Виртуальная камера. Перспективная проекция. Внутренняя калибровка камеры. Простейшая модель перспективной проекции

Для того, чтобы вращать объекты (или камеру), необходима серьезная математическая база, с помощью которой будут расчитываться координаты всех объектов при выводе на "плоский" экран компьютера. Сразу хочу сказать, что не стоит пугаться, все математические библиотеки уже написаны за нас, мы будем их только использовать. В любом случае, следующий текст пропускать не нужно, независимо от уровня знаний математики.

1. Матрицы, общие понятия

Что такое матрицы? Вспоминаем высшую математику: матрица ¬- это набор чисел с заранее известной размерностью строк и столбцов.

Матрицы можно складывать, умножать на число, перемножать друг с другом и много еще чего интересного, но этот момент мы пропустим, т.к. он достаточно подробно изложен в любом учебнике по высшей математике (учебники можно поискать на google.com). Мы будем пользоваться матрицами как программисты, мы их заполняем и говорим, что с ними делать, все расчеты произведет математическая библиотека Direct3D, поэтому нужно включить в проект заголовочный модуль d3dx9.h (и библиотеку d3dx9.lib).

Наша задача - создать объект, т.е. заполнить матрицу координатами вершин объекта. Каждая вершина - это вектор (X, Y, Z) в трехмерном пространстве. Теперь, чтобы произвести какое-то действие, нужно взять наш объект (то есть матрицу) и умножить на матрицу преобразования, результат этой операции - новый объект, заданный в виде матрицы.

В Direct3D определены и используются три основные матрицы: мировая матрица, матрица вида и матрица проекции. Рассмотрим их подробнее.

Мировая матрица (World Matrix) - позволяет производить вращение, трансформацию и масштабирование объекта, а также наделяет каждый из объектов своей локальной системой координат.

Функции для работы с мировой матрицей:

  • D3DXMatrixRotationX(), D3DXMatrixRotationY(), D3DXMatrixRotationZ() - вращение точки относительно одной из осей;
  • D3DXMatrixTranslation() - перемещение точки в другое положение;
  • D3DXMatrixScale() - масштабирование.

    Матрица вида (View Matrix) - определяет местоположение камеры просмотра сцены и может состоять из любых комбинаций трансляции и вращения.
    D3DXMatrixLookAtLH()и D3DXMatrixLookAtRH() определяет положение камеры и угла просмотра для левостороней и правостороней систем координат соответственно.

    Матрица проекции (Projection Matrix) - создает проекцию 3D сцены на экран монитора. С ее помощью объект трансформируется, начало координат переносится в переднюю часть, а также определяется передняя и задняя плоскости отсечения.

    Заполняя эти матрицы и делая преобразования, вы создаете трехмерную сцену, в которой получаете возможность перемещать, вращать, приближать, удалять и производить другие действия над объектами, в зависимости от ваших потребностей.

    2. Создание объекта

    Создаем новый проект, аналогично первому. Прежде чем продолжить усложнять наш код, разобьем его на части для лучшей читаемости кода. Наш проект логично разделить на три составляющие:
    1. Окно Windows (инициализация окна, сообщения, …)
    2. Инициализация 3D (загрузка координат объектов, удаление ресурсов, …)
    3. Рендер сцены (матрицы, рисование примитивов, …)
    В результате у нас будет 3 файла - window.cpp, init3d.h, render.h с таким содержанием: init3d.h - переносим глобальный переменные и структуры, объявление функций, функции InitDirectX(), InitBufferVertex(), Destroy3D() render.h - переносим функцию RenderScene() все, что осталось, касается главного окна, это будет файл - window.cpp .

    Добавляем заголовочный файл и библиотеку для использования матричных функций

    #include // или C:\DXSDK\Include\d3dx9.h #pragma comment(lib, "d3dx9.lib") //или C:\\DXSDK\\Lib\\d3dx9.lib

    Также нам понадобятся стандартные функции работы со временем, поэтому подключаем соответствующий заголовочный файл:

    #include

    Изменим формат представления вершин:

    #define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ/D3DFVF_DIFFUSE) struct CUSTOMVERTEX { FLOAT x, y, z; DWORD color; };

    Будем использовать не преобразованный тип вершин, т.к. преобразования будем делать матрицами.
    Изменяем код функции InitDirectX(). В эту функцию необходимо добавить установку двух режимов отображения.
    Отключаем режим отсечения для того, чтобы при вращении можно было видеть все стороны объекта:

    PDirectDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

    На данный момент мы не пользуемся освещением, а закрашиваем вершины в определенный цвет, поэтому отключаем освещение:

    PDirectDevice->SetRenderState(D3DRS_LIGHTING, FALSE);

    Упростим наше сердце, представив его в виде трех треугольников. Будем использовать локальную систему координат.


    CUSTOMVERTEX stVertex= { { -1.0f, 0.5f, 0.0f, 0x00ff0000 }, { -0.5f, 1.0f, 0.0f, 0x00ff0000 }, { 0.0f, 0.5f, 0.0f, 0x00ff0000 }, { 0.0f, 0.5f, 0.0f, 0x000000ff }, { 0.5f, 1.0f, 0.0f, 0x000000ff }, { 1.0f, 0.5f, 0.0f, 0x000000ff }, { -1.0f, 0.5f, 0.0f, 0x0000ff00 }, { 1.0f, 0.5f, 0.0f, 0x0000ff00 }, { 0.0f, -1.0f, 0.0f, 0x0000ff00 }, };

    3. Создание матриц преобразования

    Напишем в файле render.h функцию SetupMatrix() в которой будут происходить все действия над матрицами.

    Создадим матрицы:

  • D3DXMATRIX MatrixWorld; - мировая матрица
  • D3DXMATRIX MatrixView; - матрица вида
  • D3DXMATRIX MatrixProjection; - матрица проекции
    Установка мировой матрицы

    Для того, чтобы объект вращался, необходимо получить системное время и каждое "мгновение" изменять угол между локальной системой координат и мировой ситемой координат. Вращать будем относительно оси Х, поэтому используем функцию D3DXMatrixRotationX. После расчета мировой матрицы необходимо применить ее значения с помощью функции SetTransform:

    UINT iTime=timeGetTime()%5000; FLOAT fAngle=iTime*(2.0f*D3DX_PI)/5000.0f; D3DXMatrixRotationX(&MatrixWorld, fAngle); pDirectDevice->SetTransform(D3DTS_WORLD, &MatrixWorld); Установка матрицы вида

    Устанавливаем камеру в нужном месте и направляем ее на объект

  • D3DXMatrixLookAtLH(&MatrixView, - результат выполнения функции
  • &D3DXVECTOR3(0.0f, 0.0f, -8.0f), - точка, в которой находится камера
  • &D3DXVECTOR3(0.0f, 0.0f, 0.0f), - точка, в которую мы смотрим
  • &D3DXVECTOR3(0.0f, 1.0f, 0.0f)); - верх объекта

    После расчета необходимо применить полученные значения.

