Нечеткая логика примеры. Нечеткая логика — математические основы. Операции над нечеткими числами

Судьба нечеткой логики, как нового научного направления, сходна с ее содержимым - необычна, сложна и парадоксальна. В основе нечеткой логики лежит теория нечетких множеств, изложенная в серии работ Заде в 1965-1973 годах.

Параллельно с разработкой теоретических основ новой науки, Заде прорабатывал различные возможности ее практического применения. И в 1973 году эти усилия увенчались успехом - ему удалось показать, что нечеткая логика может быть положена в основу нового поколения интеллектуальных систем управления.

Однако основные результаты использования нечеткой логики были получены в Японии. Японцы довели практическое воплощение нечеткой логики до совершенства, но применяли её в основном в изделиях массового рынка – бытовая техника и т.п.

Особенно, конечно же, хочется отметить программное обеспечение, основанное на принципах нечеткой логики и нечетких множеств, которое активно применяется в финансовых и экономических сферах деятельности человека.

Примеры программ на основе нечеткой логики

1. CubiCalc представляет собой своего рода экспертную систему, в которой пользователь задает набор правил типа "если - то", а система пытается на основе этих правил адекватно реагировать на изменение ситуации. Вводимые правила содержат нечеткие величины, т.е. имеют вид "если Х принадлежит А, то Y принадлежит В", где А и В - нечеткие множества. Например: "Если этому жулику удастся сохранить популярность в регионах, то его шансы на выборах будут весьма высоки". Здесь использованы два нечетких термина - "популярность" и "вероятность избрания", которые практически невозможно задать точным значением, но сравнительно легко отобразить функцией распределения. И аппарат нечеткой логики, заложенный в CubiCalc, дает вам изумительную возможность впоследствии оперировать этими понятиями как точными и строить на их основе целые логические системы, не заботясь о нечеткой природе исходных определений.

CubiCalc и сегодня остается одним из самых продаваемых пакетов на основе нечеткой логики.

2. FuziCalc фирмы FuziWare - это первая в мире электронная таблица, позволяющая работать как с точными числовыми значениями, так и с приблизительными, "нечеткими" величинами.

Если в процессе вычислений вы использовали нечеткие величины, результат также будет иметь вид функции распределения. Однако в любом случае результат будет получен! И он будет точнее и достовернее, чем при использовании любых других доступных вам методов.

3. Триумф-Аналитика - это программа для оперативного и стратегического управления предприятием оптовой и розничной торговли, супермаркетом, сбытовой сетью. Сегодня Триумф-Аналитика - единственный аналитический продукт на российском рынке, предоставляющий возможности анализа, прогноза и оптимизации торговой деятельности. Назначение пакета - дать руководителю торгового предприятия полную и точную картину его бизнеса, быстро выявить скрытые резервы и, в конечном итоге, увеличить доходность и снизить издержки своей фирмы.

Триумф-Аналитика - продукт Корпорации "Парус", разработанный по заказу Корпорации специалистами Национального Альянса Управляющих, Консультантов и Аналитиков. В основу программы легли мощные аналитические алгоритмы, используемые при создании Ситуационных центров крупных корпораций, региональных руководителей.

В пакете Триумф-Аналитика использованы самые современные технологии анализа, прогнозирования и ситуационного моделирования - нейронные сети, нечеткая логика, системная динамика. Использованные в программе технологии не могут быть реализованы неспециалистом, а без их применения качество анализа и прогнозов будет неудовлетворительным. Продукт получился: легким, быстрым, гибким, мощным.

Он позволяет быстро диагностировать все основные виды ошибок в управлении торговым предприятием.

Использование самых современных средств разработки программного продукта и базы данных позволило добиться уникальных характеристик по мощности и быстродействию. Так, экспресс-анализ деятельности крупной оптовой компании за квартал средствами комплекса Триумф-Аналитика занимает менее 30 минут.

4. AnyLogic - первый и единственный инструмент имитационного моделирования, объединивший методы системной динамики, "процессного" дискретно-событийного и агентного моделирования в одном языке и одной среде разработки моделей.

Гибкость AnyLogic позволяет отражать динамику сложных и разнородных экономических и социальных систем на любом желаемом уровне абстракции. AnyLogic включает набор примитивов и объектов библиотек для эффективного моделирования производства и логистики, бизнес-процессов и персонала, финансов, потребительского рынка, а также окружающей инфраструктуры в их естественном взаимодействии. Объектно-ориентированный подход, предлагаемый AnyLogic, облегчает итеративное поэтапное построение больших моделей.

