Современные информационные технологии в науке и технике. Роль информационных технологий в науке и образовании

Информационные технологии в образовании в настоящее время является необходимым условием перехода общества к информационной цивилизации. Современные технологии и телекоммуникации позволяют изменить характер организации учебно-воспитательного процесса, полностью погрузить обучаемого в информационно-образовательную среду, повысить качество образования, мотивировать процессы восприятия информации и получения знаний. Новые информационные технологии создают среду компьютерной и телекоммуникационной поддержки организации и управления в различных сферах деятельности, в том числе в образовании. Интеграция информационных технологий в образовательные программы осуществляется на всех уровнях: школьном, вузовском и послевузовском обучении.

Постоянное совершенствование учебно-воспитательного процесса вместе с развитием и перестройкой общества, с созданием единой системы непрерывного образования, является характерной чертой обучения в России. Осуществляемая в стране реформация школы направлена на то, чтобы привести содержание образования в соответствие с современным уровнем научного знания, повысить эффективность всей учебно-воспитательной работы и подготовить учащихся к деятельности в условиях перехода к информационному обществу. Поэтому информационные технологии становятся неотъемлемым компонентом содержания обучения, средством оптимизации и повышения эффективности учебного процесса, а также способствуют реализации многих принципов развивающего обучения.

2.1. ОСНОВНЫЕ НАПРАВЛЕНИЯ

Основными направлениями применения ИТ в учебном процессе школы являются:

    разработка педагогических программных средств различного назначения;

    разработка web-сайтов учебного назначения;

    разработка методических и дидактических материалов;

    осуществление управления реальными объектами (учебными ботами);

    организация и проведение компьютерных экспериментов с виртуальными моделями;

    осуществление целенаправленного поиска информации различных форм в глобальных и локальных сетях, её сбора, накопления, хранения, обработки и передачи;

    обработка результатов эксперимента;

    организация интеллектуального досуга учащихся.

Наиболее широко в данный момент используются интегрированные уроки с применением мультимедийных средств. Обучающие презентации становятся неотъемлемой частью обучения, но это лишь простейший пример применения ИТ.

В последнее время учителя создают и внедряют авторские педагогические программные средства, в которых отражается некоторая предметная область, в той или иной мере реализуется технология её изучения, обеспечиваются условия для осуществления различных видов учебной деятельности. Типология используемых в образовании педагогических программных средств весьма разнообразна: обучающие; тренажеры; диагностирующие; контролирующие; моделирующие; игровые.

В учебном процессе высшего учебного заведения изучение ИТ предусматривает решение задач нескольких уровней:

    использование информационных технологий как инструмента образования, познания, что осуществляется в курсе «Информатика»;

    информационные технологии в профессиональной деятельности, на что направлена общепрофессиональная дисциплина «Информационные технологии», рассматривающая их теорию, компоненты, методику;

    обучение прикладным информационным технологиям, ориентированным на специальность, предназначенным для организации и управления конкретной профессиональной деятельностью, что изучается в дисциплинах специализаций.

Например, дисциплина «Информационные технологии в экономике» и синонимичная ей «Информационные технологии в управлении» входит в образовательную программу обучения студентов экономических специальностей. Современный экономист должен уметь принимать обоснованные решения на основе информационных потоков, кроме традиционных экономических знаний студент должен быть знаком с процессом обработки данных и владеть навыками построения информационных систем.

Методические материалы по данным дисциплинам многочисленно представлены в печати, в электронных вариантах, сопровождаются различными приложениями и прикладными программами. Разобраться в таком обилии предложенного материала самостоятельно достаточно сложно. Если взять, к примеру, только тот факт, сколько источников предложено в сети Интернет: список рекомендуемой литературы, интерактивные пособия и онлайн-учебники, рефераты и т.п. На запрос пользователя «Дисциплина «Информационные технологии в экономике» поисковая система Google выдает более 400 тысяч ссылок.

