Обзор существующих методов распознавания образов. Проблема распознавания образов. Роль и место распознавания образов в автоматизации управления сложными системами

о том, какие проблемы ещё предстоит решить, чтобы вывести системы автоматического распознавания речи на человеческий уровень.

С тех пор, как в распознавании речи появилось глубокое обучение, уровень ошибок сильно снизился. Но несмотря на все, что вы могли читать и видеть, у нас все ещё не существует системы распознавания речи человеческого уровня. В распознавании речи есть множество ошибок. Для продвижения вперед важно знать, когда они происходят, и предпринимать шаги по решению проблем. Только так можно перейти от автоматического распознавания речи (ASR), которое работает для некоторых людей, к ASR, которое работает для всех людей и всегда.

Улучшения в показателе частоты ошибок в тесте распознавания разговорной речи Switchboard. Набор тестов был собран в 2000 году. Он состоит из 40 телефонных разговоров между двумя случайными носителями английского языка.

Говорить, что мы достигли человеческого уровня распознавания разговорной речи, основываясь на результатах Switchboards, это то же самое, что говорить, что беспилотный автомобиль водит так же хорошо, как человек, после тестирования в одном городе в солнечный день без пробок. Последние улучшения в распознавании разговорной речи изумительны. Но заявлять о достижении уровня людей слишком рано. Ниже представлены несколько разделов, требующих улучшения.

Акценты и шум

Одно из самых заметных различий в распознавании речи – это способность разбираться с акцентами и фоновым шумом. Прямая причина этого заключается в том, что данные для обучения состоят из английской речи с американским акцентом с высоким показателем отношения сигнала к шуму (SNR – signal-to-noise ratio). Например, наборы данных для обучения и тестов Switchboard включают только речь носителей английского языка с небольшим фоновым шумом.

Однако увеличение количества данных для обучения, вероятно, не решит проблему просто так. Существует множество языков с большим количеством диалектов и акцентов. Невозможно собрать достаточно данных для всех случаев. Создание качественной системы распознавания речи только для английского с американским акцентом требует пять тысяч часов транскрибированного аудио.

Сравнение человеческих стенограмм со стенограммами модели Deep Speech 2 от Baidu. Заметьте, что люди хуже распознают неамериканский акцент. Вероятно, это связано с американским происхождением стенографов. Я думаю, что нативные для каждого региона спикеры лучше бы распознавали акценты родных стран.

Что касается фонового шума, в движущемся автомобиле SNR редко бывает на показателе -5 дБ. Люди без проблем понимают друг друга в этой среде. Автоматические системы распознавания речи допускают гораздо больше ошибок с увеличением шума. На диаграмме выше мы видим, как разница между ошибками людей и модели резко возрастает от аудио с низким SNR к аудио с высоким SNR.

Семантические ошибки

Показатель уровня ошибок в словах не самый объективный показатель. Нас интересует показатель семантических ошибок. Это доля высказываний, в которых мы искажаем смысл.

Пример семантической ошибки: если кто-то сказал “let’s meet up Tuesday” (давайте встретимся во вторник), но система распознала высказывание как “let’s meet up today” (давайте встретимся сегодня). У нас также могут быть ошибки в словах без семантических ошибок: если система отбросила слово up и распознала “let’s meet Tuesday”, то семантика высказывания не изменилась.

Мы должны осторожнее использовать показатель ошибок в словах (WER – word error rate) в качестве основного. Позвольте показать вам худшую ситуацию. WER в 5% соответствует одному пропущенному слову на каждые двадцать. Если в каждом предложении двадцать слов (средний показатель для английского), то показатель ошибок в предложениях составит 100%. Но пропущенные слова вряд ли изменят смысл предложений. В ином случае даже с 5% WER каждое предложение было бы неправильно интерпретировано.

При сравнении моделей и людей важно проверять природу ошибок, а не просто смотреть на показатель WER. По своему опыту могу сказать, что когда люди расшифровывают речь, они совершают меньше ошибок, и эти ошибки не так критичны.

Исследователи в Microsoft недавно сравнили ошибки людей и систем распознавания речи с человеческим уровнем ошибок. Они обнаружили, что модель чаще путает междометия “а” и “ага”. У этих двух слов совершенно разная семантика: “а” просто заполняет паузы, а “ага” выступает в качестве подтверждения. Но модель и люди также совершили много похожих ошибок.

Один канал, множество говорящих

Тест от Switchboard проще, потому что каждый говорящий записан на отдельный микрофон. В одном канале аудио не перекрываются разные голоса. Люди же могут понимать нескольких людей, говорящих одновременно.

Хорошая систем распознавания речи должна быть способна сегментировать аудио на основании того, кто говорит (диаризация). Она также должна понимать аудио от нескольких говорящих (разделение источников). Это должно быть возможно без необходимости присутствия микрофона около каждого говорящего.

Другие области

Акценты и фоновый шум – это всего лишь два фактора, в отношении которых должна повышаться надежность распознавателя речи. Вот еще несколько:

  • Реверберация от изменения акустической среды.
  • Артефакты аппаратного обеспечения.
  • Кодек, используемый для артефактов звука и сжатия.
  • Частота выборки.
  • Возраст оратора.

Многие люди даже не заметят разницы между файлами mp3 и wav. Прежде, чем мы заявим о производительности на уровне человека, распознаватели речи должны быть надежными и в отношении этих факторов.

Контекст

Вы можете заметить, что показатель ошибок людей в тестах вроде Switchboard довольно высок. Если бы вы общались с другом, и они не понимали 1 из 20 сказанных вами слов, вам было бы сложно общаться.

Одна из причин этого – оценка совершается независимо от контекста. В реальной жизни мы используем много других подсказок, чтобы понять, что говорит собеседник. Несколько примеров контекста, который используеют люди:

  • Прошлые разговоры и тема обсуждения.
  • Визуальные подсказки, например, выражения лица и движения губ.
  • Знания о человеке, с которым мы общаемся.

Сейчас у распознавателя речи в Android есть доступ к вашему списку контактов, чтобы он мог распознавать имена ваших друзей. Голосовой поиск в картах использует геолокацию, чтобы сузить список потенциальных пунктов назначения. Точность ASR-систем возрастает с применением такого типа сигналов. Но мы только начала изучать, какой контекст мы можем включить и как мы можем это сделать.

Реализация

Недавние улучшения в распознавании разговорной речи нельзя быстро развернуть. Когда мы рассуждаем о том, что делает новый алгоритм распознавания речи реализуемым, мы обращаемся к показателям задержки и мощности. Они связаны, и алгоритмы, уменьшающие время задержки, повышают показатель мощности. Разберем каждый отдельно.