В редакторе AnyLogic Вы можете разработать анимацию и интерактивный графический интерфейс модели. Редактор поддерживает большой набор фигур, элементов управления (кнопок, ползунков, полей ввода и т.д.), импорт растровой графики и векторной графики в формате DXF. Анимация может быть иерархической и поддерживать несколько перспектив. Например, Вы можете определить глобальный взгляд на процесс производства с несколькими агрегированными индикаторами, а также детальные анимации конкретных операций - и переключаться между ними.

В AnyLogic включены средства анализа данных и большой набор элементов бизнес-графики, спроектированных для эффективной обработки и презентации результатов моделирования: статистики, наборы данных, графики, диаграммы, гистограммы.

AnyLogic поддерживает множество разнообразных типов экспериментов с моделями: простой прогон, сравнение прогонов, варьирование параметров, анализ чувствительности, оптимизация, калибровка, а также произвольный эксперимент по пользовательскому сценарию.

5. ITHINK предоставит Вам принципиально новые возможности, которые выходят далеко за рамки разработки стандартных форм документов. Он способен придать Вашим плановым и проектным разработкам новое качество. Программный пакет ITHINK - уникальное средство имитационного моделирования производственных и финансовых проектов и процессов.

В начале 90-х пакет ITHINK стал признанным стандартом структурного моделирования на Западе. Он широко используется в интеллектуальных центрах корпораций, банках, правительственных структурах и проектно-исследовательских учреждениях. В глазах зарубежного инвестора инвестиционный проект, разработанный с использованием системы ITHINK, приобретает дополнительные выигрышные характеристики. Работа с этим элитарным инструментом свидетельствует об определенной “приобщенности” разработчиков к новейшим наиболее тонким технологиям анализа проектов.

С помощью ITHINK решались разнообразные задачи, начиная от анализа причин разрушения дамбы в Юго-Восточной Азии в 1989г. и кончая обслуживанием и распределением пациентов, поступающих в приемный покой клиники. Однако в наибольшей степени ему органичны так называемые “потоковые” задачи. Они охватывают весьма широкую группу ситуаций, встречающихся в повседневной жизни предпринимателей, менеджеров и экспертов в области бизнес-планирования. Дело в том, что большинство развивающихся во времени явлений можно представить как потоковые процессы.

Пакет ориентирован на широкую группу пользователей - от руководителей, решающих сложные управленческие проблемы, до специалистов в области ценных бумаг, консультационных компаний и индивидуальных предпринимателей и исследователей.

6. PolyAnalyst предназначается для получения аналитической информации путем автоматической обработки исходных данных и может использоваться аналитиками, занятыми в различных областях деятельности.

Пакет PolyAnalyst - система, в основу которой положена технология искусственного интеллекта Data Mining. При обработке исходных данных она позволяет обнаруживать многофакторные зависимости, которым придает затем вид функциональных выражений (класс функций в них практически произволен), можно также строить структурные и классификационные правила. При этом анализу подвергаются исходные данные различных типов: действительные числа, логические и категориальные величины. Выводимые правила принимают вид либо функций, либо циклов, либо условных конструкций.

Очень важно, что при работе с пакетом PolyAnalyst аналитику не нужно допускать какие-либо закономерности в данных, за него это сделает программа анализа. Разумеется, пользователь не устраняется полностью из процесса анализа данных - от него, конечно же, требуется указать зависимую и независимую переменные, роль которых играют поля записей в исследуемой базе данных.

Система PolyAnalyst состоит из двух частей. Первая из них - модуль универсальной предварительной обработки данных ARNAVAC. Методы, реализованные в этом модуле, традиционны для автоматизации аналитической обработки данных. ARNAVAC обнаруживает в массивах данных функционально связные кластеры, фильтрует шум и случайные выбросы. Затем автоматический аналитик строит многомерную линейную регрессионную зависимость, как наиболее простое и доступное описание исходных данных, используя при этом универсальный быстродействующий алгоритм, автоматически выбирающий наиболее влияющие параметры с корректным определением их значимости.

Процесс построения гипотез идет автоматически, независимо от их сложности.

7. ExPro Master реализует интуитивно очевидную логику решения человеком аналитических задач оценки, прогнозирования и классификации, которая хорошо согласовывается с общепринятыми принципами исследования сложных систем и, поэтому, может рассматриваться как конструктив решения широкого круга системных задач.

