательно, приемник должен «уметь» эффективно бороться с любыми типами помеховых воздействий.

Эффективность работы приемника в условиях помех зависит от выбора методов модуляции, кодирования и схемы приемника. Вопросы кодирования и перемежения символов являются самостоятельными направлениями разработок, поэтому остановимся подробнее лишь на проблемах приема сигналов в условиях помех.

Наиболее эффективно обеспечивает подавление помех так называемый адаптивный приемник. В общем случае он состоит из L каналов (где L равно числу элементов CDMA-сигнала), каждый из которых имеет согласованный фильтр, осуществляющий оптимальный прием одного символа конкретного сигнала (рис.1). Отсчеты принятого сигнала смещаются во времени (за счет создания задержки) таким образом, чтобы совместить их в момент окончания сигнала. Наличие схемы выбора весовых коэффициентов с учетом степени «повреждения» тех или иных элементов ШПС позволяет приемнику адаптивно подстраиваться под помеху, «максимизируя» тем самым величину сигнал/помеха.

С целью подавления импульсных помех на входе приемника используется широкополосный фильтр с полосой пропускания, не меньшей ширины спектра полезного сигнала. Следующий за ним ограничитель предназначен для нейтрализации действия импульсных помех.

Степень помехозащищенности, которую обеспечивает адаптивный приемник, зависит от соотношения числа «пораженных» элементов сигнала и их общего числа. Заметим: если широкополосная помеха одинаковым образом воздействует на все элементы сигнала, то все весовые коэффициенты равны между собой и для приема достаточно одного фильтра, согласованного с сигналом. Таким образом, адаптивный приемник является инвариантным к действию помех, а его эффективность тем выше, чем сильнее спектр мощности помехи отличается от равномерного. Другими словами, любой «провал» в спектре помехи позволяет увеличить значение отношения сигнал/шум за счет изменения весовых коэффициентов сигнала.

Высокая помехозащищенность систем со сложными сигналами обусловлена тем, что сигнал может накапливаться в согласованном фильтре оптимальным образом: его элементы складываются синфазно, а элементы помехи – некогерентно. Вообще говоря, адаптивный приемник способен «извлекать» полезный сигнал из «смеси» шума и помехи, во много раз превосходящей его по мощности, а предел помехозащищенности обычно ограничен собственными шумами приемника.

Однако в прямом и обратном каналах связи помехоустойчивость сигнала DS-CDMA различна. Наиболее сложная ситуация возникает в обратном канале, когда на вход приемника базовой станции (БС) помимо собственных шумов приемника и внутрисистемных помех от активных абонентов (помех многостанционного доступа) действуют еще и внешние помехи (см. врезку ).

Чтобы проиллюстрировать вклад, который вносят активные абоненты других сот в общий помеховый фон, обратимся к рис. 2. Здесь видно, как убывают взаимные помехи в зависимости от удаленности от какой-либо соты (при анализе подразумевалось, что все соты имеют одинаковые размеры, а абоненты равномерно размещены по территории, обслуживаемой сетью). Вклад соседних сот в общий помеховый фон обычно составляет около 36%. Столь высокий уровень обусловлен тем, что на практике имеет место частичное перекрытие диаграмм направленности антенн БС. Суммарный вклад от сот, не являющихся «соседями» данной (т.е. расположенных от нее через одну и далее), не превышает 4%. Наиболее высокий уровень взаимных помех (60%) создают абоненты, одновременно работающие в соте.

В прямом канале взаимные помехи создаются соседними базовыми станциями, а суммарная мощность этих помех пропорциональна числу БС. Считается, что благодаря синхронизации и выбору соответствующей структуры сигналов БС воздействие взаимных помех может быть сведено к нулю.

На отношение сигнал/шум для прямого канала влияет способ регулировки мощности передатчиков БС. При неавтоматической регулировке мощность передатчика БС не зависит от местоположения абонента мобильной станции. Наихудшая ситуация возникает, когда абонент находится на границе трех сот, т.е. когда уровни принимаемых от различных станций сигналов примерно одинаковы.