Разобраться в сложившейся ситуации и помочь в освоении учебного материала может помочь только квалифицированный специалист-преподаватель: он не только организует самостоятельную работу студентов (рефераты, тестирование, контрольные и курсовые работы), но в условиях регламента времени на изучение дисциплины умеет выбрать наиболее важные аспекты для изучения. В настоящее время преподаватели, преследуя подобные цели, создают авторские педагогические программные средства, реализованные в мультимедийной и гипермедийной форме на CD и DVD-дисках, на сайтах в сети Интернет.

Послевузовское образование также ориентировано на внедрение ИТ: в учебные планы аспирантов и соискателей многих научных направлений включаются дисциплины, связанные с изучением и внедрением информационных технологий в научную и профессиональную деятельность. В Орловском государственном институте искусств и культуры аспиранты и соискатели всех специальностей изучают дисциплину «Информационные технологии в науке и образовании» уже на первом курсе аспирантуры. Целью этого курса является освоение слушателями основных методов и средств применения современных информационных технологий в научно-исследовательской и образовательной деятельности, повышение уровня знаний начинающего ученого в области применения компьютерных технологий при проведении научного эксперимента, организация помощи аспиранту в его научном исследовании, в оформлении статей, тезисов, докладов и диссертационной работы.

Повышение уровня компьютерной подготовки обучаемых, увеличение количества и расширение разновидностей авторских педагогических программных средств, использование новых информационных технологий в науке и образовании в целом, являются одним из основных направлений совершенствования среднего специального, высшего и послевузовского образования в нашей стране.

2.2. ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХТЕХНОЛОГИЙ В ПРОЦЕССЕОБУЧЕНИЯХИМИИ.

При обучении химии, наиболее естественным является использование компьютера, исходя из особенностей химии как науки. Например, для моделирования химических процессов и явлений, лабораторного использования компьютера в режиме интерфейса, компьютерной поддержки процесса изложения учебного материала и контроля его усвоения. Моделирование химических явлений и процессов на компьютере – необходимо, прежде всего, для изучения явлений и экспериментов, которые практически невозможно показать в школьной лаборатории, но они могут быть показаны с помощью компьютера.

Использование компьютерных моделей позволяет раскрыть существенные связи изучаемого объекта, глубже выявить его закономерности, что, в конечном счете, ведет к лучшему усвоению материала. Ученик может исследовать явление, изменяя параметры, сравнивать полученные результаты, анализировать их, делать выводы. Например, задавая разные значения концентрации реагирующих веществ (в программе, моделирующей зависимость скорости химической реакции от различных факторов), учащийся может проследить за изменением объема выделяющегося газа и т.д.

Второе направление использования компьютера в обучении химии – контроль и обработка данных химического эксперимента. Компания IBM разработала «Персональную научную лабораторию» (ПНЛ) – комплект компьютеров и программ для них, различных датчиков и лабораторного оборудования, позволяющий проводить различные эксперименты химического, химико-физического и химико-биологического направления. Такое использование компьютера полезно тем, что прививает учащимся навыки исследовательской деятельности, формирует познавательный интерес, повышает мотивацию, развивает научное мышление.

Третье направление использования ИТ в процессе обучения химии – программная поддержка курса. Содержание программных средств учебного назначения, применяемых при обучении химии, определяется целями урока, содержанием и последовательностью подачи учебного материала. В связи с этим, все программные средства используемые для компьютерной поддержки процесса изучения химии, можно разделить на программы:

    справочные пособия по конкретным темам;

    решения расчетных и экспериментальных задач;

    организация и проведение лабораторных работ;

    контроль и оценка знаний.

На каждом конкретном уроке могут быть использованы определенные программы, исходя из целей урока, при этом функции учителя и компьютера различны. Программные средства для эффективного применения в учебном процессе должны соответствовать курсу химии профильного обучения, иметь высокую степень наглядности, простоту использования, способствовать формированию обще учебных и экспериментальных умений, обобщению и углублению знаний и т.д..

Компьютерные технологии в преподавании химии в школе: состояние дел и перспективы.