  • В определённый момент у любого разработчика в области компьютерной графики возникает вопрос: как же работают эти перспективные матрицы? Подчас ответ найти очень непросто и, как это обычно бывает, основная масса разработчиков бросает это занятие на полпути.

    Это не решение проблемы! Давайте разбираться вместе!

    Будем реалистами с практическим уклоном и возьмём в качестве подопытного OpenGL версии 3.3. Начиная с этой версии каждый разработчик обязан самостоятельно реализовывать модуль матричных операций. Замечательно, это то, что нам нужно. Проведём декомпозицию нашей с вами нелёгкой задачи и выделим основные моменты. Немного фактов из спецификации OpenGL:

    • Матрицы хранятся по столбцам (column-major);
    • Однородные координаты;
    • Канонический объём отсечения (CVV) в левосторонней системе координат.
    Существует два способа хранения матриц: сolumn-major и row-major. На лекциях по линейной алгебре как раз используется схема row-major. По большому счёту представление матриц в памяти не имеет значения, потому что матрицу всегда можно перевести в одного вида представления в другое простым транспонированием. А раз разницы нет, то для всех последующих расчётов мы будем использовать классические row-major матрицы. При программировании OpenGL есть небольшая хитрость, которая позволяет отказаться и от транспонирования матриц при сохранении классических row-major расчётов. В шейдерную программу матрицу нужно передавать как есть, а в шейдере производить умножение не вектора на матрицу, а матрицы на вектор.

    Однородные координаты – это не очень хитрая система с рядом простых правил по переводу привычных декартовых координат в однородные координаты и обратно. Однородная координата это матрица-строка размерности . Для того чтобы перевести декартову координату в однородную координату необходимо x , y и z умножить на любое действительное число w (кроме 0). Далее необходимо записать результат в первые три компоненты, а последний компонент будет равен множителю w . Другими словами:
    - декартовы координаты
    w – действительное число, не равное 0

    - однородные координаты

    Небольшой трюк: Если w равно единице, то всё что нужно для перевода, это перенести компоненты x , y и z и приписать единицу в последний компонент. То есть получить матрицу-строку:

    Несколько слов о нуле в качестве w . С точки зрения однородных координат это вполне допустимо. Однородные координаты позволяют различать точки и вектора. В декартовой же системе координат такое разделение невозможно.

    - точка, где (x, y, z ) – декартовы координаты

    - вектор, где (x, y, z ) – радиус-вектор

    Обратный перевод вершины из однородных координат в декартовы координаты осуществляется следующим образом. Все компоненты матрицы-строки необходимо разделить на последнюю компоненту. Другими словами:

    - однородные координаты
    - декартовы координаты

    Главное что необходимо знать, что все алгоритмы OpenGL по отсечению и растеризации работают в декартовых координатах, но перед этим все преобразования производятся в однородных координатах. Переход от однородных координат в декартовы координаты осуществляется аппаратно.

    Канонический объём отсечения или Canonic view volume (CVV) – это одна из мало документированных частей OpenGL. Как видно из рис. 1 CVV – это выровненный по осям куб с центром в начале координат и длиной ребра равной двойке. Всё, что попадает в область CVV подлежит растеризации, всё, что находится вне CVV игнорируется. Всё, что частично выходит за границы CVV, подлежит алгоритмам отсечения. Самое главное что надо знать - система координат CVV левосторонняя!


    Рис. 1. Канонический объём отсечения OpenGL (CVV)

    Левосторонняя система координат? Как же так, ведь в спецификации к OpenGL 1.0 ясно написано, что используемая система координат правосторонняя? Давайте разбираться.


    Рис. 2. Системы координат

    Как видно из рис. 2 системы координат различаются лишь направлением оси Z . В OpenGL 1.0 действительно используется правосторонняя пользовательская система координат. Но система координат CVV и пользовательская система координат это две совершенно разные вещи. Более того, начиная с версии 3.3, больше не существует такого понятия как стандартная система координат OpenGL. Как упоминалось ранее, программист сам реализует модуль матричных операций. Формирование матриц вращения, формирование проекционных матриц, поиск обратной матрицы, умножение матриц – это минимальный набор операций, входящих в модуль матричных операций. Возникает два логичных вопроса. Если объём видимости это куб с длиной ребра равной двум, то почему сцена размером в несколько тысяч условных единиц видна на экране? В какой момент происходит перевод пользовательской системы координат в систему координат CVV. Проекционные матрицы – это как раз та сущность, которая занимается решением этих вопросов.

    Главная мысль вышеизложенного – разработчик сам волен выбрать тип пользовательской системы координат и должен корректно описать проекционные матрицы. На этом с фактами об OpenGL закончено и подошло время сводить всё воедино.

    Одна из наиболее распространённых и сложно постигаемых матриц – это матрица перспективного преобразования. Так как же она связана с CVV и пользовательской системой координат? Почему объекты с увеличением расстояния до наблюдателя становятся меньше? Для того чтобы понять почему объекты уменьшаются с увеличением расстояния, давайте рассмотрим матричные преобразования трёхмерной модели шаг за шагом. Не секрет, что любая трёхмерная модель состоит из конечного списка вершин, которые подвергаются матричным преобразованиям совершенно независимо друг от друга. Для того чтобы определить координату трёхмерной вершины на двухмерном экране монитора необходимо:

    1. Перевести декартову координату в однородную координату;
    2. Умножить однородную координату на модельную матрицу;
    3. Результат умножить на видовую матрицу;
    4. Результат умножить на проекционную матрицу;
    5. Результат перевести из однородных координат в декартовы координаты.
    Перевод декартовой координаты в однородную координату обсуждался ранее. Геометрический смысл модельной матрицы заключается в том, чтобы перевести модель из локальной системы координат в глобальную систему координат. Или как говорят, вынести вершины из модельного пространства в мировое пространство. Скажем проще, загруженный из файла трёхмерный объект находится в модельном пространстве, где координаты отсчитываются относительно самого объекта. Далее с помощью модельной матрицы производится позиционирование, масштабирование и поворот модели. В результате все вершины трёхмерной модели получают фактические однородные координаты в трёхмерной сцене. Модельное пространство относительно мирового пространства является локальным. Из модельного пространства координаты выносятся в мировое пространство (из локального в глобальное). Для этого используется модельная матрица.