Структура решения отдельной экспертно-аналитической задачи включает в себя следующие основные информационные компоненты:

Концептуальную модель предметной области экспертно-аналитической задачи или систему предпочтений, которая является формализованным представлением эксперта о задаче, ее элементах и связях; - оценки объектов из предметной области или просто объекты реального мира, которые анализируются при решении задачи;

Внешние факторы динамики, представленные в виде статистических данных (которые описывают состояние концептуальной модели и объектов в прошлом) и факторы будущего (которые описывают возможные изменения концептуальной модели и объектов в будущем);

Корректуры или внутренние факторы динамики, которые порождаются самой концептуальной моделью по установленным правилам.

Система предпочтений является важнейшей составляющей экспертно-аналитической задачи и предназначена для формализованного представления осознанных знаний эксперта о структуре, связях и характеристиках элементов предметной области решаемой задачи. Система предпочтений представляется в виде множества вершин и направленных связей между ними. Вершины системы предпочтений описывают понятия, которые задаются экспертом и несут конкретную смысловую нагрузку, зависящую от задачи. Эти понятия, в свою очередь, определяются через другие понятия при помощи связей. Связи можно рассматривать как отношения, которые задают влияние одних понятий на другие.

Для формализации связей понятий системы предпочтений в программном комплексе используется конструктив нечеткой меры по Сугено, которая для каждого контекста каждого понятия задается на множестве его частных понятий. Другими словами, к каждой вершине приписывается несколько нечетких мер по числу ее контекстов. Действительно, любое понятие может иметь различный смысл в различных контекстах.

Нечеткие меры также владеют одним чудесным свойством. Они поддерживают понятие модальности экспертных оценок и могут формализовать не только предпочтения в вершинах системы предпочтений, но и указывать семантический оттенок этих предпочтений (возможно, очень возможно, вероятно, необходимо и так далее). Влияние семантического оттенка настолько велико, что в некоторых случаях может приводить к обратным результатам, что в полной мере подтверждается существующей практикой.

Использование нечетких мер для представления экспертных знаний является отличительной особенностью и достоинством программного комплекса.

Внешние факторы динамики являются одной из основных компонент программного комплекса, которая определяет изменчивость во времени как системы предпочтений, так и оценок объектов. Внешние факторы динамики могут иметь различную физическую природу. Как один из вариантов может быть рассмотрено действие некоторых внешних событий по отношению к исследуемой системе.

Таким образом, внешние факторы динамики являются той составляющей программного комплекса, которая обеспечивает динамику решений в экспертно-аналитических задачах в зависимости от изменения внешних условий функционирования системы.

Корректуры или внутренние факторы динамики также являются одной из основных компонент программного комплекса, которая определяет изменчивость во времени как системы предпочтений, так и оценок объектов. В отличие от внешних, внутренние факторы порождаются самой системой предпочтений на основе оценки состояния одного из объектов в заданные моменты времени. Действие корректур направлено также на контекст вершины или на характеристику объекта. На них также могут влиять несколько корректур, каждая со своей важностью. Корректуры совместно с внешними факторами, образуют единое поле влияний.

8. МаркетЭффект предназначено для выработки эффективных маркетинговых решений коммерческими и государственными предприятиями среднего и крупного масштаба в сфере производства, торговли, оказания услуг. Оно направлено на решение задач, связанных с продвижением (продажей) товаров на рынок, с закупками сырья, материалов, энергоресурсов и т.п.

Приложение функционирует в составе системы FinExpert разработки компании IDM. Учетные данные по объемам продаж (покупок), накапливаемые системой FinExpert, служат в МаркетЭффект исходной точкой для анализа рынка (спроса, предложения, цен).

Приложение ориентировано на руководящий состав предприятий, персонал их служб управления, маркетинга и сбыта, на всех, кто принимает участие в выработке стратегии действий предприятия на рынке.

МаркетЭффект позволяет решать следующие задачи:

Анализ рынка.

Анализ и прогноз продаж (покупок).

Прогнозирование эффективности и рисков.

Планирование и анализ маркетинга.

Поиск эффективных схем и стратегий.