Применительно к обучению химии наряду с повышением мотивации обучения за счет использования компьютера на уроке, повышения уровня индивидуализации обучения и возможности организации оперативного контроля за усвоением знаний компьютерные технологии могут быть эффективно использованы для формирования основных понятий, необходимых для понимания микромира (строение атома, молекул), таких важнейших химических понятий как "химическая связь", "электроотрицательность", при изучении высокотемпературных процессов (цветная и черная металлургия), реакций с ядовитыми веществами (галогены), длительных по времени химических опытов (гидролиз нуклеиновых кислот) и т.д. Известно, однако, что, на данном этапе компьютерные технологии в преподавании химии в школе используются весьма редко. Тому есть причины как объективного, так и субъективного характера. Среди первого типа причин, безусловно, главными являются недостаточная обеспеченность общеобразовательных школ современными компьютерами и явно недостаточное количество соответствующих компьютерных программ. Тем не менее, процесс компьютеризации школ хотя и медленно, но идет. В качестве причины субъективного характера модно упоминать так называемую "компьютерофобию", которую приписывают учителям-предметникам. Этот фактор представляется надуманным. У учителей-предметников есть значительный интерес к использованию компьютерных технологий, причем независимо от возраста и стажа работы. Более важным является то, что современные образовательные стандарты дают учителю определенную свободу в выборе тем и расстановке акцентов при изложении преподаваемой им дисциплины. Опыт применения компьютерных технологий в обучении химии в школе позволяет заключить, что для получения высокого обучающего эффекта важно их систематическое использование, как на стадии изучения материала, так и на стадии оперативного контроля за усвоением знаний, а для этого также необходим широкий ассортимент педагогических программных средств (ППС). Новые возможности, выявленные в результате анализа педагогической практики использования ППС, позволяют значительно улучшить учебно-воспитательный процесс. Особенно это касается предметов естественнонаучного цикла, в том числе химии, изучение которой связано с процессами, скрытыми от непосредственного наблюдения и потому трудно воспринимаемыми детьми. ППС позволяют визуализировать такие процессы, предоставляя одновременно с этим возможность многократного повторения и продвижения в обучении со скоростью, благоприятной для каждого ребенка в достижении понимания того или иного учебного материала. Педагогические программные средства, являясь частью программных средств учебного назначения, обеспечивают также возможность приобщения к современным методам работы с информацией, интеллектуализацию учебной деятельности. В результате проведенного среди преподавателей анкетирования, составленного по концепциям, взятым из монографии И. Роберт "Современные информационные технологии в образовании", использование данных педагогических программных средств в обучении химии дает возможность:

    индивидуализировать и дифференцировать процесс обучения за счет возможности изучения с индивидуальной скоростью усвоения материала;

    осуществлять контроль с обратной связью, с диагностикой ошибок и оценкой результатов учебной деятельности;

    осуществлять самоконтроль и самокоррекцию;

    осуществлять тренировку в процессе усвоения учебного материала и самоподготовку учащихся;

    визуализировать учебную информацию с помощью наглядного представления на экране ЭВМ данного процесса, в том числе скрытого в реальном мире;

    проводить лабораторные работы в условиях имитации в компьютерной программе реального опыта или эксперимента;

    формировать культуру учебной деятельности обучаемого и обучающего.

Перечисленные выше возможности меняют структуру традиционной субъект-объектной педагогики, в которой учащемуся как к субъекту учебной деятельности, как к личности, стремящейся к самореализации. А виртуализация некоторых процессов с использованием анимации служит формированию у учащегося наглядно-образного мышления и более эффективному усвоению учебного материала.

Таким образом, проведенные эксперименты по использованию обучающе-контролирующих программ в процессе обучения химии, показали целесообразность применения таких средств в учебном процессе и необходимость продолжения работы по их внедрению.

Еще одно важное заключение - важны не только ППС, но и методики их использования, то есть рекомендации по организации уроков. Как правило, для опытного учителя не составляет труда на основе компьютерной программы разработать соответствующий урок. Молодым же учителям для этого необходима помощь в виде планов-конспектов, методических рекомендаций по использованию ППС на разных этапах урока и в классах с различным уровнем подготовки учеников.

Таким образом, наиболее насущной задачей, решение которой позволит сдвинуть с "мертвой точки" внедрение компьютерных технологий в обучение предметов естественнонаучного цикла, является разработка ППС и методик их использования. Было бы весьма полезно объединить усилия заинтересованных учителей химии из различных регионов страны. Обмен опытом, безусловно, ускорит компьютеризацию школьного образовательного процесса.