Задержка: Это время от момента завершения речи до завершения транскрибирования. Низкое время задержки – распространенное требование в системах распознавания речи. Это может сильно повлияет на опыт пользователя, и задержка часто измеряется в десятках миллисекунд. Это может показаться чрезмерным, но помните, что создание транскрипции – это первый шаг в серии вычислений. Например, в голосовом поиске сам поиск совершается после распознавания речи.

Двунаправленные рекуррентные сети являются хорошим примером значительного улучшения. Все последние современные разработки в распознавании разговорной речи используют их. Проблема в том, что мы не можем ничего вычислить после первого двунаправленного слоя, пока пользователь не закончит говорить. Таким образом, задержка увеличивается с длиной высказывания.

При использовании одного направления мы можем начать транскрипцию мгновенно

С двунаправленным повторением мы вынуждены ждать окончания речи.

Хороший способ эффективного использования будущей информации в распознавании речи по-прежнему остается открытой проблемой.

Мощность: количество вычислительной мощности, которое необходимо для транскрипции высказывания является экономическим ограничением. Мы должны учитывать ценность и стоимость каждого улучшения точности распознавания речи. Если улучшение не укладывается в экономические рамки, оно не может быть воплощено.

Классическим примером улучшения, которое не реализуется, является ансамблевое обучение. Сокращение показателя ошибок на 1-2% не стоит увеличение вычислительной мощности от 2 до 8 раз. Современные модели на основе рекуррентных нейронных сетей обычно также относятся к этой категории, потому что их очень дорого использовать в лучевом поиске, хотя я ожидаю, что в будущем это изменится.

Я не считаю, что исследования, связанные с улучшением точности и большой вычислительной мощностью, бессмысленны. Мы уже видели модель “сначала медленно, но точно, затем быстро” до этого. Смысл в том, что пока улучшение не станет достаточно быстрым, его нельзя использовать.

Следующие пять лет

В распознавании речи существует много открытых и сложных проблем. Среди них:

  • Расширение возможностей в новые области, на новые акценты и на речь с низким соотношением сигнала и шума.
  • Внедрение большего количества контекста в процесс распознавания.
  • Диаризация и разделение источников.
  • Показатель семантических ошибок и инновационные методы оценки распознавателей.
  • Низкая задержка и эффективные алгоритмы.

Процесс распознавания состоит в том, что система распознавания на основании сопоставления апостериорной информации относительно каждого поступившего на вход системы объекта или явления с априорным описанием классов принимает решение о принадлежности этого объекта (явления) к одному из классов. Правило, которое каждому объекту ставит в соответствие определенное наименование класса, называют решающим правилом. В литературе, посвященной распознаванию образов, утвердилось мнение, что суть проблемы распознавания заключается в определении решающих правил, нахождении в признаковом пространстве таких границ (решающих границ), придерживаясь которых признаковые пространства оптимальным образом, например с точки зрения минимизации ошибок распознавания, подразделяются на области, соответствующие классам. Так, в сказано, что в отыскании таких решающих правил на основании заданных описаний классов и заключается проблема распознавания.

При определении решающих правил (решающих границ в признаковом пространстве) в зависимости от объема исходной априорной информации рассматриваются следующие ситуации:

1. Количество исходной информации достаточно для того, чтобы путем ее анализа и непосредственной обработки определить решающие правила (системы распознавания без обучения, см. рис. 1.4).

2. Количество исходной информации недостаточно для определения решающих правил на основе ее непосредственной обработки, в связи с чем реализуется процедура обучения (обучающиеся системы распознавания, см. рис. 1.5).

В ситуациях 1 и 2 задача отыскания решающих правил базируется на том, что алфавит классов объектов и априорный словарь признаков, предназначенных для их описаний, известны. Рассматривается также и такая ситуация, когда словарь признаков известен, но неизвестен алфавит классов. При этом, однако, определен некоторый набор правил, в соответствии с которыми на основании процедуры самообучения находится искомый алфавит классов. Затем определяются решающие правила (самообучающиеся системы, см. рис. 1.6).

Исторически сложилось так, что первые теоретические исследования и прикладные работы в области распознавания базировались на том, что признаковое пространство известно, известен также и алфавит классов. В этих условиях проблема распознавания действительно может трактоваться как проблема определения в некотором смысле наилучших решающих границ (решающих правил). В настоящее время часто при построении распознающих устройств имеет место ситуация, когда известны и алфавит классов, и словарь признаков. Однако в общем случае при построении реальных систем распознавания, требующих разработки специальных измерительных средств и целых измерительных комплексов, исходить из того, что алфавит классов и словарь признаков априорно известны, к сожалению, не приходится.

Назначение систем распознавания - получить информацию, необходимую для принятия определенных решений, о принадлежности неизвестного объекта (явления) к тому или иному классу. Именно так обстоит дело в системах медицинской и технической диагностики, геологической разведки, метеорологического прогноза, криминалистике, системах распознавания целей и т. п. Поэтому системы распознавания, являясь частью системы управления (автоматической или автоматизированной), должны строиться с учетом обеспечения наиболее эффективного использования всего набора допустимых решений. Этот факт накладывает на построение систем распознавания следующие ограничения.

1. При прочих равных условиях повышение эффективности принимаемых решений следует связывать со степенью детализации определения или назначения либо характера распознаваемого объекта или явления. Степень детализации определяется количеством классов, на которое подразделено множество объектов или явлений. Так, если система управления располагает m различными решениями, то в алфавите классов системы распознавания, учитывая сказанное, целесообразно предусмотреть m+1 классов. Тогда, если распознанный объект относится к классу Ω 1 принимается решение l 1 , если к классу Ω 2 - решение h и т. д., если же объект относится к классу Ω m +1 , решение не принимается.

2. Эффективность принимаемых системой управления решений при прочих равных условиях (в том числе, естественно, при заданном алфавите классов) зависит от точности определения принадлежности распознаваемого объекта или явления к соответствующему классу. Точность же определения или ошибка распознавания при заданном по точности априорном описании классов определяется размерностью и информативностью признакового пространства, объемом и качеством апостериорной информации о значениях признаков (параметров), которыми характеризуется распознаваемый объект. Иначе говоря, расширение алфавита классов, увеличивающее степень детализации определения назначения либо характера распознаваемого объекта (явления), при неизменном словаре признаков увеличивает ошибку распознавания.

Пусть заданы три класса Ω 1 , Ω 2 и Ω 3 объектов распределениями f 1 (х), f 2 (x),f 3 (x) априорными вероятностями появления объектов соответствующих классов P(Ω 1)=P(Ω 2)=P(Ω 3)=P, а также потерями c 11 = c 22 = с 33 = 0 и с 12 = с 21 = c 13 = с 31 = с 23 = с 32 = с.