Решение этого спектра задач основано на использовании учетной информации системы FinExpert, данных, импортируемых из других компьютерных программ, а также информации, вводимой непосредственно пользователем приложения МаркетЭффект ; построено на базе нечеткой технологии (fuzzy technology). Это позволяет решать задачи, возложенные на приложение, и обрабатывать весь возможный спектр исходной информации на общей идеологической и инструментальной основе и не ограничиваться при этом использованием только точных, числовых данных о состоянии рынка. Приложение позволяет дополнительно учитывать также очень ценные знания специалистов о рынке и предположения о его развитии, несмотря на то, что эта информация имеет описательный, часто нечисловой, нечеткий характер.

Динамика развития рынка определяется множеством факторов, зависящих от сектора рынка, макроэкономических процессов, активности конкурентов, предпочтений покупателей и т.д. Эти же факторы, в свою очередь, оказывают влияние на работу предприятия, на величины его постоянных и переменных издержек, могут нарушать равновесие в секторе рынка.

Для оптимизации принимаемых решений на предприятии проектируются альтернативные схемы и стратегии, влияющие на изменение эффективности и рисков конкретно анализируемого проекта или их совокупности, и проводятся соответствующие расчеты с учетом прогнозного изменения рыночной ситуации. На основании полученных решений в соответствии с определенной системой предпочтений, отвечающей потребностям предприятия, осуществляется оценка альтернативных схем и стратегий и выбор наиболее эффективного решения.

Использование fuzzy-технологии позволяет получать диапазоны прогнозных значений величин в соответствии с определенной долей уверенности.

Поэтому пользователь приложения всегда имеет возможность оценить степень риска как анализируемого проекта в целом, так и его отдельных показателей.

9. Fuzzy Estimation of Critical Messages (FECM) предназначен для оценки интегрального (совокупного) влияния потока сообщений, поступающих в большом количестве накануне и в процессе валютных торгов, на курсы валют. Как результат - прогнозы этих курсов. Совместно с имеющимися программными продуктами технического анализа, использование FECM позволяет соединить прошлое и будущее при прогнозировании курсов валют и, тем самым, повысить возможность принятия правильных решений участниками валютных торгов и других сфер бизнеса.

Использование программы - прогнозирование и системный анализ фундаментальных факторов при проведении валютных торгов на рынке FOREX.

механизмы мышления, заметили, что в действительности существует не одна логика (например, булева), а столько, сколько мы пожелаем, потому что все определяется выбором соответствующей системы аксиом. Конечно, как только аксиомы выбраны, все утверждения, построенные на их основе, должны быть строго, без противоречий увязаны друг с другом согласно правилам, установленным в этой системе аксиом.

Человеческое мышление - это совмещение интуиции и строгости, которое, с одной стороны, рассматривает мир в целом или по аналогии, а с другой стороны - логически и последовательно и, значит, представляет собой нечеткий механизм. Законы мышления, которые мы захотели бы включить в программы компьютеров, должны быть обязательно формальными; законы мышления, проявляемые в диалоге человека с человеком - нечеткие. Можем ли мы поэтому утверждать, что нечеткая логика может быть хорошо приспособлена к человеческому диалогу? Да - если математическое обеспечение , разработанное с учетом нечеткой логики , станет операционным и сможет быть технически реализовано, то человеко-машинное общение станет намного более удобным, быстрым и лучше приспособленным к решению проблем.

Термин " нечеткая логика " используется обычно в двух различных значениях. В узком смысле, нечеткая логика - это логическое исчисление, являющееся расширением многозначной логики. В ее широком смысле, который сегодня является преобладающим в использовании, нечеткая логика равнозначна теории нечетких множеств. С этой точки зрения, нечеткая логика в узком смысле является разделом нечеткой логики в широком смысле.

Определение . Любая нечеткая переменная характеризуется тройкой

Где - название переменной, - универсальное множество , - нечеткое подмножество множества , представляющее собой нечеткое ограничение на значение переменной , обусловленное .

Используя аналогию с саквояжем, нечеткую переменную можно уподобить саквояжу с ярлыком, имеющим "мягкие" стенки. Тогда - надпись на ярлыке (название саквояжа), - список предметов, которые в принципе можно поместить в саквояж, а - часть этого списка, где для каждого предмета указано число , характеризующее степень легкости, с которой предмет можно поместить в саквояж .