Подход к подавлению помех в системах FH-CDMA (рис. 3), использующих псевдослучайную перестройку частоты, несколько иной, чем в системах DS-CDMA. Напомним: в системах на базе FH-CDMA каждый информационный символ передается в виде комбинации из N частот, и на каждой из этих частот излучается свой шумоподобный сигнал. Кроме полезного сигнала конкретного пользователя (синий цвет), по системе передаются сигналы от других абонентов (красный цвет), а кроме того, на нее воздействуют узкополосная помеха fп (горизонтальная линия) и импульсная помеха в момент tп (вертикальная линия). Поскольку элемент полезного сигнала FH-CDMA занимает в каждый момент лишь сравнительно небольшую часть спектра, такой метод обеспечивает эффективное подавление как узкополосных, так и импульсных помех.

Помехи от абонентов собственной или соседних сот создают наибольший ущерб, если структура их сигналов одна и та же, а законы перестройки частоты различны. В этом случае возможно наложение сигналов от разных пользователей, что приводит к «поражению» отдельных частотных составляющих сигнала FH-CDMA. Степень помехозащищенности такой системы определяется отношением числа «непораженных» участков спектра к их общему числу. Очевидно, что чем шире полоса частот и больше набор используемых частот, тем меньше вероятность их совпадения и выше степень защищенности от помех.

Методы борьбы с помехами, основанные на структурных различиях сигнала и помехи
Селекция Характерные различия сигнала и помехи Методы подавления помех
Частотная Спектры смещены по частоте Фильтрация
Пространственная Разные направления приема Использование адаптивных антенн
По поляризации Разная поляризация (горизонтальная или вертикальная) Применение поляризационного фильтра
Фазовая Разные фазо-частотные характеристики Использование систем с фазовой автоподстройкой частоты
Временная Разные моменты появления сигнала и помехи Блокирование приемника на время действия мощных импульсных помех, ограничение входного сигнала по уровню (после полосового фильтра)

Классификация помех

Помехи весьма разнообразны по своему происхождению, типу и способу воздействия на систему, приемник и антенну (см. рисунок).

По происхождению они подразделяются на естественные (атмосферные, космические) и искусственные (индустриальные, от работающих передатчиков и др.). Помехи, создаваемые с помощью специальных устройств, относят к преднамеренным , а остальные виды считаются непреднамеренными . Первые из них получили широкое применение в военной технике (в зависимости от соотношения полос передатчиков помех и приемника радиостанции такие помехи подразделяются на заградительные, прицельные и др.).

Среди помех естественного происхождения наиболее опасны атмосферные, обусловленные электрическими процессами, энергия которых сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также при работе промышленного и медицинского оборудования (их принято относить к индивидуальным). В настоящее время действуют жесткие нормы, ограничивающие уровень индустриальных помех, особенно если их источники расположены в больших городах или пригородах.

В зависимости от типа различают, скажем, аддитивные и мультипликативные помехи. Помеха считается аддитивной , если ее мешающее действие не зависит от наличия сигнала, и мультипликативной , если она возникает только при наличии сигнала. Примером аддитивной помехи является флуктуационной шум в радиоканале, образующийся в результате одновременной работы большого числа источников помех. Изменение коэффициента передачи при многолучевом распространении сигнала – результат воздействия мультипликативной помехи.

По соотношению ширины спектров помех и сигнала различают узкополосные и широкополосные помехи. Естественно, что одна и та же помеха по отношению к одному сигналу может быть узкополосной, а по отношению к другому – широкополосной.

Помехозащищенность системы зависит от так называемой восприимчивости к помехам ее основных элементов (антенны, приемника и др.). При этом обычно говорят о способе воздействия помехи на какой-либо элемент системы. Например, восприимчивость приемника обусловлена частотой и видом помехи. Наибольший ущерб наносят внутриканальные помехи (попадающие в рабочую полосу приемника), методы борьбы с которыми выбираются в зависимости от применяемых способов доступа и воздействия на сигнал. Помехи по соседнему каналу возникают вследствие нестабильности гетеродинов, недостаточной «чистоты» радиоволны и наличия других нежелательных излучений (на гармониках и субгармониках). Восприимчивость направленной антенны в значительной степени связана с направлением прихода сигнала (по главному, заднему или боковому лепестку).