На рис. 2.1 представлены законы распределений. Средний (байесовский) риск (см. § 4.2)

Положим теперь, что объекты, относящиеся к классам Ω 1 и Ω 2 , решено объединить в один класс Ω 4 , описание которого

Средний риск в данном случае в предположении неизменности границы b составит

Из сравнения величин Rã 1 и Rã 2 видно, что Rã l >Rã 2 на величину

Следовательно, при заданном признаковом пространстве и прочих равных условиях уменьшение числа классов приводит

Рис. 2.1

к уменьшению ошибок распознавания и, наоборот, при увеличении числа классов системы распознавания в целях поддержания на заданном уровне или даже уменьшения среднего риска (вероятности ошибочных решений) надо расширять словарь признаков (естественно, при прочих равных условиях). В то же время расширение признакового пространства в целях уменьшения ошибок распознавания сопряжено с увеличением числа технических измерительных средств, каждое из которых обеспечивает определение соответствующего признака или группы признаков. Это, в свою очередь, требует увеличения затрат на построение системы распознавания. На величину же затрат в реальных условиях, как правило, накладываются те или другие ограничения.

Таким образом, стремление по возможности наиболее эффективно использовать набор возможных решений системы управления приводит к необходимости увеличения алфавита классов до m+1. Однако естественная ограниченность ресурсов, ассигнованных на построение измерительных средств системы распознавания или системы распознавания в целом, приводит к тому, что по мере увеличения алфавита классов ошибки распознавания растут, а это уменьшает эффективность использования возможных решений. Только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков системы, базирующийся на исходных данных относительно набора возможных решений и величины ресурсов, отпущенных на создание измерительной аппаратуры, реализующей словарь признаков, позволяет обеспечить решение задачи построения системы распознавания оптимальным образом.

Итак, в общем случае при построении систем распознавания приходится иметь дело со следующей ситуацией. Создается некоторая система управления, реализующая то или другое управление в зависимости от результатов оценки, существенных свойств, характера, назначения объекта или явления, его распознавания. Система управления располагает конечным числом решений. Составляющая эффективности управлений, зависящая от функционирования системы распознавания, обусловливается двумя факторами. Первый фактор связан со степенью детализации распознавания объектов или явлений, наибольшее значение которой будет в том случае, если число классов, содержащихся в алфавите классов системы распознавания, равно количеству возможных решений (плюс единица - последний класс, объекты которого не распознаются). Второй фактор - точность решения задачи распознавания. Естественно, чем она выше, тем меньше вероятность принять решение, не соответствующее особенностям данного объекта или явления. Например, применить не адекватную заболеванию стратегию лечения в случае использования системы медицинской диагностики; применить не по назначению данное средство противодействия в случае использования системы распознавания целей и т. п. Однако при заданном словаре признаков увеличение алфавита классов уменьшает точность решения задачи распознавания. Увеличение же словаря признаков в общем случае связано с разработкой новой или использованием существующей измерительной аппаратуры, что влечет за собой увеличение расходов на построение системы распознавания.

Таким образом, суть проблемы распознавания состоит в разработке таких алфавита классов и словаря признаков, которые в условиях ограниченных ресурсов на построение системы распознавания обеспечивают максимальную эффективность системы управления, принимающей соответствующее решение в зависимости от результатов решения задачи распознавания. При этом, безусловно, выбирая словарь признаков и определяя алфавит классов, следует находить наилучшие решающие правила, решающие границы между классами. Однако в общем случае не в этом состоит проблема распознавания, как не важна и как подчас не сложна задача определения оптимальных решающих правил, обеспечивающих в условиях заданных алфавита классов и словаря признаков наибольшую точность распознавания . Более того, при построении логических систем распознавания, использующих либо алгоритмы распознавания, основанные на методах алгебры логики, либо структурных (лингвистических) систем (см. гл. 8), решающие правила вообще не определяются.

Таким образом, нет достаточных оснований считать справедливым суждение о том, что проблема распознавания состоит в определении решающих правил (решающих границ).

Конец работы -

Эта тема принадлежит разделу:

Общая характеристика проблемы распознавания объектов и явлений

В а скрипкин.. методы распознавания.. общая характеристика проблемы распознавания объектов и явлений..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Качественное описание задачи распознавания i
Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - едва ли не самая распространенная задача, которую человеку приходится решать практически ежесекундно от первого до посл

Основные задачи построения систем распознавания
Рассмотренный в § 1.1 пример свидетельствует о том, что распознавание сложных объектов и явлений требует создания специальных систем распознавания - сложных динамических систем, сос

Экспертные системы распознавания
Рассмотренная классификация систем распознавания и принципы их функционирования отражают современное состояние вопроса. Все виды систем распознавания базируются на строго формализов

Постановка задачи распознавания
Пусть задано множество объектов или явлений Ω={w1 ..., ..., wz}, а также множество возможных решений L={l1, ..., lk}, которые могут

Метод решения задачи распознавания
Рассмотренная постановка проблемы распознавания позволяет определить последовательность задач, возникающих при разработке системы распознавания, предложить их формулировки и возможн

Системы распознавания без обучения
Построение систем распознавания без обучения возможно при наличии полной первоначальной априорной информации, которая представляет собой совокупность: 1) сведений о том, какова есте

Обучающиеся системы распознавания
Использование методов обучения для построения систем распознавания необходимо в случае, когда отсутствует полная первоначальная априорная информация. Ее объем позволяет подразделить

Самообучающиеся системы распознавания
На практике иногда приходится сталкиваться с необходимостью построения распознающих устройств в условиях, когда провести классификацию объектов либо невозможно, либо по тем или другим соображениям

Некоторые сведения из теории статистических решений
Рассмотрим основные результаты теории статистических решений на следующем примере. Пусть совокупность объектов подразделена на классы Ω1 и Ω2, а дл

Критерий Байеса
Критерий Байеса - правило, в соответствии с которым стратегия решений выбирается таким образом, чтобы обеспечить минимум среднего риска. Применение критерия Байеса целесообразно в с

Минимаксный критерий
При построении систем распознавания возможны такие ситуации, когда априорные вероятности появления объектов соответствующих классов неизвестны. Минимизировать значение среднего риск

Критерий Неймана-Пирсона
При построении некоторых систем распознавания могут быть неизвестны не только априорные вероятности появления объектов соответствующих классов, но и платежная матрица (1.7). В подоб

Процедура последовательных решений
Ранее предполагалось, что решение о принадлежности распознаваемого объекта w соответствующему классу Ωi, i=l, ..., m, принимается после измерения всей совокупности

Регуляризация задачи распознавания
В соответствии со стратегией Байеса, если у распознаваемого объекта со измеренное значение признака х = х0 , то

Рабочего словаря признаков
В § 5.1 был рассмотрен один из возможных методов выбора пространства признаков системы распознавания, обеспечивающий в пределах выделенных ресурсов максимальное значение критерия ка

Сравнительная оценка признаков
Выше были рассмотрены достаточно общие методы выбора совокупности признаков, которые целесообразно и доступно использовать при построении системы распознавания. Однако на практике д

Изображающие числа и базис
Булева функция считается заданной, если можно указать значения истинности этой функции при всех возможных комбинациях значений истинности входящих в нее элементов. Таблицу, которая

Восстановление булевой функции по изображающему числу
Рассмотрим методы, позволяющие переходить от задания булевой функции в виде изображающего числа к явному выражению ее через элементы. Дизъюнктивная нормальная форма (ДНФ).