Рассмотрим теперь различные подходы к определению основных операций над нечеткими переменными , а именно конъюнкции, дизъюнкции и отрицания. Данные операции являются основными для нечеткой логики в том смысле, что все ее конструкции основываются на этих операциях. В настоящее время в нечеткой логике в качестве операций конъюнкции и дизъюнкции широко используют -нормы и -конормы, пришедшие в нечеткую логику из теории вероятностных метрических пространств. Они достаточно хорошо изучены и лежат в основе многих формальных построений нечеткой логики . В то же время расширение области приложений нечеткой логики и возможностей нечеткого моделирования вызывает необходимость обобщения этих операций. Одно направление связано с ослаблением их аксиоматики с целью расширения инструментария нечеткого моделирования. Другое направление обобщения операций конъюнкции и дизъюнкции нечеткой логики связано с заменой множества значений принадлежности на линейно или частично упорядоченное множество лингвистических оценок правдоподобности. Эти обобщения основных операций нечеткой логики , с одной стороны, вызываются необходимостью разработки экспертных систем, в которых значения истинности фактов и правил описываются экспертом или пользователем непосредственно в лингвистической шкале и носят качественный характер. С другой стороны, такие обобщения вызываются смещением направления активного развития нечеткой логики от моделирования количественных процессов, поддающихся измерению, к моделированию процессов мышления человека, где восприятие мира и принятие решений происходит на основе гранулирования информации и вычисления словами.

Естественным обобщением инволютивных операций отрицания нечеткой логики являются неиволютивные отрицания. Они представляют самостоятельный интерес и рассматриваются в нечеткой и других неклассических логиках. Необходимость исследования подобных операций отрицания вызывается также введением в рассмотрение обобщенных операций конъюнкции и дизъюнкции, связанных друг с другом с помощью операции отрицания .

Введение в нечеткую логику

Нечеткая логика – это логическая или управляющая система n-значной логической системы, которая использует степени состояния («степени правды») входов и формирует выходы, зависящие от состояний входов и скорости изменения этих состояний. Это не обычная «истинная или ложная» (1 или 0), булева (двоичная) логика, на которой основаны современные компьютеры. Она в основном обеспечивает основы для приблизительного рассуждения с использованием неточных решений и позволяет использовать лингвистические переменные.



Нечеткая логика была разработана в 1965 году профессором Лотфи Заде в Калифорнийском университете в Беркли. Первым приложением было выполнение обработки компьютерных данных на основе естественных значений.


Если говорить проще, состояниями нечеткой логики могут быть не только 1 или 0, но и значения между ними, то есть 0.15, 0.8 и т.д. Например, в двоичной логике, мы можем сказать, что мы имеем стакан горячей воды (то есть 1 или высокий логический уровень) или стакан холодной воды, то есть (0 или низкий логический уровень), но в нечеткой логике, мы можем сказать, что мы имеем стакан теплой воды (ни горячий, ни холодный, то есть где-то между этими двумя крайними состояниями). Четкая логика: да или нет (1, 0). Нечеткая логика: конечно, да; возможно, нет; не могу сказать; возможно да и т.д.

Базовая архитектура нечеткой логической системы

Система нечеткой логики состоит из следующих модулей:



Фазифаер (Fuzzifier или оператор размытия). Он принимает измеренные переменные в качестве входных данных и преобразует числовые значения в лингвистические переменные. Он преобразует физические значения, а также сигналы ошибок в нормализованное нечеткое подмножество, которое состоит из интервала для диапазона входных значений и функций принадлежности, которые описывают вероятность состояния входных переменных. Входной сигнал в основном разделен на пять состояний, таких как: большой положительный, средний положительный, малый, средний отрицательный и большой отрицательный.


Контроллер. Он состоит из базы знаний и механизма вывода. База знаний хранит функции принадлежности и нечеткие правила, полученные путем знания работы системы в среде. Механизм вывода выполняет обработку полученных функций принадлежности и нечетких правил. Другими словами, механизм вывода формирует выходные данные на основе лингвистической информации.


Дефазифаер (Defuzzifier или оператор восстановления чёткости). Он выполняет обратный процесс фазифаера. Другими словами, он преобразует нечеткие значения в нормальные числовые или физические сигналы и отправляет их в физическую систему для управления работой системы.

Принцип работы системы нечеткой логики

Нечеткая операция предполагает использование нечетких множеств и функций принадлежности. Каждое нечеткое множество представляет собой представление лингвистической переменной, которая определяет возможное состояние вывода. Функция принадлежности является функцией общего значения в нечетком множестве, так что и общее значение, и нечеткое множество принадлежат универсальному множеству.