    Теперь переходим к шагу три. Здесь начинает работу видовое пространство. В этом пространстве координаты отсчитываются относительно положения и ориентации наблюдателя так, как если бы он являлся центром мира. Видовое пространство является локальным относительно мирового пространства, поэтому координаты в него надо вносить (а не выносить, как в предыдущем случае). Прямое матричное преобразование выносит координаты из некоторого пространства. Чтобы наоборот внести их в него, надо матричное преобразование инвертировать, поэтому видовое преобразование описывается обратной матрицей. Как же получить эту обратную матрицу? Для начала получим прямую матрицу наблюдателя. Чем характеризуется наблюдатель? Наблюдатель описывается координатой, в которой он находится, и векторами направления обзора. Наблюдатель всегда смотрит в направлении своей локальной оси Z . Наблюдатель может перемещаться по сцене и осуществлять повороты. Во многом это напоминает смысл модельной матрицы. По большому счёту так оно и есть. Однако, для наблюдателя операция масштабирования бессмысленна, поэтому между модельной матрицей наблюдателя и модельной матрицей трёхмерного объекта нельзя ставить знак равенства. Модельная матрица наблюдателя и есть искомая прямая матрица. Инвертировав эту матрицу, мы получаем видовую матрицу. На практике это означает, что все вершины в глобальных однородных координатах получат новые однородные координаты относительно наблюдателя. Соответственно, если наблюдатель видел определённую вершину, то значение однородной координаты z данной вершины в видовом пространстве точно будет положительным числом. Если вершина находилась за наблюдателем, то значение её однородной координаты z в видовом пространстве точно будет отрицательным числом.

    Шаг четыре - это самый интересный шаг. Предыдущие шаги были рассмотрены так подробно намеренно, чтобы читатель имел полную картину о всех операндах четвёртого шага. На четвёртом шаге однородные координаты выносятся из видового пространства в пространство CVV. Ещё раз подчеркивается тот факт, что все потенциально видимые вершины будут иметь положительное значение однородной координаты z .

    Рассмотрим матрицу вида:

    И точку в однородном пространстве наблюдателя:

    Произведём умножение однородной координаты на рассматриваемую матрицу:

    Переведём получившиеся однородные координаты в декартовы координаты:

    Допустим, есть две точки в видовом пространстве с одинаковыми координатами x и y , но разными координатами z . Другими словами одна из точек находится за другой. Из-за перспективного искажения наблюдатель должен увидеть обе точки. Действительно, из формулы видно, что из-за деления на координату z , происходит сжатие к точке начала координат. Чем больше значение z (чем дальше точка от наблюдателя), тем сильнее сжатие. Вот и объяснение эффекту перспективы.

    В спецификации OpenGL сказано, что операции по отсечению и растеризации выполняются в декартовых координатах, а процесс перевода однородных координат в декартовы координаты производится автоматически.

    Матрица (1) является шаблоном для матрицы перспективой проекции. Как было сказано ранее, задача матрицы проекции заключается в двух моментах: установка пользовательской системы координат (левосторонняя или правосторонняя), перенос объёма видимости наблюдателя в CVV. Выведем перспективную матрицу для левосторонней пользовательской системы координат.

    Матрицу проекции можно описать с помощью четырёх параметров (рис. 3):

    • Угол обзора в радианах (fovy );
    • Соотношение сторон (aspect );
    • Расстояние до ближней плоскости отсечения (n );
    • Расстояние до дальней плоскости отсечения (f ).


    Рис. 3. Перспективный объём видимости

    Рассмотрим проекцию точки в пространстве наблюдателя на переднюю грань отсечения перспективного объёма видимости. Для большей наглядности на рис. 4 изображён вид сбоку. Так же следует учесть, что пользовательская система координат совпадает с системой координат CVV, то есть везде пользуется левосторонняя система координат.


    Рис. 4. Проецирование произвольной точки

    На основании свойств подобных треугольников справедливы следующие равенства:

    Выразим yꞌ и xꞌ:

    В принципе, выражений (2) достаточно для получения координат точек проекции. Однако для правильного экранирования трёхмерных объёктов необходимо знать глубину каждого фрагмента. Другими словами необходимо хранить значение компоненты z . Как раз это значение используется при тестах глубины OpenGL. На рис. 3 видно, что значение zꞌ не подходит в качестве глубины фрагмента, потому что все проекции точек умеют одинаковое значение zꞌ . Выход из сложившейся ситуации – использование так называемой псевдоглубины.

    Свойства псевдоглубины:

    1. Псевдоглубина рассчитывается на основании значения z ;
    2. Чем ближе к наблюдателю находится точка, тем меньшеe значение имеет псевдоглубина;
    3. У всех точек, лежащих на передней плоскости объёма видимости, значение псевдоглубины равно -1;
    4. У всех точек, лежащих на дальней плоскости отсечения объёма видимости, значение псевдоглубины равно 1;
    5. Все фрагменты, лежащие внутри объёма видимости, имеют значение псевдоглубины в диапазоне [-1 1].
    Давайте выведем формулу, по которой будет рассчитываться псевдоглубина. В качестве основы возьмём следующее выражение:

    Коэффициенты a и b необходимо вычислить. Для того чтобы это сделать, воспользуемся свойствами псевдоглубины 3 и 4. Получаем систему из двух уравнений с двумя неизвестными:

    Произведём сложение обоих частей системы и умножим результат на произведение fn , при этом f и n не могут равняться нулю. Получаем:

    Раскроем скобки и перегруппируем слагаемые так, чтобы слева осталась только часть с а , а справа только с b :

    Подставим (6) в (5). Преобразуем выражение к простой дроби:

    Умножим обе стороны на -2fn , при этом f и n не могут равняться нулю. Приведём подобные, перегруппируем слагаемые и выразим b :

    Подставим (7) в (6) и выразим a :

    Соответственно компоненты a и b равны:

    Теперь подставим полученные коэффициенты в матрицу заготовку (1) и проследим, что будет происходить с координатой z для произвольной точки в однородном пространстве наблюдателя. Подстановка выполняется следующим образом:

    Пусть расстояние до передней плоскости отсечения n равно 2, а расстояние до дальней плоскости отсечения f равно 10. Рассмотрим пять точек в однородном пространстве наблюдателя:

    Взаимное расположение точки и объёма видимости
    Точка Значение Описание
    1 1 Точка находится перед передней плоскостью отсечения объёма видимости. Не проходит растеризацию.
    2 2 Точка находится на передней грани отсечения объёма видимости. Проходит растеризацию.
    3 5 Точка находится между передней гранью отсечения и дальней гранью отсечения объёма видимости. Проходит растеризацию.
    4 10 Точка находится на дальней грани отсечения объёма видимости. Проходит растеризацию.
    5 20 Точка находится за дальней гранью отсечения объёма видимости. Не проходит растеризацию.