Зависимость и независимость высказываний
Условия независимости. Поскольку каждая булева функция может иметь два значения истинности, n булевых функций могут образовывать 2n комбинаций значений истинности. По опр

Булевы уравнения
Решение многих задач, связанных с распознаванием объектов, может быть сведено к нахождению решений булевых алгебраических уравнений с одним (или более) неизвестным. Примером булева

Замена переменных
Понятие замены переменных в алгебре логики аналогично понятию замены переменных в обычной алгебре. Если А, В, С, ... - элементарные высказывания и совершается замена переменных, то,

Решение логических задач распознавания
В логических системах распознавания классы и признаки объектов рассматриваются как логические переменные. Чтобы подчеркнуть эту особенность, для обозначения классов и признаков введ

Решение задач распознавания при большом числе элементов
Приложение изложенных в предыдущих параграфах методов построения сокращенного базиса и решения логических задач существенно ограничивается объемом памяти ЭВМ и их быстродействием. Т

Алгоритм построения сокращенного базиса
В § 7.1 было показано, как с помощью ЭВМ, опираясь на сокращенный базис b´ [А1, А2, ...Ω1, Ω2,...], находить

Распознавание объектов в условиях их маскировки
Маскировка - один из основных методов снижения эффективности разведки противника в общем комплексе мероприятий по противодействию. Решение проблемы маскировки требует привлечения, с

Распознавание в условиях противодействия
Рассмотрим задачу распознавания объектов в условиях, когда противник может препятствовать как выявлению отдельных признаков объектов, так и сознательно изменять свою тактику в отнош

Алгоритмы распознавания, основанные на вычислении оценок
Логические алгоритмы распознавания, рассмотренные выше, в ряде случаев не позволяют получить однозначное решение о принадлежности распознаваемого объекта к определенному классу. Ю.

Общая характеристика структурных методов распознавания
Во многих случаях апостериорная информация о распознаваемых объектах или явлениях содержится в записях соответствующих сигналов (электрокардиограмм, энцефалограмм, отраженных от цел

Основные элементы аппарата структурных методов распознавания
Говоря о средстве описания объектов в терминах непроизводных элементов и их отношений, употребляют понятие язык. Правила этого языка, определяющие способы построения объекта из непр

Реализация процесса распознавания на основе структурных методов
Для распознавания неизвестного объекта на основе структурных методов необходимо прежде всего найти его непроизводные элементы и отношения между ними, а затем с помощью синтаксическо

Постановка задачи оптимизации процесса распознавания
Прежде всего покажем, что с увеличением числа признаков, используемых при распознавании, вероятность правильного распознавания неизвестных объектов также увеличивается. Вер

Алгоритм управления процессом распознавания
Рассмотренные понятия позволяют построить алгоритм управления процессом распознавания в виде правила последовательного поиска решений, обеспечивающего разработку оптимального плана

Частные подходы к принятию решений при распознавании
Решение задачи оптимизации распознавания в рассмотренной постановке требует наличия определенных данных. Когда они отсутствуют, приходится пользоваться частными подходами к пр

Алгебраический подход к задаче распознавания
Выше рассмотрены алгоритмы распознавания: детерминированные алгоритмы, основанные на проведении в признаковом пространстве решающей границы (границы, разделяющей классы и представля

Эффективность вероятностных систем распознавания
Чтобы оценить эффективность вероятностных систем распознавания на основе математического моделирования, можно использовать метод статистических испытаний. Для проведения таких испыт

Эффективность логических систем распознавания
При построении логических систем распознавания приходится сталкиваться с ситуацией, когда значения истинности элементов А1..., Аn, выражающих признаки объектов

Образ, класс - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку.

Образное восприятие мира - одно из загадочных свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в океане разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию воспринимаемых ощущений, т. е. разбиваем их на группы похожих, но не тождественных явлений. Например, несмотря на существенное различие, к одной группе относятся все буквы А, написанные различными почерками, или все звуки, которые соответствуют одной и той же ноте, взятой в любой октаве и на любом инструменте, а оператор, управляющий техническим объектом, на целое множество состояний объекта реагирует одной и той же реакцией. Характерно, что для составления понятия о группе восприятий определенного класса достаточно ознакомиться с незначительным количеством ее представителей. Ребенку можно показать всего один раз какую-либо букву, чтобы он смог найти эту букву в тексте, написанном различными шрифтами, или узнать ее, даже если она написана в умышленно искаженном виде. Это свойство мозга позволяет сформулировать такое понятие, как образ.

Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Примерами образов могут быть: река, море, жидкость, музыка Чайковского, стихи Маяковского и т. д. В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект . Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга.

Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания. Будучи отражением объективной реальности, понятие образа столь же объективно, как и сама реальность, а поэтому может быть само по себе объектом специального исследования.

В литературе, посвященной проблеме обучения распознавания образов (ОРО), часто вместо понятия образа вводится понятие класса.

Проблема обучения распознаванию образов (ОРО)

Одним из самых интересных свойств человеческого мозга является способность отвечать на бесконечное множество состояний внешней среды конечным числом реакций. Может быть, именно это свойство позволило человеку достигнуть высшей формы существования живой материи, выражающейся в способности к мышлению, т. е. активному отражению объективного мира в виде образов, понятий, суждений и т. д. Поэтому проблема ОРО возникла при изучении физиологических свойств мозга.

Рассмотрим пример задач из области ОРО.


Рис. 3.1.

Здесь представлены 12 изображений, и следует отобрать признаки, при помощи которых можно отличить левую триаду картинок от правой. Решение данных задач требует моделирования логического мышления в полном объеме.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например, звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы тесно связано с вопросом, который все чаще возникает в связи с развитием идей кибернетики: что может и что принципиально не может делать машина? В какой мере возможности машины могут быть приближены к возможностям живого мозга? В частности, может ли машина развить в себе способность перенять у человека умение производить определенные действия в зависимости от ситуаций, возникающих в окружающей среде? Пока стало ясно только то, что если человек может сначала сам осознать свое умение, а потом его описать, т. е. указать, почему он производит действия в ответ на каждое состояние внешней среды или как (по какому правилу) он объединяет отдельные объекты в образы, то такое умение без принципиальных трудностей может быть передано машине. Если же человек обладает умением, но не может объяснить его, то остается только один путь передачи умения машине - обучение примерами.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каждой из таких задач анализируются некоторые явления, процессы, состояния внешнего мира, всюду далее называемые объектами наблюдения. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать на нас по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние - это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом.

Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра , то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.

Выбор исходного описания объектов является одной из центральных задач проблемы ОРО. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной, и наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Например, если решается задача распознавания объектов, отличающихся по цвету, а в качестве исходного описания выбраны сигналы, получаемые от датчиков веса, то задача распознавания в принципе не может быть решена.

Обзор существующих методов распознавания образов

Л.П. Попова , И.О. Датьев

Способность "распознавать" считается основным свойством человеческих существ, как, впрочем, и других живых организмов. Распознавание образов - раздел кибернетики, разрабатывающий принципы и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций - всех тех объектов, которые могут быть описаны конечным набором некоторых признаков или свойств, характеризующих объект.

Образ представляет собой описание объекта. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.

В теории распознавания образов можно выделить два основных направления:

    изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

    развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Далее в статье описываются проблемы, принципы и методы реализации систем распознавания образов, связанные с развитием второго направления. Во второй части статьи рассматриваются нейросетевые методы распознавания образов, которые могут быть отнесены к первому направлению теории распознавания образов.

Проблемы построения систем распознавания образов

Задачи, возникающие при построении автоматических систем распознавания образов, можно обычно отнести к нескольким основным областям. Первая из них связана с представлением" исходных данных, полученных как результаты измерений для подлежащего распознаванию объекта. Это проблема чувствительности . Каждая измеренная величина является некоторой "характеристикой образа или объекта. Допустим, например, что образами являются буквенно-цифровые символы. B таком случае, в датчике может быть успешно использована измерительная сетчатка, подобно приведенной на рис. 1(а). Если сетчатка состоит из n-элементов, то результаты измерений можно представить в виде вектора измерений или вектора образа ,

где каждый элемент xi, принимает, например, значение 1, если через i-ю ячейку сетчатки проходит изображение символа, и значение 0 в противном случае.

Рассмотрим рис. 2(б). B этом случае образами служат непрерывные функции (типа звуковых сигналов) переменной t. Если измерение значений функций производится в дискретных точках t1,t2, ..., tn, то вектор образа можно сформировать, приняв x1= f(t1),x2=f(t2),... , xn = f(tn).

Рисунок 1. Измерительная сетчатка

Вторая проблема распознавания образов связана с выделением характерных признаков или свойств из полученных исходных данных и снижением размерности векторов образов. Эту проблему часто определяют как проблему предварительной обработки и выбора признаков .

Признаки класса образов представляют собой характерные свойства, общие для всех образов данного класса. Признаки, характеризующие различия между отдельными классами, можно интерпретировать как межклассовые признаки. Внутриклассовые признаки, общие для всех рассматриваемых классов, не несут полезной информации с точки зрения распознавания и могут не приниматься во внимание. Выбор признаков считается одной из важных задач, связанных с построением распознающих систем. Если результаты измерений позволяют получить полный набор различительных признаков для всех классов, собственно распознавание и классификация образов не вызовут особых затруднений. Автоматическое распознавание тогда сведется к процессу простого сопоставления или процедурам типа просмотра таблиц. B большинстве практических задач распознавания, однако, определение полного набора различительных признаков оказывается делом исключительно трудным, если вообще не невозможным. Из исходных данных обычно удается извлечь некоторые из различительных признаков и использовать их для упрощения процесса автоматического распознавания образов. B частности, размерность векторов измерений можно снизить с помощью преобразований, обеспечивающих минимизацию потери информации.

Третья проблема, связанная с построением систем распознавания образов, состоит в отыскании оптимальных решающих процедур, необходимых при идентификации и классификации. После того как данные, собранные о подлежащих распознаванию образах, представлены точками или векторами измерений в пространстве образов, предоставим машине выяснить, какому классу образов эти данные соответствуют. Пусть машина предназначена для различения M классов, обозначенных w1, w2, ... ..., wm. B таком случае, пространство образов можно считать состоящим из M областей, каждая из которых содержит точки, соответствующие образам из одного класса. При этом задача распознавания может рассматриваться как построение границ областей решений, разделяющих M классов, исходя из зарегистрированных векторов измерений. Пусть эти границы определены, например, решающими функциями d1(х),d2(x),..., dm(х). Эти функции, называемые также дискриминантными функциями, представляют собой скалярные и однозначные функции образа х. Если di (х) > dj (х), то образ х принадлежит классу w1. Другими словами, если i-я решающая функция di(x) имеет наибольшее значение, то содержательной иллюстрацией подобной схемы автоматической классификации, основанной на реализации процесса принятия решения, служит приведенная на рис. 2 (на схеме «ГР» - генератор решающих функций).

Рисунок 2. Схема автоматической классификации.

Решающие функции можно получать целым рядом способов. B тех случаях, когда о распознаваемых образах имеются полные априорные сведения, решающие функции могут быть определены точно на основе этой информации. Если относительно образов имеются лишь качественные сведения, могут быть выдвинуты разумные допущения о виде решающих функций. B последнем случае, границы областей решений могут существенно отклоняться от истинных, и поэтому необходимо создавать систему, способную приходить к удовлетворительному результату посредством ряда последовательных корректировок.

Объекты (образы), подлежащие распознаванию и классификации с помощью автоматической системы распознавания образов, должны обладать набором измеримых характеристик. Когда для целой группы образов результаты соответствующих измерений оказываются аналогичными, считается, что эти объекты принадлежат одному классу. Цель работы системы распознавания образов заключается в том, чтобы на основе собранной информации определить класс объектов с характеристиками, аналогичными измеренным у распознаваемых объектов. Правильность распознавания зависит от объема различающей информации, содержащейся в измеряемых характеристиках, и эффективности использования этой информации.

      Основные методы реализации систем распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты, решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о “распознавании с учителем”. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или “распознавании без учителя”. Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т.Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Темников Ф.Е., Афонин В.А., Дмитриев В.И. , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области.

В то же время, известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов. Д.А.Поспелов выделяет два основных способа представления знаний :

    Интенсиональное представление - в виде схемы связей между атрибутами (признаками).

    Экстенсиональное представление - с помощью конкретных фактов (объекты, примеры).

Необходимо отметить, что существование именно этих двух групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым , положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Методы, основанные на оценках плотностей распределения значений признаков. Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

К этой группе относится и метод вычисления отношения правдоподобия для независимых признаков. Этот метод, за исключением предположения о независимости признаков (которое в действительности практически никогда не выполняется), не предполагает знания функционального вида закона распределения. Его можно отнести к непараметрическим методам .