Степени принадлежности в этом общем значении в нечетком множестве определяют выход, основанный на принципе IF-THEN. Принадлежность назначается на основе предположения о выходе с помощью входов и скорости изменения входных данных. Функция принадлежности в основном представляет собой графическое представление нечеткого множества.


Рассмотрим такое значение «х», что x ∈ X для всего интервала и нечеткого множества A, которое является подмножеством X. Функция принадлежности «x» в подмножестве A задается как: fA (x), Обратите внимание, что «x» обозначает значение принадлежности. Ниже приводится графическое представление нечетких множеств.



В то время как ось x обозначает универсальный набор, ось y обозначает степени принадлежности. Эти функции принадлежности могут быть треугольными, трапециевидными, одноточечными или гауссовыми по форме.

Практический пример системы на основе нечеткой логики

Давайте разработаем простую систему нечеткого управления для управления работой стиральной машины, так чтобы нечеткая система контролировала процесс стирки, водозабор, время стирки и скорость отжима. Входными параметрами здесь являются объем одежды, степень загрязнения и тип грязи. В то время как объем одежды определял бы водозабор, степень загрязнения в свою очередь определялась бы прозрачностью воды, а тип грязи определялся временем, когда цвет воды остается неизменным.


Первым шагом будет определение лингвистических переменных и терминов. Для входных данных лингвистические переменные приведены ниже:

  • Тип грязи: {Greasy, Medium, Not Greasy} (жирное, среднее, не жирное)
  • Качество грязи: {Large, Medium, Small} (высокое, среднее, незначительное)

Для вывода лингвистические переменные приведены ниже:

  • Время стирки: {Short, Very Short, Long, Medium, Very Long} (короткий, очень короткий, длинный, средний, очень длинный).

Второй шаг включает в себя построение функций принадлежности. Ниже приведены графики, определяющие функции принадлежности для двух входов. Функции принадлежности для качества грязи:



Функции принадлежности для типа грязи:



Третий шаг включает разработку набора правил для базы знаний. Ниже приведен набор правил с использованием логики IF-THEN (если-тогда):

IF качество грязи Small И Тип грязи Greasy, THEN Время стирки Long.
IF качество грязи Medium И Тип грязи Greasy, THEN Время стирки Long.
IF качество грязи Large и тип грязи Greasy, THEN Время стирки Very Long.
IF качество грязи Small И Тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Medium И Тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Large и тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Small и тип грязи Non-Greasy, THEN Время стирки Very Short.
IF качество грязи Medium И Тип грязи Non-Greasy, THEN Время стирки Medium.
IF качество грязи Large и тип грязи Greasy, THEN Время стирки Very Short.

Фазифаер, который первоначально преобразовал входные данные датчиков в эти лингвистические переменные, теперь применяет вышеуказанные правила для выполнения операций нечеткого набора (например, MIN и MAX) для определения выходных нечетких функций. На основе выходных нечетких множеств разработана функция принадлежности. Последним шагом является этап дефазификации, в котором дефазифаер использует выходные функции принадлежности для определения времени стирки.

Области применения нечеткой логики

Системы нечеткой логики могут использоваться в автомобильных системах, таких как автоматические коробки передач. Приложения в области бытовых приборов включают в себя микроволновые печи, кондиционеры, стиральные машины, телевизоры, холодильники, пылесосы и т. д.

Преимущества нечеткой логики

  • Системы нечеткой логики являются гибкими и позволяют изменять правила.
  • Такие системы также принимают даже неточную, искаженную и ошибочную информацию.
  • Системы нечеткой логики могут быть легко спроектированы.
  • Поскольку эти системы связаны с человеческими рассуждениями и принятием решений, они полезны при формировании решений в сложных ситуациях в различных типах приложений.

сайт


Теги:



   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

Математическая теория нечетких множеств (fuzzy sets) инечеткая логика (fuzzy logic ) являются обобщениями классическойтеории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких иприближенных рассуждений при описании человеком процессов, систем, объектов.

Одной из основных характеристик нечеткой логики является лингвисти­ческая переменная, которая определяется набором вербальных (словесных) характеристик некоторого свойства. Рассмотрим лингвисти­ческую переменную «скорость», которую можно характеризовать через набор следующих по­нятий-значе­ний: «ма­лая», «средняя» и «большая», данные значения называются термами.