Применение компьютерных моделей в обучении химии

Среди различных типов педагогических программных средств особенно выделяются те, в которых используются компьютерные модели. Применение компьютерных моделей позволяет не только повысить наглядность процесса обучения и интенсифицировать его, но и кардинально изменить этот процесс.

Модели могут использовать для решения различных задач. Р.Ю. Шенон выделяет пять типов моделей по функциональному назначению: средства осмысления действительности, средства общения, инструменты прогнозирования, средства постановки экспериментов, средства обучения и тренажа. Последний тип моделей также называют учебными компьютерными моделями (УКМ).

В изучении школьного курса химии выделяют несколько основных направлений, где оправдано использование УКМ:

    наглядное представление объектов и явлений микромира;

    изучение производств химических продуктов;

    моделирование химического эксперимента и химических реакций.

Все модели, используемые в преподавании химии, можно разделить по уровню представляемых объектов на две группы: модели микромира и модели макромира. Модели микромира отражают строение объектов и происходящие в них изменения на уровне их атомно-молекулярного представления. Модели макромира отражают внешние свойства моделируемых объектов и их изменение. Модели таких объектов, как химические вещества, химические реакции и физико-химические процессы, могут быть созданы на уровне микромира, так и на уровне макромира.

При изучении химии учащиеся сталкиваются с объектами микромира буквально с первых уроков, и конечно же УКМ, моделирующие такие объекты, могут стать неоценимыми помощниками, например, при изучении строения атомов, типов химической связи, строения вещества, теории электролитический диссоциации, механизмов химической реакции, стереохимических представлений и т.д. Все эти перечисленные модели реализованы в программах “1С: Репетитор. Химия”, ChemLand, “Химия для всех”, CS Chem3D Pro, Crystal Designer, “Собери молекулу”, “Organic Reaction Animations” и др.

Модели химических реакций, лабораторных работ, химических производств, химических приборов (компьютерные модели макромира) реализованы в следующих программах: “Химия для всех - 2000”, “ХимКласс”, ChemLab, IR and NMR Simulator и др. Подобные модели используются в тех случаях, когда нет возможности по каким-либо причинам осуществить лабораторные работы в реальных условиях и нет возможности в реальности познакомиться с изучаемыми технологическими процессами.

Использование перечисленных выше программных средств на уроках химии имеют следующие достоинства:

    значительный объем материала, охватывающий различные разделы курса школьной химии;

    улучшается наглядность подачи материала за счет цвета, звука и движения;

    наличие демонстраций тех химических опытов, которые опасны для здоровья детей (например, опыты с ядовитыми веществами);

    ускорение на 10-15% темпа урока за счет усиления эмоциональной составляющей;

    учащимися проявляют интерес к предмету и легко усваивают материал (повышается качество знаний учащихся).

Однако некоторые программные продукты не свободны от недостатков. Например, одним из главных недостатков программы “1С: Репетитор. Химия” является отсутствие диалога ученика с компьютером при усвоении им учебного материала и выполнении расчетных задач. Это затрудняет и ограничивает использование учителем данного компьютерного продукта в учебном процессе в школе.

Только органичное сотрудничество учителя информатики и учителя химии будет способствовать улучшению процесса обучения химии. На уроках информатики учащиеся изучают различные информационные технологии, представленные в пакете Microsoft Office. Например, учащиеся, изучая программу PowerPoint, могут уже сами создать презентацию (мини-учебник в виде слайдов) по отдельному материалу учебника химии. А для реализации возможности обучения, тестирования и контроля знаний учащихся используется встроенный в Microsoft Office язык программирования Visual Basic for Applications (VBA), который позволяет размещать на слайдах формы и элементы управления для ведения диалога (интерактивные мастер-шаблоны).

Большие возможности для личностного развития предоставляет использование Интернет в учебно-воспитательном процессе средних учебных заведений. Опыт работы показывает, что в условиях инновационного образовательного учреждения, располагающего соответствующей материальной базой применение Internet/Intranet-технологий открывает принципиально новые возможности для познавательной и творческой самореализации всех субъектов образовательного процесса.