    Умножим все точки на матрицу (8), а затем переведём полученные однородные координаты в декартовые координаты . Для этого нам необходимо вычислить значения новых однородных компонент и .
    Точка 1:

    Обратите внимание, что однородная координата абсолютно верно позиционируется в CVV, а самое главное, что теперь возможна работа теста глубины OpenGL, потому что псевдоглубина полностью удовлетворяет требованиям тестов.

    С координатой z разобрались, перейдём к координатам x и y . Как говорилось ранее весь перспективный объём видимости должен умещаться в CVV. Длина ребра CVV равна двум. Соответственно, высоту и ширину перспективного объёма видимости надо сжать до двух условных единиц.

    В нашем распоряжении имеется угол fovy и величина aspect . Давайте выразим высоту и ширину, используя эти величины.


    Рис. 5. Объём видимости

    Из рис. 5 видно, что:

    Теперь можно получить окончательный вид перспективной проекционной матрицы для пользовательской левосторонней системы координат, работающей с CVV OpenGL:

    На этом вывод матриц закончен.

    Пару слов о DirectX - основном конкуренте OpenGL. DirectX отличается от OpenGL только габаритами CVV и его позиционированием. В DirectX CVV - это прямоугольный параллелепипед с длинами по осям x и y равными двойке, а по оси z длина равна единице. Диапазон x и y равен [-1 1], а диапазон z равен . Что касается системы координат CVV, то в DirectX, как и в OpenGL, используется левосторонняя система координат.

    Для вывода перспективных матриц для пользовательской правосторонней системы координат необходимо перерисовать рис. 2, рис.3 и рис.4 с учётом нового направления оси Z . Далее расчёты полностью аналогичны, с точностью до знака. Для матриц DirectX свойства псевдоглубины 3 и 4 модифицируются под диапазон .

    На этом тему перспективных матриц можно считать закрытой.

    Аксонометрия является параллельной проекцией. В табл.3.3 первыми приводятся матрицы ортографических проекций на координатные плоскости, полученные из их определений.

    Табл.3.3.Матрицы проектирующих преобразований и проецирования

    Ортографическая проекция на XOY

    Ортографическая проекция на YOZ

    Ортографическая проекция на XOZ

    Ортографическая проекция на плоскость x=p

    Матрица триметрического преобразования на плоскость XOY

    Матрица изометрического преобразования на плоскость XOY

    Матрица изометрического проецирования на плоскость XOY

    Матрица косоугольной проекции на XOY

    Матрица свободной проекции на XOY

    Матрица кабинетной проекции на XOY

    Матрица перспективного преобразования с одной точкой схода (картинная плоскость перпендикулярна оси абсцисс)

    Матрица перспективного преобразования с одной точкой схода (картинная плоскость перпендикулярна оси ординат)

    Матрица перспективного преобразования с одной точкой схода (картинная плоскость перпендикулярна оси аппликат)

    Матрица перспективного преобразования с двумя точками схода (картинная плоскость параллельна оси ординат)

    Матрица перспективного преобразования с тремя точками схода (картинная плоскость произвольного положения)

    Изометрия, диметрия и триметрия получаются комбинацией поворотов, за которыми следует проекция из бесконечности. Если нужно описать проекцию на плоскость XOY, то сначала необходимо осуществить преобразование поворота на угол относительно оси ординат, затем на уголотносительно оси абсцисс. В табл.3.3 приведена матрица триметрического преобразования. Для получения матрицы диметрического преобразования, при котором, например, коэффициенты искажения по осям абсцисс и ординат будут равными, взаимосвязь между углами поворотов должна подчиняться зависимости

    То есть, выбрав угол , можно вычислить уголи определить матрицу диметрической проекции. Для изометрического преобразования взаимосвязь этих углов превращается в строго определенные значения, составляющие:

    В табл.3.3 приведена матрица изометрического преобразования, а также матрица изометрического проецирования на плоскость XOY. Необходимость в матрицах первого типа заключается в их использовании в алгоритмах удаления невидимых элементов.

    В косоугольных проекциях проектирующие прямые образуют с плоскостью проекции угол, отличный от 90 градусов. В табл.3.3 приведена общая матрица косоугольной проекции на плоскость XOY, а также матрицы свободной и кабинетной проекций, в которых:

    Перспективные проекции (табл.3.3) также представлены перспективными преобразованиями и перспективными проекциями на плоскость XOY. V X , V Y и V Z являются центрами проецирования - точками на соответствующих осях. –V X , -V Y , -V Z будут точками, в которых сходятся пучки прямых, параллельных соответствующим осям.

    Система координат наблюдателя представляет собой левую систему координат (рис.3.3), в которой ось z e направлена из точки зрения вперед, ось x e направлена вправо, а ось y e – вверх. Такое правило принято для совпадения осей x e и y e с осями x s и y s на экране. Определение значений координат экрана x s и y s для точки Р приводит к необходимости деления на координату z e . Для построения точного перспективного образа необходимо выполнять деление на координату глубины каждой точки.

    В табл.3.4 приведены значения дескриптора вершин S(X,Y,Z) модели (рис.2.1), подвергнутой преобразованиям поворотов и изометрическому преобразованию.

    Табл.3.4.Дескрипторы вершин модели

    Исходная модель

    M(R(z,90))xM(R(y,90))

    Графический вывод обычно осущестсвляется в некоторую прямоугольную область экрана или окна. В OpenGL-визуализации эта область называется порт вывода. Именно в этой прямоугольной области будет размещено библиотекой сформированное изображение. Его размеры определяются относительно левого верхнего угла окна и измеряются в пикселах. Для определения порта вывода приложение должно отследить событие изменения размеров окна и определить порт вывода с использованием функции:

    void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

    Аргументы (x, y) определяют положение верхнего левого угла порта вывола, а width и height -- его размеры. По умолчанию библиотека растягивает порт вывода на всё OpenGL-окно.

    Координатная система

    Прежде чем быть отображённой на экране вершина, заданная в системе координат сцены должна пройти процесс проецирования. Для описания и проведения преобразований систем координат в библиотеке OpenGL используется матричный аппарат. Сама система координат и ее преобразования описываются матрицами в так называемых однородных координатах.