Другие непараметрические методы, применяемые тогда, когда вид кривой плотности распределения неизвестен и нельзя сделать вообще никаких предположений о ее характере, занимают особое положение. К ним относятся известные метод многомерных гистограмм, метод “k-ближайших соседей, метод евклидова расстояния, метод потенциальных функций и др., обобщением которых является метод, получивший название “оценки Парзена”. Эти методы формально оперируют объектами как целостными структурами, но в зависимости от типа задачи распознавания могут выступать и в интенсиональной и в экстенсиональной ипостасях.

Непараметрические методы анализируют относительные количества объектов, попадающих в заданные многомерные объемы, и используют различные функции расстояния между объектами обучающей выборки и распознаваемыми объектами. Для количественных признаков, когда их число много меньше объема выборки, операции с объектами играют промежуточную роль в оценке локальных плотностей распределения условных вероятностей и объекты не несут смысловой нагрузки самостоятельных информационных единиц. В то же время, когда количество признаков соизмеримо или больше числа исследуемых объектов, а признаки носят качественный или дихотомический характер, то ни о каких локальных оценках плотностей распределения вероятностей не может идти речи. В этом случае объекты в указанных непараметрических методах рассматриваются как самостоятельные информационные единицы (целостные эмпирические факты) и данные методы приобретают смысл оценок сходства и различия изучаемых объектов.

Таким образом, одни и те же технологические операции непараметрических методов в зависимости от условий задачи имеют смысл либо локальных оценок плотностей распределения вероятностей значений признаков, либо оценок сходства и различия объектов.

В контексте интенсионального представления знаний здесь рассматривается первая сторона непараметрических методов, как оценок плотностей распределения вероятностей. Многие авторы отмечают, что на практике непараметрические методы типа оценок Парзена работают хорошо. Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности ищется наилучшее приближение решающей функции. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Решение этой задачи нередко достигается с помощью каких-либо градиентных алгоритмов. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации. В отличие от параметрических методов распознавания успешность применения данной группы методов не так сильно зависит от рассогласования теоретических представлений о законах распределения объектов в пространстве признаков с эмпирической реальностью. Все операции подчинены одной главной цели - нахождению экстремума функционала качества решающего правила. В то же время результаты параметрических и рассматриваемых методов могут быть похожими. Как показано выше, параметрические методы для случая нормальных распределений объектов в различных классах с равными ковариационными матрицами приводят к линейным решающим функциям. Отметим также, что алгоритмы отбора информативных признаков в линейных диагностических моделях, можно интерпретировать как частные варианты градиентных алгоритмов поиска экстремума.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами. Однако стремление добиться достаточного качества решающего правила нередко может быть удовлетворено с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму .

К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции.

Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА). В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции. В алгоритмах МГУА особым образом синтезируются и отбираются члены обобщенного полинома, который часто называют полиномом Колмогорова-Габора. Этот синтез и отбор производится с нарастающим усложнением, и заранее нельзя предугадать, какой окончательный вид будет иметь обобщенный полином. Сначала обычно рассматривают простые попарные комбинации исходных признаков, из которых составляются уравнения решающих функций, как правило, не выше второго порядка. Каждое уравнение анализируется как самостоятельная решающая функция, и по обучающей выборке тем или иным способом находятся значения параметров составленных уравнений. Затем из полученного набора решающих функций отбирается часть в некотором смысле лучших. Проверка качества отдельных решающих функций осуществляется на контрольной (проверочной) выборке, что иногда называют принципом внешнего дополнения. Отобранные частные решающие функции рассматриваются далее как промежуточные переменные, служащие исходными аргументами для аналогичного синтеза новых решающих функций и т. д. Процесс такого иерархического синтеза продолжается до тех пор, пока не будет достигнут экстремум критерия качества решающей функции, что на практике проявляется в ухудшении этого качества при попытках дальнейшего увеличения порядка членов полинома относительно исходных признаков.

Принцип самоорганизации, положенный в основу МГУА, называют эвристической самоорганизацией, так как весь процесс основывается на введении внешних дополнений, выбираемых эвристически. Результат решения может существенно зависеть от этих эвристик. От того, как разделены объекты на обучающую и проверочную выборки, как определяется критерий качества распознавания, какое количество переменных пропускается в следующий ряд селекции и т. д., зависит результирующая диагностическая модель.

Указанные особенности алгоритмов МГУА свойственны и другим подходам к эволюционному моделированию. Но отметим здесь еще одну сторону рассматриваемых методов. Это - их содержательная сущность. С помощью методов, основанных на предположениях о классе решающих функций (эволюционных и градиентных), можно строить диагностические модели высокой сложности и получать практически приемлемые результаты. В то же время достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций. Поэтому максимально, что можно сказать после построения той или иной диагностической модели - это перечислить комбинации признаков и сами признаки, вошедшие в результирующую модель. Но смысл комбинаций, отражающих природу и структуру распределений исследуемых объектов, в рамках данного подхода часто остается нераскрытым.

Логические методы . Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события.

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм “Кора” и другие. Более сложные методы основываются на формализации индуктивных методов Д.С.Милля. Формализация осуществляется путем построения квазиаксиоматической теории и базируется на многосортной многозначной логике с кванторами по кортежам переменной длины .

Алгоритм “Кора”, как и другие логические методы распознавания образов, является достаточно трудоемким, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (синтаксические или структурные) методы. Лингвистические методы распознавания образов основаны на использовании специальных грамматик порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов . Грамматикой называют правила построения объектов из этих непроизводных элементов.

Если описание образов производится с помощью непроизводных элементов (подобразов) и их отношений, то для построения автоматических систем распознавания применяется лингвистический или синтаксический подход с использованием принципа общности свойств. Образ можно описать с помощью иерархической структуры подобразов, аналогичной синтаксической структуре языка. Это обстоятельство позволяет применять при решении задач распознавания образов теорию формальных языков. Предполагается, что грамматика образов содержит конечные множества элементов, называемых переменными, непроизводными элементами и правилами подстановки. Характер правил подстановки определяет тип грамматики. Среди наиболее изученных грамматик можно отметить регулярные, бесконтекстные и грамматики непосредственно составляющих. Ключевыми моментами данного подхода являются выбор непроизводных элементов образа, объединение этих элементов и связывающих их отношений в грамматики образов и, наконец, реализация в соответствующем языке процессов анализа и распознавания. Такой подход особенно полезен при работе с образами, которые либо не могут быть описаны числовыми измерениями, либо столь сложны, что их локальные признаки идентифицировать не удается и приходится обращаться к глобальным свойствам объектов.

Например, Е.А. Бутаков, В.И. Островский, И.Л. Фадеев предлагают следующую структуру системы для обработки изображений (рис. 3), использующую лингвистический подход, где каждый из функциональных блоков является программным (микропрограммным) комплексом (модулем), реализующим соответствующие функции.

Рисунок 3. Структурная схема распознающего устройства

Попытки применить методы математической лингвистики к задаче анализа изображений приводят к необходимости решить ряд проблем, связанных с отображением двумерной структуры изображения на одномерные цепочки формального языка.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

    метод сравнения с прототипом;

    метод k–ближайших соседей;

    коллективы решающих правил.