Саморазвитию учителей разных предметов способствует самостоятельное освоение работы в Интернет, использование информации, размещенной в нем, на уроках и во внеурочной работе.

Учащиеся с высоким уровнем познавательной активности, используя Интернет, получают расширенный доступ к интересующей их информации. Они самостоятельно разыскивают сообщения о проведении конкурсов, олимпиад, конференций, тестирования и т.д.

Работа в Интернет позволяет учебному заведению и каждому участнику образовательного процесса успешно включиться в единое образовательное пространство. В настоящее время реализуется многопредметный проект по дистанционному обучению "Интернет-школа". Важным воспитательным аспектом такой сетевой деятельности является осознание чувства ответственности за свою работу, ведь результат ее могут оценить миллионы пользователей сети Интернет.

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ОБРАЗОВАНИИ И НАУКЕ

Аксюхин А.А., Вицен А.А., Мекшенева Ж.В.

ФГОУ ВПО «Орловский государственный институт искусств и культуры», Орел, Россия

Информационные технологии (ИТ) в образовании в настоящее время является необходимым условием перехода общества к информационной цивилизации. Современные технологии и телекоммуникации позволяют изменить характер организации учебно-воспитательного процесса, полностью погрузить обучаемого в информационно-образовательную среду, повысить качество образования, мотивировать процессы восприятия информации и получения знаний. Новые информационные технологии создают среду компьютерной и телекоммуникационной поддержки организации и управления в различных сферах деятельности, в том числе в образовании. Интеграция информационных технологий в образовательные программы осуществляется на всех уровнях: школьном, вузовском и послевузовском обучении.

Постоянное совершенствование учебно-воспитательного процесса вместе с развитием и перестройкой общества, с созданием единой системы непрерывного образования, является характерной чертой обучения в России. Осуществляемая в стране реформация школы направлена на то, чтобы привести содержание образования в соответствие с современным уровнем научного знания, повысить эффективность всей учебно-воспитательной работы и подготовить учащихся к деятельности в условиях перехода к информационному обществу. Поэтому информационные технологии становятся неотъемлемым компонентом содержания обучения, средством оптимизации и повышения эффективности учебного процесса, а также способствуют реализации многих принципов развивающего обучения.

Основными направлениями применения ИТ в учебном процессе школы являются:

    разработка педагогических программных средств различного назначения;

    разработка web-сайтов учебного назначения;

    разработка методических и дидактических материалов;

    осуществление управления реальными объектами (учебными ботами);

    организация и проведение компьютерных экспериментов с виртуальными моделями;

    осуществление целенаправленного поиска информации различных форм в глобальных и локальных сетях, её сбора, накопления, хранения, обработки и передачи;

    обработка результатов эксперимента;

    организация интеллектуального досуга учащихся.

Наиболее широко в данный момент используются интегрированные уроки с применением мультимедийных средств. Обучающие презентации становятся неотъемлемой частью обучения, но это лишь простейший пример применения ИТ.

В последнее время учителя создают и внедряют авторские педагогические программные средства, в которых отражается некоторая предметная область, в той или иной мере реализуется технология её изучения, обеспечиваются условия для осуществления различных видов учебной деятельности. Типология используемых в образовании педагогических программных средств весьма разнообразна: обучающие; тренажеры; диагностирующие; контролирующие; моделирующие; игровые.

В учебном процессе высшего учебного заведения изучение ИТ предусматривает решение задач нескольких уровней:

    Использование информационных технологий как инструмента образования, познания, что осуществляется в курсе «Информатика»;

    Информационные технологии в профессиональной деятельности, на что направлена общепрофессиональная дисциплина «Информационные технологии», рассматривающая их теорию, компоненты, методику;

    Обучение прикладным информационным технологиям, ориентированным на специальность, предназначенным для организации и управления конкретной профессиональной деятельностью, что изучается в дисциплинах специализаций.

Например, дисциплина «Информационные технологии в экономике» и синонимичная ей «Информационные технологии в управлении» входит в образовательную программу обучения студентов экономических специальностей. Современный экономист должен уметь принимать обоснованные решения на основе информационных потоков, кроме традиционных экономических знаний студент должен быть знаком с процессом обработки данных и владеть навыками построения информационных систем.