    Во-первых, вершина преобразуется в матрицу 1X4, в которой первые три элемента представляют собой координаты x, y, z. Четвёртое число - масштабный коэффициент w, который обычно равен 1.0. Вершина домножается на видовую матрицу, которая описывает преобразования видовой системы координат. Получаем вершину в координатах вида. Она в свою очередь домножается на матрицу проекций и получаем вершину в координатах проекции. На этом этапе некоторве вершины отбрасываются (из-за непопадания в объём визуализации). Затем вершины нормализуются для передачи перспективы (если координата w не равна 1.0). Окончательное проецирование вершины на двумерную поверхность экрана выполняется библиотекой OpenGL самостоятельно и вмешаться в этот процесс нельзя.

    Матрица проекций

    Матрица проекций отвечает за то, какой объём пространства будет визуализироваться, каким образом вершины графических примитивов будут спроецированы на двумерную поверхность экрана монитора. Преобразования матрицы проекций ведут к тому, что все изображение будет изменяться (масштабироваться, перемещаться или вращаться). В OpenGL возможно использование двух режимов матрицы проекций: перспективная и ортографическая.

    При перспективной проекции используется тот факт, что для человеческий глаз работает с предметом дальнего типа, размеры которого имеют угловые размеры. Чем дальше объект, тем меньше он нам кажется. Таким образом, объём пространства, который визуализируется представляет собой пирамиду.

    Матрица преспективной проекции определяется с использованием функции:

    void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);

    (left, bottom, -near) и (right, top, -near) определяют координаты ближней отсекающей рамки; near и far имеют всегда положительные значения и определяют расстояние от точки зрения до ближней и дальней отсекающих рамок.

    Для задания матрицы перспективной проекции также можно использовать функцию gluPerspective(), которая имеет другие аргументы

    void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near, GLdouble far);

    Аргумент fovy (field of view) определяет поле зрения, а aspect -- отношение ширины отсекающей рамки к высоте. near и far имеют всегда положительные значения и определяют расстояние от точки зрения до ближней и дальней отсекающих рамок.

    Перспективное проецирование обычно используется в играх и приложениях, где требуется добиться высокой реалистичности объектов, подожей на визуализацию глазом. Для двумерной и трехмерной визуализации научных и технических данных обычно используется ортографическая проекция. Рассмотрим установку ортографической проекции сначала для двумерной визуализации. При ортографической проекции объём пространства, который визуализируется представляет собой параллелепипед:

    Особенностями ортографической проекции является то, что расстояние от камеры до объектов не влияет на итоговое изображение.

    Для установки и последующего изменения матрицы проекций следует выполнить функцию glMatrixMode(GL_PROJECTION). Для начала также следует отменить все предыдущие установки и преобразования, сделав матрицу проекций единичной с помошью функции glLoadIdentity(). Матрица ортографической проекции устанавливается с использованием функции, которая имеет следующий прототип:

    void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);

    (left, bottom, -near) и (right, top, -near) -- точки, определяющие ближнюю отсекающую рамку. (left, bottom, -far) и (right, top, -far) -- точки, определяющие дальнюю отсекающую рамку. После применения этой команды направление проецирования параллельно оси z в сторону отрицательных значений

    //Функция изменения размеров и установки координат
    void Reshape(int width, int height)
    {
    //Установка порта вывода
    glViewport(0, 0, width, height);

    //Режим матрицы проекций
    glMatrixMode(GL_PROJECTION);
    //Единичная матрица
    glLoadIdentity();

    //Установка двумерной ортографической системы координат
    glOrtho(-50., 50., -50., 50., -1., 1.);

    //Режим видовой матрицы
    glMatrixMode(GL_MODELVIEW);
    }

    Специально для двумерной визуализации можно использовать функцию, которая имеет следующий прототип:

    void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);

    Эта функция аналогична glOrtho(), при вызове которой аргумент near=-1.0, а far=1.0. В процессе двумерной визуализации z-координата у вершин имеет значение 0, то есть объекты находятся на средней плоскости.

    При необходимости сохранения пропорций установку системы координат необходимо осуществлять с учетом отношения ширины и высоты окна.

    //Установка ортографической системы координат
    double aspect=width/double(height);
    if(width>=height)
    {
    gluOrtho2D(-50.*aspect, 50.*aspect, -50., 50.);
    }
    else
    {
    gluOrtho2D(-50., 50., -50./aspect, 50./aspect);
    }

    Видовая матрица

    Видовая матрица отвечает за систему координат создаваемой трехмерной модели. В процессе создания модели видовая матрица может многократно изменяться для того, чтобы видоизменить изображение отдельных графических примитивов (превратить квадрат в прямоугольник, куб в параллелепипед, сферу в эллипсоид). Для установки и последующего изменения видовой матрицы следует выполнить функцию glMatrixMode(GL_MODELVIEW). Для начала также следует отменить все предыдущие установки и преобразования, сделав матрицу проекций единичной с помошью функции glLoadIdentity(). Если координаты вершин объекта задаются при его создании, то дополнительные преобразования системы координат не требуются. Однако часто это сложно или просто невозможно.

    OpenGL предоставляет три функции для выполнения преобразования системы координат: glTranslated(), glRotated() и glScaled(). Эти команды генерируют матрицы переноса, поворота и масштабирования, которые домножаются на видовую матрицу с помощью функции glMultMatrix(). Как видите OpenGL берёт на себя матричные операции и выполняет их по специальным, быстрым алгоритмам с максимальной эффективностью. Например:

    Перенос

    Если аргумент больше 0, то объект при отображении будет смещён в сторону положительных значений вдоль оси. Если аргумент меньше 0, то объект при отображении будет смещён в сторону отрицательных значений вдоль оси.

    Масштабированиe

    Осуществляется с использованием функции, которая имеет следующий прототип:

    Если аргумент больше 1, то объект при отображении будет увеличенным. Если аргумент меньше 1, то объект при отображении будет уменьшенным. Если аргумент отрицательный, то объект при отображении будет ещё и отраженным. Нулевое значение аргумента допускается, но будет приводить ктому, что размеры объекта будут нулевыми.

    Поворот

    Осуществляется с использованием функции, которая имеет следующий прототип:

    void glRotated(double angle, double x, double y, double z); glRotated(30.,0.,0.,1.); //Поворот вокруг z
    glBegin(GL_LINE_LOOP);
    //Установка вершин
    glVertex2d(-2., 2.);
    glVertex2d(2., 2.);
    glVertex2d(2., -2.);
    glVertex2d(-2., -2.);
    glEnd();

    Первый аргумент определяет угол поворота, а остальные три -- координаты вектора, вокруг которого осуществляется вращение.