Следующей основополагающей характеристикой нечеткой логики является понятие функции принадлежности. Функция принадлежности определяет, насколько мы уверены в том, что данное значение лингвистической переменной (например, скорость) можно отнести к соответствующим ей категори­ям (в частности для лингвистической переменной скорость к категориям «малая», «средняя», «большая»).

На следующем рисунке (первая часть) отражено, как одни и те же значения лингвистической переменной могут соответствовать различным понятиям-значениям или термам. Тогда функции принадлежности, характеризующие нечеткие множества понятий скорости, можно выразить гра­фически, в более привычном математическом виде (рис. 35, вторая часть).

Из рисунка видно, что степень, с которой численное значение скорости, например v = 53, совместимо с понятием «большая», есть 0,7, в то время как совместимость значений скорости, рав­ных 48 и 45, с тем же понятием есть 0,5 и 0,1 соответственно.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Рисунок 1. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Рисунок 2. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке приведен пример описанной лингвистической переменной "Цена акции".

Рис. Описание лингвистической переменной "Цена акции".

Количество термов в лингвистической переменной редко превышает 7.

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

    Существует хотя бы одно правило для каждого лингвистического терма выходной переменной .

    Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида: R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1 … R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i … R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m , где x k , k=1..n – входные переменные; y – выходная переменная; A ik – термы соответствующих переменных с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

    Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.

    Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Под дефаззификацией понимается процедура преобразования нечетких величин, получаемых в результате нечеткого вывода, в четкие. Эта процедура является необходимой в тех случаях, где требуется интерпретация нечетких выводов конкретными четкими величинами, т.е. когда на основе функции принадлежности возникает потребность определить для каждой точки вZ числовые значения.

В настоящее время отсутствует систематическая процедура выбора стратегии дефаззификации. На практике часто используют два наиболее общих метода: метод центра тяжести (ЦТ - центроидный), метод максимума (ММ).

Для дискретных пространств в центроидном методе формула для вычисления четкого значения выходной переменной представляется в следующем виде:

Стратегия дефаззификации ММ предусматривает подсчет всех тех z , чьи функции принадлежности достигли максимального значения. В этом случае (для дискретного варианта) получим

где z - выходная переменная, для которой функция принадлежности достигла максимума;m - число таких величин.

Из этих двух наиболее часто используемых стратегий дефаззификации, стратегия ММ дает лучшие результаты для переходного режима, аЦТ - в установившемся режиме из-за меньшей среднеквадратической ошибки.

Пример нечеткого правила

Как работает.

По максимальному значению функций принадлежности (для скорости 60 км в час значение функции принадлежности «низкая» = 0, а для дорожных условий 75 % от нормы значение функции принадлежности «тяжелые» = около 0.7) по 0.7 проводится прямая которая рассекает геометрическую фигуру заключения (подача топлива) на две части, в результате берется фигура лежащая ниже прямой а верхняя часть отбрасывается. Это для одного правила, таких правил может быть 100 и более в реальных задачах.

Рассмотрим процесс получения нечеткого вывода по трем правилам одновременно с последующим получением чет­кого решения. Данная процедура включает в себя три этапа. На первом этапе получают нечеткие выводы по каждому из правил в отдельности по схеме, показанной на рис. 3.13. На втором эта­пе производится сложение результирующих функций, получен­ных на предыдущем этапе (применяется логическая операция ИЛИ, т.е. берется максимум). Третий этап - этап получения чет­кого решения (дефаззификация). Здесь применяется любой из известных классических методов: метод центра тяжести и т.д. Полученное в виде числового значения четкое решение служит задающей величиной системы управления. В нашем примере это будет величина, в соответствии с которой ИСУ должна бу­дет изменить подачу топлива. Процесс получения нечетких выводов по нескольким прави­лам с последующей дефаззификацией для рассматриваемого примера показан на рис. 3.14. При начальном значении скорости = 65 км в час, и дорожным условиям = 80 % от норматива получаем следующую схему решения об уровне подачи топлива.

Рис. 3.14. Процесс получения нечетких выводов по правилам и их преобразование в четкое решение.

Как видно из рис. 3.14, в результате дефаззификации получе­но четкое решение: при заданных значениях скорости и дорожных условий подача топлива должна составлять 63% от

максимального значения. Таким образом, несмотря на нечет­кость выводов, в итоге получено вполне четкое и определенное решение. Такое решение, вероятно, принял бы и водитель авто­мобиля в процессе движения. Данный пример демонстрирует великолепные возможности моделирования человеческих рас­суждений на основе методов теории нечетких множеств.

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.