Методические материалы по данным дисциплинам многочисленно представлены в печати, в электронных вариантах, сопровождаются различными приложениями и прикладными программами. Разобраться в таком обилии предложенного материала самостоятельно достаточно сложно. Если взять, к примеру, только тот факт, сколько источников предложено в сети Интернет: список рекомендуемой литературы, интерактивные пособия и онлайн-учебники, рефераты и т.п. На запрос пользователя «Дисциплина «Информационные технологии в экономике» поисковая система Google.ru выдает около 400 тысяч ссылок.

Разобраться в сложившейся ситуации и помочь в освоении учебного материала может помочь только квалифицированный специалист-преподаватель: он не только организует самостоятельную работу студентов (рефераты, тестирование, контрольные и курсовые работы), но в условиях регламента времени на изучение дисциплины умеет выбрать наиболее важные аспекты для изучения. В настоящее время преподаватели, преследуя подобные цели, создают авторские педагогические программные средства, реализованные в мультимедийной и гипермедийной форме на CD и DVD-дисках, на сайтах в сети Интернет.

Послевузовское образование также ориентировано на внедрение ИТ: в учебные планы аспирантов и соискателей многих научных направлений включаются дисциплины, связанные с изучением и внедрением информационных технологий в научную и профессиональную деятельность. В Орловском государственном институте искусств и культуры аспиранты и соискатели всех специальностей изучают дисциплину «Информационные технологии в науке и образовании» уже на первом курсе аспирантуры. Целью этого курса является освоение слушателями основных методов и средств применения современных информационных технологий в научно-исследовательской и образовательной деятельности, повышение уровня знаний начинающего ученого в области применения компьютерных технологий при проведении научного эксперимента, организация помощи аспиранту в его научном исследовании, в оформлении статей, тезисов, докладов и диссертационной работы.

Повышение уровня компьютерной подготовки обучаемых, увеличение количества и расширение разновидностей авторских педагогических программных средств, использование новых информационных технологий в науке и образовании в целом, являются одним из основных направлений совершенствования среднего специального, высшего и послевузовского образования в нашей стране.

Литература

1. Лаврушина Е.Г., Моисеенко Е.В. Преподавание информатики в вузе. http://www.ict.nsc.ru

2. Деденёва А.С., Аксюхин А.А. Информационные технологии в гуманитарном высшем профессиональном образовании // Педагогическая информатика. Научно-методический журнал ВАК. № 5. 2006. С. 8-16.

3. Деденёва А.С., Аксюхин А.А. Мультимедиа технологии в условиях формирования образовательной среды вузов искусств и культуры // Историко-культурные связи России и Франции: основные этапы: сборник статей / Сост. И.А. Ивашова; гл. ред. Н.С. Мартынова. – Орёл: ОГИИК, ил., ООО ПФ «Оперативная полиграфия», 2008. С. 19-25.

Аксюхин А.А., Вицен А.А., Мекшенева Ж.В. Информационные технологии в образовании и науке // III Международная научная конференция «Современные проблемы информатизации в системах моделирования, программирования и телекоммуникациях».
URL: (дата обращения: 27.03.2019).

Введение

Роль информации в истории развития цивилизации. Основные виды информации. Глобальный характер информатизации общества.

Информационное общество. Проблема преодоления цифрового неравенства. Государственная политика в области формирования информационного общества. Роль науки и образования в формировании общества знаний.

Цель и задачи курса.

Раздел 1. РАЗВИТИЕ НАУКИ И ОБРАЗОВАНИЯ
В УСЛОВИЯХ ИНФОРМАТИЗАЦИИ ОБЩЕСТВА

Тема 1. Наука в информационном обществе

Научное познание. Научная информация: специфика, атрибуты. Открытый обмен научной информацией как условие перехода к обществу знаний. Перспективы формирования открытой науки за счет интернационального использования научного знания в эпоху глобализации.

Научная картина мира в информационной парадигме. Развитие информационных наук.

Информатика как наука. Философские проблемы информатики.

Синергетический подход в информатике и кибернетике. Информационная и кибернетическая эпистемология.