    Стек матриц

    Полезным механизмом при построении сложных изображений является стек матриц. С использованием функций glPushMatrix() и glPopMatrix() можно запомнить текущую матрицу в стеке и восстановить ее после каких либо изменений в системе координат.

    Дисплейные списки

    Интересным и очень эффективным механизмом при создании сцены являются списки. Это механизм, который позволяет запоминать последовательности команд OpenGL и выполнять их снова. Это может существенно повысить эффективность визуализации большого количества одинаковых объектов.

    Каждый дисплейный список должен иметь идентификатор. Это может быть произвольное целое число, которое вы можете назначить сами. Во избежание конфликтов идентификаторов списков библиотека OpenGL рекомендует воспользоваться функцией

    GLuint glGenLists(GLsizei range);

    которая находит свободный идентификатор и возвращает его. В качестве аргумента функции указывается количество, следующих подряд, списков, для которых следует получить идентификаторы. Если свободных идентификаторов не осталось, то функция возвращает ноль.

    Для того, чтобы начать формировать список, необходимо вызвать функцию

    void glNewList (GLuint list, GLenum mode);

    Первый аргумент задает идентификатор формируемого списка, а второй определяет будет ли список только сформирован (GL_COMPILE) или сразу же и отображен (GL_COMPILE_AND_EXECUTE). Далее могут следовать команды OpenGL которые требуется сохранить в списке. Не все команды могут быть в него включены.

    Формирование списка заканчивается функцией:

    void glEndList (void);

    После формирования дисплейные списки сохраняются во внутренней структуре данных OpenGL-окна и будут удалены, когда окно будет закрыто или разрушено.

    Для выполнения дисплейного списка используется команда:

    void glCallList (GLuint list);

    которая в качестве аргумента принимает идентификатор списка.

    Вызов функции glCallList() можно осуществить в любом мемте программы, когда требуется выполнение сохраненных в списке команд.

    Рассмотрим пример:

    void Draw(void)
    {
    //Очистка цветового буфера

    glColor3d(1.0, 1.0, 0.0);

    glBegin(GL_LINES);
    glVertex2d(-50., .0);
    glVertex2d(50., .0);

    For(int i=-50; i<50; i++)
    {
    glVertex2d(i, .0);
    if(i % 5)
    {
    glVertex2d(i, -1.);
    }
    else if(i % 10)
    {
    glVertex2d(i, -2.);
    }
    else
    {
    glVertex2d(i, -3.);
    }
    }
    glEnd();

    glBegin(GL_LINES);
    glVertex2d(.0, -50.);
    glVertex2d(.0, 50.);
    for(int j=-50; j<50; j++)
    {
    glVertex2d(.0, j);
    if(j % 5)
    {
    glVertex2d(-1., j);
    }
    else if(j % 10)
    {
    glVertex2d(-2., j);
    }
    else
    {
    glVertex2d(-3., j);
    }
    }
    glEnd();
    //Завершить выполнение команд
    glFlush();
    }

    void Draw(void)
    {
    //Очистка цветового буфера
    glClear(GL_COLOR_BUFFER_BIT);
    //Установка цвета отображения
    glColor3d(1.0, 1.0, 0.0);

    //Формирование оси
    int axis = glGenLists(1);
    if (axis != 0)
    {
    glNewList(axis, GL_COMPILE);
    glBegin(GL_LINES);
    glVertex2d(0., .0);
    glVertex2d(100., .0);

    For(int i=0.; i<97; i++)
    {
    glVertex2d(i, .0);
    if(i % 5)
    {
    glVertex2d(i, 1.);
    }
    else if(i % 10)
    {
    glVertex2d(i, 2.);
    }
    else
    {
    glVertex2d(i, 3.);
    }
    }
    glEnd();
    //Формирование стрелки можно добавить позже
    glBegin(GL_LINE_STRIP);
    glVertex2d(97., 1.);
    glVertex2d(100.,.0);
    glVertex2d(97., -1.);
    glEnd();
    glEndList();
    }
    //Рисование горизонтальной оси
    glPushMatrix();
    glTranslated(-50.,0.,0.);
    glRotated(180.,1.,0.,0.);
    glCallList(axis);
    glPopMatrix();

    //Рисование вертикальной оси
    glPushMatrix();
    glTranslated(0.,-50.,0.);
    glRotated(90.,0.,0.,1.);
    glCallList(axis);
    glPopMatrix();

    //Завершить выполнение команд
    glFlush();
    }

    В определённый момент у любого разработчика в области компьютерной графики возникает вопрос: как же работают эти перспективные матрицы? Подчас ответ найти очень непросто и, как это обычно бывает, основная масса разработчиков бросает это занятие на полпути.

    Это не решение проблемы! Давайте разбираться вместе!

    Будем реалистами с практическим уклоном и возьмём в качестве подопытного OpenGL версии 3.3. Начиная с этой версии каждый разработчик обязан самостоятельно реализовывать модуль матричных операций. Замечательно, это то, что нам нужно. Проведём декомпозицию нашей с вами нелёгкой задачи и выделим основные моменты. Немного фактов из спецификации OpenGL:

    • Матрицы хранятся по столбцам (column-major);
    • Однородные координаты;
    • Канонический объём отсечения (CVV) в левосторонней системе координат.
    Существует два способа хранения матриц: сolumn-major и row-major. На лекциях по линейной алгебре как раз используется схема row-major. По большому счёту представление матриц в памяти не имеет значения, потому что матрицу всегда можно перевести в одного вида представления в другое простым транспонированием. А раз разницы нет, то для всех последующих расчётов мы будем использовать классические row-major матрицы. При программировании OpenGL есть небольшая хитрость, которая позволяет отказаться и от транспонирования матриц при сохранении классических row-major расчётов. В шейдерную программу матрицу нужно передавать как есть, а в шейдере производить умножение не вектора на матрицу, а матрицы на вектор.

    Однородные координаты – это не очень хитрая система с рядом простых правил по переводу привычных декартовых координат в однородные координаты и обратно. Однородная координата это матрица-строка размерности . Для того чтобы перевести декартову координату в однородную координату необходимо x , y и z умножить на любое действительное число w (кроме 0). Далее необходимо записать результат в первые три компоненты, а последний компонент будет равен множителю w . Другими словами:
    - декартовы координаты
    w – действительное число, не равное 0

    - однородные координаты

    Небольшой трюк: Если w равно единице, то всё что нужно для перевода, это перенести компоненты x , y и z и приписать единицу в последний компонент. То есть получить матрицу-строку:

    Несколько слов о нуле в качестве w . С точки зрения однородных координат это вполне допустимо. Однородные координаты позволяют различать точки и вектора. В декартовой же системе координат такое разделение невозможно.