Основные виды помех

Аддитивная (additive interference). Любая помеха, мешающее действие которой проявляется независимо от присутствия или отсутствия сигнала. При действии аддитивной помехи результирующий сигнал на входе приемника может быть представлен в виде суммы нескольких независимых составляющих – сигнальной и нескольких помеховых.

Атмосферные. 1. atmospheric noise. Помехи, обусловленные электрическими процессами в атмосфере (в основном грозовыми разрядами). Различают два вида атмосферных помех – импульсные (ближние грозы) и флуктуационный шум (дальние грозы). 2. precipitation interference. Помехи, возникающие при выпадении осадков в виде дождя, снега и т.п.

Внутриканальная (cochannel interference). Помеха, приводящая к снижению уровня полезного сигнала при воздействии мешающих сигналов иных станций, которые работают на той же или близкой частоте. В сотовых и транкинговых системах внутриканальные помехи образуются за счет влияния других зон, в которых используются те же рабочие частоты.

Внутрисотовая (intra-cell interferece). Помеха, обусловленная мешающим действием передатчиков абонентских станций, которые работают в зоне действия той же базовой станции.

Следящая (follow me interference). Преднамеренная помеха, предназначенная для подавления систем с быстрой перестройкой рабочей частоты.

Гармоническая (harmonic interference). Помеха, возникающая вследствие нежелательного излучения на частоте гармоники сигнала.

Дезинформирующая (spoof jamming). Преднамеренная помеха, при воздействии которой система остается работоспособной, но не обеспечивает передачи полезной информации.

Заградительная (barrage jamming, full-band jamming). Помехи, излучаемые в полосе частот, которая значительно шире полосы частот подавляемой станции. В качестве такой помехи может использоваться шум с равномерным спектром или сканируемая по частоте помеха.

Имитационная (smart jamming). Помеха, имеющая одинаковую с полезным сигналом структуру, что затрудняет ее обнаружение.

Импульсная (pulse or burst interference). Помеха малой длительности, которая в общем случае состоит из большого числа импульсов, (случайно распределяющихся по времени и амплитуде). К импульсным также относятся помехи от переходных процессов.

Индустриальные (man-made noise, man-made interference). Помехи, которые обусловлены работой различных электрических установок (медицинских, промышленных), а также систем зажигания автомобилей. Спектр побочных излучений обычно имеет импульсный характер, что связано с резкими изменениями тока в связи с контактными явлениями в электрических цепях.

Интермодуляционные (intermodulation interference). 1. Помехи, возникающие в приемнике, причиной которых может стать наличие более одного мешающего сигнала с интенсивностью, достаточной для проявления нелинейных свойств приемного тракта, или сложение мешающих сигналов с гармониками гетеродина. 2. Помехи, возникающие в передатчике при попадании на его вход мощных сигналов от близко расположенных передающих станций.

Космические (cosmic interference). Помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных обюектах.

Многочастотная (multitone interference). Помеха, состоящая из нескольких гармонических сигналов, обычно равномерного спектра.

Мультипликативная (multiplicative interference). Помеха, мешающее действие которой проявляется только при наличии сигнала.

От соседней зоны (adjacent cell interference). Помеха от передатчиков, расположенных в соседней зоне.

По боковому лепестку (sidelobe interference). Помеха, приходящая по любому направлению, кроме главного и заднего лепесков диаграммы направленности антенны.

По главному лепестку (main lobe interference). Помеха, поступающая по главному лепестку диаграммы направленности антенны.

По заднему лепестку (back-lobe interference). Любая помеха, приходящая по направлению, противоположному направлению главного лепестка диаграммы направленности антенны.

По зеркальному каналу (image interference). Помеха, попадающая в полосу побочного канала приема, который отстоит от несущей на величину первой промежуточной частоты.

По соседнему каналу (adjacent channel interference). Помеха от несущих частот других каналов, отстоящих от рабочего канала на шаг сетки частот (обычно 25 или 12,5 кГц). В англоязычной литературе этот термин обычно применяется с уточнениями, конкретизирующими источник помех: next-channel interference (помеха от последующего) и neighboring-channel interference (помеха от соседнего).

Преднамеренная (jamming). Радиопомеха, создаваемая специальными передатчиками для подавления работы средств связи и навигации.

Прицельная (spot jamming). Сосредоточенная преднамеренная помеха на несущей частоте полезного сигнала.