WorldWideWeb как результат развития фундаментальных и прикладных научных исследований.

Тема 2. Формирование единого информационно-образовательного пространства

Единое информационное образовательное пространство: понятие, структура, модели построения. Проблемы формирования информационного образовательного пространства в масштабах учебного заведения, территории, государства, на межгосударственном уровне.

Компьютерные сети как основа формирования информационного образовательного пространства. Интернет. Интранет.

Аппаратные и программные средства ИКТ: типология, назначение, условия применения в науке и образовании.

Тема 3. Информационные технологии: общая характеристика

Основные понятия информационных технологий. Основные компоненты информационных технологий. Направления развития информационных технологий.

Базы данных, базы знаний, электронные библиотеки, экспертные системы, интеллектуальные информационные системы. Формирование и возможности использования в научно-исследовательской и образовательной деятельности.

Информационные системы: основные понятия. Виды информационных систем. Функции информационных систем. Интегрированные информационные системы. Обеспечение АИС. Обзор АИС в прикладных областях.

Тема 4. Информационная безопасность

Информационная безопасность. Психическое и физическое здоровье при работе за компьютером. Социальный, эмоциональный и личностный аспекты занятий на компьютере.

Информационная этика и правовые аспекты защиты информации. Безопасность в Интернете. Технологии и средства защиты информации от разрушения и несанкционированного доступа. Компьютерные вирусы и средства защиты.

Особенности информационных правоотношений в Интернете. Авторское право и Интернет. Регистрация объектов интеллектуальной собственности. Проблемы плагиата.

Раздел 2. ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ
ТЕХНОЛОГИИ В НАУКЕ

Тема 5. Направления использования компьютерных технологий
в научных исследованиях

Применение информационно-коммуникационных технологий в процессах сбора научной информации, обработки результатов исследований, интерпретации и представления результатов.

Электронная научная публикация. Регистрация объектов интеллектуальной собственности средствами Интернета.

Поиск научной информации в электронных информационных ресурсах.

Управление научно-исследовательской работой.

Организация научных коммуникаций на базе информационно-коммуникацион-
ных технологий. Виртуальные группы научного общения.

Корпоративные научные проекты. Грантовая поддержка научных исследований.

Тема 6. Компьютерные технологии как инструмент научного познания

Специфические программные средства сбора и обработки социологической информации (опросники, математическая обработка); проектирования (IDEF-технологии); моделирования (3D-Max, математические модели); научной аналитики: мониторинга, прогнозирования, диагностики (Datamaining).

Географические информационные системы. Системы искусственного интеллекта. Системы виртуальной реальности. Компьютерный эксперимент (симуляции).
Гипертекстовые технологии в работе исследователя. Мультимедиатехнологии моделирования исследуемых процессов.

Сервисы Интернета для определения качества и продуктивности научных исследований. Вебометрия. Индексы цитирования.

Раздел 3. ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ
ТЕХНОЛОГИИ В ОБРАЗОВАНИИ

Тема 7. Теоретико-методологические основания информатизации
образовательной деятельности

Направления информатизации профессионального образования. Применение компьютерной техники в образовании. Компьютер как средство обучения. Роль преподавателя в процессе обучения с использованием компьютеров.

Информационно-коммуникационные технологии в образовании. Классификация и характеристика компьютерных программных средств обучения.

Мультимедиа в образовательной деятельности вуза.

Проектная образовательная деятельность. Социальные сервисы Интернета как средство обучения и формирования профессионального информационного пространства. Интеллектуальные информационные технологии в образовательной деятельности.

Информационные технологии и тифлотехника.

Тема 8. Информационно-коммуникационные технологии
как средство обучения

Основные виды технических средств обучения и их характеристика. Психолого-педагогические основы применения технических средств обучения и воспитания. Методика использования технических средств обучения в учебно-воспитательном процессе. Социальное взаимодействие и сетевое обучение.

Электронные учебные издания: классификация, назначение, потребительские свойства, требования к использованию.

Компьютерные обучающие системы. Основные принципы информационных технологий обучения. Типы обучающих программ. Компьютерное моделирование
в обучении. Программы специального назначения для преподавателя. Разработка обучающих программ. Проблемы и перспективы.