    - точка, где (x, y, z ) – декартовы координаты

    - вектор, где (x, y, z ) – радиус-вектор

    Обратный перевод вершины из однородных координат в декартовы координаты осуществляется следующим образом. Все компоненты матрицы-строки необходимо разделить на последнюю компоненту. Другими словами:

    - однородные координаты
    - декартовы координаты

    Главное что необходимо знать, что все алгоритмы OpenGL по отсечению и растеризации работают в декартовых координатах, но перед этим все преобразования производятся в однородных координатах. Переход от однородных координат в декартовы координаты осуществляется аппаратно.

    Канонический объём отсечения или Canonic view volume (CVV) – это одна из мало документированных частей OpenGL. Как видно из рис. 1 CVV – это выровненный по осям куб с центром в начале координат и длиной ребра равной двойке. Всё, что попадает в область CVV подлежит растеризации, всё, что находится вне CVV игнорируется. Всё, что частично выходит за границы CVV, подлежит алгоритмам отсечения. Самое главное что надо знать - система координат CVV левосторонняя!


    Рис. 1. Канонический объём отсечения OpenGL (CVV)

    Левосторонняя система координат? Как же так, ведь в спецификации к OpenGL 1.0 ясно написано, что используемая система координат правосторонняя? Давайте разбираться.


    Рис. 2. Системы координат

    Как видно из рис. 2 системы координат различаются лишь направлением оси Z . В OpenGL 1.0 действительно используется правосторонняя пользовательская система координат. Но система координат CVV и пользовательская система координат это две совершенно разные вещи. Более того, начиная с версии 3.3, больше не существует такого понятия как стандартная система координат OpenGL. Как упоминалось ранее, программист сам реализует модуль матричных операций. Формирование матриц вращения, формирование проекционных матриц, поиск обратной матрицы, умножение матриц – это минимальный набор операций, входящих в модуль матричных операций. Возникает два логичных вопроса. Если объём видимости это куб с длиной ребра равной двум, то почему сцена размером в несколько тысяч условных единиц видна на экране? В какой момент происходит перевод пользовательской системы координат в систему координат CVV. Проекционные матрицы – это как раз та сущность, которая занимается решением этих вопросов.

    Главная мысль вышеизложенного – разработчик сам волен выбрать тип пользовательской системы координат и должен корректно описать проекционные матрицы. На этом с фактами об OpenGL закончено и подошло время сводить всё воедино.

    Одна из наиболее распространённых и сложно постигаемых матриц – это матрица перспективного преобразования. Так как же она связана с CVV и пользовательской системой координат? Почему объекты с увеличением расстояния до наблюдателя становятся меньше? Для того чтобы понять почему объекты уменьшаются с увеличением расстояния, давайте рассмотрим матричные преобразования трёхмерной модели шаг за шагом. Не секрет, что любая трёхмерная модель состоит из конечного списка вершин, которые подвергаются матричным преобразованиям совершенно независимо друг от друга. Для того чтобы определить координату трёхмерной вершины на двухмерном экране монитора необходимо:

    1. Перевести декартову координату в однородную координату;
    2. Умножить однородную координату на модельную матрицу;
    3. Результат умножить на видовую матрицу;
    4. Результат умножить на проекционную матрицу;
    5. Результат перевести из однородных координат в декартовы координаты.
    Перевод декартовой координаты в однородную координату обсуждался ранее. Геометрический смысл модельной матрицы заключается в том, чтобы перевести модель из локальной системы координат в глобальную систему координат. Или как говорят, вынести вершины из модельного пространства в мировое пространство. Скажем проще, загруженный из файла трёхмерный объект находится в модельном пространстве, где координаты отсчитываются относительно самого объекта. Далее с помощью модельной матрицы производится позиционирование, масштабирование и поворот модели. В результате все вершины трёхмерной модели получают фактические однородные координаты в трёхмерной сцене. Модельное пространство относительно мирового пространства является локальным. Из модельного пространства координаты выносятся в мировое пространство (из локального в глобальное). Для этого используется модельная матрица.

    Теперь переходим к шагу три. Здесь начинает работу видовое пространство. В этом пространстве координаты отсчитываются относительно положения и ориентации наблюдателя так, как если бы он являлся центром мира. Видовое пространство является локальным относительно мирового пространства, поэтому координаты в него надо вносить (а не выносить, как в предыдущем случае). Прямое матричное преобразование выносит координаты из некоторого пространства. Чтобы наоборот внести их в него, надо матричное преобразование инвертировать, поэтому видовое преобразование описывается обратной матрицей. Как же получить эту обратную матрицу? Для начала получим прямую матрицу наблюдателя. Чем характеризуется наблюдатель? Наблюдатель описывается координатой, в которой он находится, и векторами направления обзора. Наблюдатель всегда смотрит в направлении своей локальной оси Z . Наблюдатель может перемещаться по сцене и осуществлять повороты. Во многом это напоминает смысл модельной матрицы. По большому счёту так оно и есть. Однако, для наблюдателя операция масштабирования бессмысленна, поэтому между модельной матрицей наблюдателя и модельной матрицей трёхмерного объекта нельзя ставить знак равенства. Модельная матрица наблюдателя и есть искомая прямая матрица. Инвертировав эту матрицу, мы получаем видовую матрицу. На практике это означает, что все вершины в глобальных однородных координатах получат новые однородные координаты относительно наблюдателя. Соответственно, если наблюдатель видел определённую вершину, то значение однородной координаты z данной вершины в видовом пространстве точно будет положительным числом. Если вершина находилась за наблюдателем, то значение её однородной координаты z в видовом пространстве точно будет отрицательным числом.

    Шаг четыре - это самый интересный шаг. Предыдущие шаги были рассмотрены так подробно намеренно, чтобы читатель имел полную картину о всех операндах четвёртого шага. На четвёртом шаге однородные координаты выносятся из видового пространства в пространство CVV. Ещё раз подчеркивается тот факт, что все потенциально видимые вершины будут иметь положительное значение однородной координаты z .