Метод сравнения с прототипом. Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, тогда, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки – прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом который, фактически эквивалентен линейной диагностической модели.

На практике, конечно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы. Это, в первую очередь, выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. И, во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k-ближайших соседей. Метод k-ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k-ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k-ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

Как отмечалось выше, в реальных задачах часто приходится оперировать объектами, которые описываются большим количеством качественных (дихотомических) признаков. При этом размерность пространства признаков соизмерима или превышает объем исследуемой выборки. В таких условиях удобно интерпретировать каждый объект обучающей выборки, как отдельный линейный классификатор. Тогда тот или иной диагностический класс представляется не одним прототипом, а набором линейных классификаторов. Совокупное взаимодействие линейных классификаторов дает в итоге кусочно-линейную поверхность, разделяющую в пространстве признаков распознаваемые классы. Вид разделяющей поверхности, состоящей из кусков гиперплоскостей, может быть разнообразным и зависит от взаимного расположения классифицируемых совокупностей.

Также можно использовать другую интерпретацию механизмов классификации по правилу k-ближайших соседей. В ее основе лежит представление о существовании некоторых латентных переменных, абстрактных или связанных каким-либо преобразованием с исходным пространством признаков. Если в пространстве латентных переменных попарные расстояния между объектами такие же, как и в пространстве исходных признаков, и количество этих переменных значительно меньше числа объектов, то интерпретация метода k-ближайших соседей может рассматриваться под углом зрения сравнения непараметрических оценок плотностей распределения условных вероятностей. Приведенное здесь представление о латентных переменных близко по своей сути к представлению об истинной размерности и другим представлениям, используемым в различных методах снижения размерности.

При использовании метода k-ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Алгоритмы вычисления оценок (голосования). Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритете (оценок сходства), характеризующих “близость” распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Коллективы решающих правил. В решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например, расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа “Кора” и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Нейросетевые методы

Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений :

    применение для извлечение ключевых характеристик или признаков заданных образов,

    классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),

    решение оптимизационных задач.

Многослойные нейронные сети. Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 4). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем . Такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рисунок 5. Главные компоненты (собственные лица) и разложение изображения на главные компоненты

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами , которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 5). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

Нейронные сети высокого порядка. Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора . Такие сети так же могут формировать сложные разделяющие поверхности.

Нейронные сети Хопфилда. НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ .

Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы .

Самоорганизующиеся нейронные сети Кохонена. Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, m<

Когнитрон. Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.

Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба.

Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы .

Рассмотренные нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений, но при использовании этих методов возникают проблемы распознавания трёхмерных объектов. Тем не менее, данный подход имеет массу достоинств.

      Заключение

В настоящее время существует достаточно большое количество систем автоматического распознавания образов для различных прикладных задач.

Распознавание образов формальными методами как фундаментальное научное направление является неисчерпаемым.

Математические методы обработки изображений имеют самые разнообразные применения: наука, техника, медицина, социальная сфера. В дальнейшем роль распознавания образов в жизни человека будет возрастать еще больше.

Нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений. Данный подход имеет массу достоинств и является одним из наиболее перспективных.

Литература

    Д.В. Брилюк, В.В. Старовойтов. Нейросетевые методы распознавания изображений // /

    Кузин Л.Т. Основы кибернетики: Основы кибернетических моделей. Т.2. - М.: Энергия, 1979. - 584с.

    Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. – М.: Высшая школа, 1997. - 389с.

    Темников Ф.Е., Афонин В.А., Дмитриев В.И. Теоретические основы информационной техники. - М.: Энергия, 1979. - 511с.

    Ту Дж., Гонсалес Р. Принципы распознавания образов. /Пер. с англ. - М.: Мир, 1978. - 410с.

    Уинстон П. Искусственный интеллект. /Пер. с англ. - М.: Мир, 1980. - 520с.

    Фу К. Структурные методы в распознавании образов: Пер.с англ. - М.: Мир, 1977. - 320с.

    Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука, 1984. - 520с.

    Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. - М.: Наука, 1988. - 280с.

    Ю. Лифшиц, Статистические методы распознавания образов ///modern/07modernnote.pdf

    Бор Н. Атомная физика и человеческое познание. /Пер.с англ. - М.: Мир, 1961. - 151с.

    Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ.1987.-236с.

    Дуда Р., Харт П. Распознавание образов и анализ сцен. /Пер.с англ. - М.: Мир, 1978. - 510с.

    Дюк В.А. Компьютерная психодиагностика. - СПб: Братство, 1994. - 365с.

    Aizenberg I. N., Aizenberg N. N. and Krivosheev G.A. Multi-valued and Universal Binary Neurons: Learning Algorithms, Applications to Image Processing and Recognition. Lecture Notes in Artificial Intelligence – Machine Learning and Data Mining in Pattern Recognition, 1999, pp. 21-35.

    Ranganath S. and Arun K. Face recognition using transform features and neural networks. Pattern Recognition 1997, Vol. 30, pp. 1615-1622.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями – Брест:БПИ, 1999, - 260с.

    Vetter T. and Poggio T. Linear Object Classes and Image Synthesis From a Single Example Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, Vol. 19, pp. 733-742.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей – Брест:БПИ, 1999, - 228с.

    Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, pp. 1-24.

    Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 – 184с.

    Rowley H. A., Baluja S. and Kanade T. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, Vol. 20, pp. 23-37.

    Valentin D., Abdi H., O"Toole A. J. and Cottrell G. W. Connectionist models of face processing: a survey. IN: Pattern Recognition 1994, Vol. 27, pp. 1209-1230.

    Документ

    Им составляют алгоритмы распознавания образов . Методы распознавания образов Как отмечалось выше... реальности не существует "экосистемы вообще", а существуют только отдельные... выводы из этого детального обзора методов распознавания мы представили в...

  1. Обзор методов идентификации людей на основе изображений лиц с учетом особенностей визуального распознавания

    Обзор

    ... распознавания человеком слабоконтрастных объектов, в т.ч. лиц. Приведен обзор распространенных методов ... Существует целый ряд методов ... образом , в результате проведенного исследования подготовлена платформа для разработки метода распознавания ...

  2. Имени Глазкова Валентина Владимировна ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ ПРОГРАММНЫХ СРЕДСТВ КЛАССИФИКАЦИИ МНОГОТЕМНЫХ ГИПЕРТЕКСТОВЫХ ДОКУМЕНТОВ Специальность 05

    Автореферат диссертации

    Гипертекстовых документов. В главе приведён обзор существующих методов решения рассматриваемой задачи, описание... отсечением наименее релевантных классов // Математические методы распознавания образов : 13-я Всероссийская конференция. Ленинградская обл...