Ретранслируемая (repeat-back jamming). Преднамеренная помеха, образуемая путем переретрансляции исходного полезного сигнала с задержкой.

С расширенным спектром (spread spectrum). Помеха с равномерной спектральной плотностью мощности.

Сосредоточенная (spot). Помеха, мощность которой сосредоточена в очень узкой полосе частот – меньшей, чем спектр полезного сигнала, или соизмеримой с ним.

Структурная. Помеха, подобная по структуре полезным сигналам (т.е. состоящая из тех же элементов), но отличающаяся от них параметрами модуляции. К структурным помехам относятся внутрисистемные помехи имитационные и ретранслируемые.

Узкополосная (narrow-band interference). Помеха, спектр которой значительно уже ширины спектра полезного сигнала.

Флуктуационная (fluctuation noise, fluctuation interference). Помеха, которая представляет собой случайный нормально распределенный шумовой сигнал (Гауссовский шум).

Частично-заградительная (partial-band jamming). Заградительная помеха с частичным перекрытием рабочего диапазона частот подавляемой радиостанции.

В реальных каналах связи наряду с флуктуационными гаусовскими помехами типа белого шума действуют сосредоточенные по времени (импульсные) помехи и сосредоточенные по спектру помехи.

7.4.1. Общая характеристика сосредоточенных по спектру и импульсных помех

Во многих случаях помеха состоит из отдельных импульсов, длительность которых существенно меньше длительности элемента сигнала , а спектр помехи значительно шире спектра сигнала. Такие помехи называются импульсными (рис. 7.18).

К сосредоточенным по времени (импульсным) помехам относятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих через случайные, достаточно большие промежутки времени. Причинами импульсных помех являются грозовые разряды, радиостанции, работающие в импульсном режиме, линии электропередачи и другие энергоустановки, системы энергообеспечения транспорта и др.

Кроме импульсных помех, могут существовать протяженные по времени помехи, спектр которых занимает такую же полосу частот, как и сигнал, или даже более узкую. Эти помехи называют сосредоточенными по спектру (рис. 7.19).

К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высокой частоты различного назначения (медицинские, промышленные, бытовые и др.), переходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с шириной спектра меньшей или соизмеримой с шириной спектра полезного сигнала. В диапазоне декаметровых волн такие колебания являются основным видом помех.

Воздействие сосредоточенной по спектру помехи

Поскольку далеко не всякий элемент сигнала принимается в присутствии сосредоточенной помехи, то вероятность ошибки можно выразить произведением:

где – вероятность того, что на вход решающей схемы поступила сосредоточенная помеха, а – условная вероятность того, что произойдет ошибка символа при воздействии сосредоточенной помехи, которая зависит от мощности сигнала, мощности сосредоточенной помехи, вида сигнала, частоты сигнала, частоты помехи и т.д. Для различных систем связи определены аналитические зависимости условной вероятности ошибок от названных факторов, эти зависимости можно найти в специальной литературе .

Теоретические и экспериментальные исследования показывают, что в любых системах связи существует некоторое отношение , называемое порогом или коэффициентом помехоустойчивости, такое, что при условная вероятность ошибки . Если же отношение выше , то условная вероятность ошибки может быть велика. Экспериментальные исследования реальных приемников ЧМ показывают, что при ошибки не возникают, а при вероятность ошибки практически равна . Коэффициент различен для разных систем связи. Так, для когерентной системы с фазовой манипуляцией , для системы с амплитудной манипуляцией . Коэффициент может быть и значительно выше единицы, если используются широкополосные сигналы, занимающие полосу частот .

Воздействие импульсной помехи

Для вероятности ошибки, вызываемой импульсной помехой, также справедливо выражение (7.9), где под следует теперь понимать вероятность того, что за время существования элемента сигнала на вход решающей схемы поступил импульс помехи, а под – условную вероятность ошибочного приема символа, при условии прихода импульса помехи. Воздействие импульсной помехи на прием дискретных сигналов тоже носит пороговый характер. Если интенсивность импульсной помехи (на входе решающей схемы) меньше некоторой величины, то она не вызывает ошибок, т. е. . При увеличении интенсивности сверх этой величины условная вероятность ошибок быстро возрастает.