    Рассмотрим матрицу вида:

    И точку в однородном пространстве наблюдателя:

    Произведём умножение однородной координаты на рассматриваемую матрицу:

    Переведём получившиеся однородные координаты в декартовы координаты:

    Допустим, есть две точки в видовом пространстве с одинаковыми координатами x и y , но разными координатами z . Другими словами одна из точек находится за другой. Из-за перспективного искажения наблюдатель должен увидеть обе точки. Действительно, из формулы видно, что из-за деления на координату z , происходит сжатие к точке начала координат. Чем больше значение z (чем дальше точка от наблюдателя), тем сильнее сжатие. Вот и объяснение эффекту перспективы.

    В спецификации OpenGL сказано, что операции по отсечению и растеризации выполняются в декартовых координатах, а процесс перевода однородных координат в декартовы координаты производится автоматически.

    Матрица (1) является шаблоном для матрицы перспективой проекции. Как было сказано ранее, задача матрицы проекции заключается в двух моментах: установка пользовательской системы координат (левосторонняя или правосторонняя), перенос объёма видимости наблюдателя в CVV. Выведем перспективную матрицу для левосторонней пользовательской системы координат.

    Матрицу проекции можно описать с помощью четырёх параметров (рис. 3):

    • Угол обзора в радианах (fovy );
    • Соотношение сторон (aspect );
    • Расстояние до ближней плоскости отсечения (n );
    • Расстояние до дальней плоскости отсечения (f ).


    Рис. 3. Перспективный объём видимости

    Рассмотрим проекцию точки в пространстве наблюдателя на переднюю грань отсечения перспективного объёма видимости. Для большей наглядности на рис. 4 изображён вид сбоку. Так же следует учесть, что пользовательская система координат совпадает с системой координат CVV, то есть везде пользуется левосторонняя система координат.


    Рис. 4. Проецирование произвольной точки

    На основании свойств подобных треугольников справедливы следующие равенства:

    Выразим yꞌ и xꞌ:

    В принципе, выражений (2) достаточно для получения координат точек проекции. Однако для правильного экранирования трёхмерных объёктов необходимо знать глубину каждого фрагмента. Другими словами необходимо хранить значение компоненты z . Как раз это значение используется при тестах глубины OpenGL. На рис. 3 видно, что значение zꞌ не подходит в качестве глубины фрагмента, потому что все проекции точек умеют одинаковое значение zꞌ . Выход из сложившейся ситуации – использование так называемой псевдоглубины.

    Свойства псевдоглубины:

    1. Псевдоглубина рассчитывается на основании значения z ;
    2. Чем ближе к наблюдателю находится точка, тем меньшеe значение имеет псевдоглубина;
    3. У всех точек, лежащих на передней плоскости объёма видимости, значение псевдоглубины равно -1;
    4. У всех точек, лежащих на дальней плоскости отсечения объёма видимости, значение псевдоглубины равно 1;
    5. Все фрагменты, лежащие внутри объёма видимости, имеют значение псевдоглубины в диапазоне [-1 1].
    Давайте выведем формулу, по которой будет рассчитываться псевдоглубина. В качестве основы возьмём следующее выражение:

    Коэффициенты a и b необходимо вычислить. Для того чтобы это сделать, воспользуемся свойствами псевдоглубины 3 и 4. Получаем систему из двух уравнений с двумя неизвестными:

    Произведём сложение обоих частей системы и умножим результат на произведение fn , при этом f и n не могут равняться нулю. Получаем:

    Раскроем скобки и перегруппируем слагаемые так, чтобы слева осталась только часть с а , а справа только с b :

    Подставим (6) в (5). Преобразуем выражение к простой дроби:

    Умножим обе стороны на -2fn , при этом f и n не могут равняться нулю. Приведём подобные, перегруппируем слагаемые и выразим b :

    Подставим (7) в (6) и выразим a :

    Соответственно компоненты a и b равны:

    Теперь подставим полученные коэффициенты в матрицу заготовку (1) и проследим, что будет происходить с координатой z для произвольной точки в однородном пространстве наблюдателя. Подстановка выполняется следующим образом:

    Пусть расстояние до передней плоскости отсечения n равно 2, а расстояние до дальней плоскости отсечения f равно 10. Рассмотрим пять точек в однородном пространстве наблюдателя:

    Взаимное расположение точки и объёма видимости
    Точка Значение Описание
    1 1 Точка находится перед передней плоскостью отсечения объёма видимости. Не проходит растеризацию.
    2 2 Точка находится на передней грани отсечения объёма видимости. Проходит растеризацию.
    3 5 Точка находится между передней гранью отсечения и дальней гранью отсечения объёма видимости. Проходит растеризацию.
    4 10 Точка находится на дальней грани отсечения объёма видимости. Проходит растеризацию.
    5 20 Точка находится за дальней гранью отсечения объёма видимости. Не проходит растеризацию.

    Умножим все точки на матрицу (8), а затем переведём полученные однородные координаты в декартовые координаты . Для этого нам необходимо вычислить значения новых однородных компонент и .
    Точка 1:

    Обратите внимание, что однородная координата абсолютно верно позиционируется в CVV, а самое главное, что теперь возможна работа теста глубины OpenGL, потому что псевдоглубина полностью удовлетворяет требованиям тестов.

    С координатой z разобрались, перейдём к координатам x и y . Как говорилось ранее весь перспективный объём видимости должен умещаться в CVV. Длина ребра CVV равна двум. Соответственно, высоту и ширину перспективного объёма видимости надо сжать до двух условных единиц.

    В нашем распоряжении имеется угол fovy и величина aspect . Давайте выразим высоту и ширину, используя эти величины.


    Рис. 5. Объём видимости

    Из рис. 5 видно, что:

    Теперь можно получить окончательный вид перспективной проекционной матрицы для пользовательской левосторонней системы координат, работающей с CVV OpenGL:

    На этом вывод матриц закончен.

    Пару слов о DirectX - основном конкуренте OpenGL. DirectX отличается от OpenGL только габаритами CVV и его позиционированием. В DirectX CVV - это прямоугольный параллелепипед с длинами по осям x и y равными двойке, а по оси z длина равна единице. Диапазон x и y равен [-1 1], а диапазон z равен . Что касается системы координат CVV, то в DirectX, как и в OpenGL, используется левосторонняя система координат.

    Для вывода перспективных матриц для пользовательской правосторонней системы координат необходимо перерисовать рис. 2, рис.3 и рис.4 с учётом нового направления оси Z . Далее расчёты полностью аналогичны, с точностью до знака. Для матриц DirectX свойства псевдоглубины 3 и 4 модифицируются под диапазон .

    На этом тему перспективных матриц можно считать закрытой.