  3. Слайд 0 Обзор задач биоинформатики связанных с анализом и обработкой генетических текстов

    Лекция

    Последовательностей ДНК и белков. Обзор задач биоинформатики как задач... сигналов требует применения современных методов распознавания образов , статистических подходов и... с низкой плотностью генов. Существующие программы предсказания генов не...

Cтраница 2


При обучении распознаванию образов известны некоторые т изображений и их принадлежность образу. Проблема распознавания образов состоит в том, чтобы по тренировочной последовательности построить алгоритм, определяющий значение у для любого набора из области определения функции.  

Распознающая система на основании данных о процессе и внешних воздействий на этот процесс оценивает производственную ситуацию и выдает команды на управление процессом. С проблемой распознавания образов тесно связана проблема создания обучающихся автоматов, которые должны уметь оценивать сложившуюся ситуацию и на основании этого принимать наилучшее решение. Поэтому большая часть задач по обучению автоматов может быть сведена к задачам обучения распознавания образов.  

Есть много действительно серьезных, по-настоящему захватывающих проблем, над которыми работают сейчас тысячи ученых. Это - и проблема распознавания образа, и обработка информации, лингвистические проблемы и многие другие.  

Эффективность решения задачи распознавания в конечном счете определяется тем, насколько эффективно организовано обучение распознающего устройства процедуре классификации. Поэтому основное внимание в проблеме распознавания образов уделяется задаче обучения распознаванию.  

Кажется логичным изучение архитектур, соответствующих нашему пониманию организации и функций мозга. Человеческий мозг представляет существующее доказательство того факта, что решение проблемы распознавания образов возможно. Кажется разумным эмулировать работу мозга, если мы хотим повторить его работу. Однако контраргументом является история полетов; человек не смог оторваться от земли до тех пор, пока не перестал имитировать движения крыльев и полет птиц.  

Использование топографических принципов позволяет создать самую быстродействующую и самую емкую машинную память. Голограммная память разыскивает нужную информацию по законам ассоциации, что свойственно человеческой памяти. Голография может решить проблему распознавания образов, над которой много лет бьются кибернетики. Если голограмме предъявить группу предметов, она мгновенно ответит (путем отождествления) на те из них, изображения которых она хранит. Причем, чем сложнее предмет, тем надежнее голограмма узнает его.  

В четвертой главе излагаются основы теории дискретных самоорганизующихся систем. Определяется количественная мера самоорганизации и самообучения, исследуется поведение случайных автоматов и автоматов, работающих в условиях случайных внешних воздействий. Особое место уделяется проблеме распознавания образов и теории одного класса устройств (так называемых а-персептронов), предназначенных для решения этой проблемы. Рассматриваются некоторые вопросы моделирования условных рефлексов, а также процессов обучения распознаванию смысла и выработки новых понятий.  

На рис. 12.11 представлен пример, в котором в качестве образа выбрана заглавная буква А. Нетрудно видеть, что при сохранении соответствующей емкости памяти уже после нескольких релаксационных шагов из сильно искаженных шумами букв возникает четкий образ, изначально записанный в памяти. Именно в этом и заключается взаимосвязь между ассоциативной памятью изложенного выше типа и проблемой распознавания образа. В настоящее время не существует точных представлений относительно того, каким образом можно было бы обобщить и расширить изложенную выше модель ассоциативной памяти на основе спиновых стекол, чтобы она была применима и к сложной проблеме распознования повернутых или сдвинутых образов. Как показывает пример изображения на рис. 12.11, буква А, перевернутая вверх тормашками, не была бы распознана, так как даже смещение неискаженного образа на несколько узлов решетки (растра) превращает его распознавание в проблему, решение которой выходит за рамки ассоциативных возможностей модели Хопфидда. Будущее покажет, удастся ли решить и этот класс проблем с помощью ассоциативных запоминающих устройств.  

Сложность экологических проблем требует обработки больших массивов данных. Необходимы исследования, направленные на облегчение интерпретации и разумного применения накопленной информации. Существенную помощь в этом могут оказать работы в области искусственного интеллекта, связанные с проблемой распознавания образов. Новейшие достижения микропроцессорной и микрокомпьютерной техники начинают использоваться при конструировании разумных измерительных приборов. Необходимо обратить внимание на организацию, накопление и сбор данных об окружающей среде.  

Как видим, понятие симметрии приобретает поистине глобальный смысл. Впрочем, можно пойти еще дальше и обратить внимание на то, что, по большому счету, мы имеем дело с симметрией всякий раз, когда решаем проблему распознавания образов, проблему диагностики.  

Распознавание образов является одной из форм обработки информации, поступающей от системы или объекта. Классы характеризуются тем, что принадлежащие им объекты обладают некоторой общностью (сходством), например характеризуются одинаковой структурой функционального оператора. То общее, что объединяет объекты в класс, принято называть образом. К задаче построения математического описания объекта или системы с точки зрения проблемы распознавания образов можно подходить двояко. Один из подходов заключается в том, что в качестве образа, который необходимо опознать, выступает сам функциональный оператор ФХС. С другой стороны, вместо функционального оператора Ф строится кибернетическое распознающее устройство, которое прогнозирует поведение системы так же, как это делал бы соответствующий функциональный оператор.  

Из сказанного выше очевидно, что существует множество алгоритмов выделения признаков в процессе предварительной обработки информации; их число непрерывно и быстро растет, поскольку выбор способов решения конкретной задачи в большой степени обусловлен характером самой задачи. Успех всего исследования по проблеме распознавания образов определяется тем, насколько удачно выполнен этап выделения признаков. Общее признание получила точка зрения, согласно которой новых крупных достижений в этой области следует ожидать как раз на стадии выделения признаков при предварительной обработке информации.  

Я лично считаю, что такая трактовка дает современному специалисту по кибернетике ключ к более глубокому исследованию проблемы памяти, которая рассматривается в этой книге в другом разделе. Далее, хотя Лейбницу не удалось создать релятивистскую логику, его философские взгляды на проблему восприятия (являющуюся одним из важнейших вопросов кибернетики) примерно на три столетия опередили его эпоху. Ведь только с появлением работ Уайтхеда (Whitehead) в нашем веке был обоснован взгляд, что некоторый объект, не обладающий сам по себе сознанием, в состоянии реагировать в определенном смысле на связанные с ним события. Наконец, особенно характерно то, что в своих исследованиях всех этих связей Лейбниц стоял на принципиальных позициях теории исследования операций. Он гораздо меньше интересовался причинно-следственным истолкованием связей, чем динамическим, и считал, что часть является выражением целого, а не просто содержится в нем. Такой подход хорошо согласуется с гештальт-проблемами в современной психологии, с подходом к решению всех задач промышленной кибернетики с позиций органического единства, а также с современными кибернетическими исследованиями проблемы распознавания образов.