Технология компьютерного тестирования. Компьютерное тестирование как пример контролирующей программы. Технология проектирования компьютерных тестов предметной области. Перспективные исследования в области создания контролирующих программ.

Технологии дистанционного образования. Понятие о дистанционном обучении
с использованием глобальных компьютерных сетей. Основные принципы дистанционного обучения. Тьютор в системе дистанционного образования.

Тема 9. Информационно-коммуникационные технологии как предмет изучения

Преемственность содержания курсов информатики на разных уровнях обучения (школьное – среднее специальное – высшее – поствузовское образование).

Тема 10. Автоматизация управления образовательной деятельностью

Компьютер в управлении учебным заведением. Автоматизированные рабочие места. Автоматизированные системы управления (АСУ) образовательным учреждением. Модульный принцип построения АСУ.

2) Определенным набором инструментов – технических устройств, аппаратуры, лабораторного оборудования и т.д. – используемых в научной деятельности. В настоящее время эта составляющая науки приобретает огромное значение. Степень оснащенности научного труда определяет степень его результативности.

3) Совокупностью методов, используемых для получения знания.

4) Особым способом организации научной деятельности. Наука является в современных условиях сложнейшим социальным институтом, включающим в себя три основных компонентов: исследования (производство нового знания); приложения (доведения новых знаний до их практического использования); подготовку научных кадров. Все эти компоненты науки организованы в виде соответствующих учреждений: университетов, институтов, академий, НИИ, КБ, лабораторий и т.д.

Таким образом, каждый ученый, приступая к научному исследованию, получает в свое распоряжение накопленный в ходе развития своей научной области фактический материал – результаты наблюдений и экспериментов; результаты обобщения фактического материала, выраженные в соответствующих теориях, законах и принципах; основанные на фактах научные предположения, гипотезы, нуждающиеся в дальнейшей проверке; общетеоретическое, философское истолкование открытых наукой принципов, законов; мировоззренческие установки; соответствующую методологию и техническое оснащение. Все эти стороны и грани науки существуют в тесной связи между собой.

1.3 Роль информационных технологий в науке и образовании

На современном этапе развития общества все большую роль начинают играть информационные технологии (ИТ), опосредующие и формирующие взаимодействие людей, получение и обмен информации. В научной литературе выделяются основные характеристики информационных технологий, среди которых можно отметить следующие и передачу информации в короткие сроки в разные точки – хранение большого количества информации, ее передача на любое расстояние в ограниченные сроки, возможность интерактивных коммуникаций и интеграции с другими программными продуктами.

Сфера науки и образования подверглась существенному внедрению информационных технологий в процесс своей деятельности. Использование информационно-коммуникационных технологий (ИКТ) стало повсеместной практикой как в школах, так и в высших учебных заведениях. Персональные компьютеры, интерактивные доски, онлайн обучение являются элементами общей, единой, глобальной сети. Информационные технологии в науке и образовании способствуют автоматизации и эффективности учебно-познавательного процесса благодаря ускорению в обработке и передаче информации, реализации трудоемких задач.

Можно найти также ряд сходств в области научной деятельности и образовании, автоматизация которых посредством использования новых информационных технологий значительно ускоряет процесс образования. За последнее время количество научной и образовательной информации значительно увеличилось в объемах. Хранение подобной информации в бумажном варианте представляется трудной задачей, а также экологически небезопасно, в то время как информационные технологии представляют собой удобный способ, сокращающий затраты природных ресурсов и способствующий удобству хранения научно-образовательной информации. Сбор и обработка информации, больших массивов данных благодаря информационным технологиям также автоматизируется, чему способствуют поисковые программы Интернета, новейшие разработанные программные пакеты для обработки информации, базы данных в библиотеках и многие другие информационные технологии, сокращающие трудоемкость работы с информацией как для гуманитарных, так и для технических специальностей. При подготовке научных работ в области естественных наук нет необходимости производить расчеты вручную, математические, химические и иные формулы, содержащие в себе несколько этапов вычислений, решаются значительно быстрее благодаря инженерно-техническим программам, а также благодаря использованию специализированных информационных редакторов (MathCad). Визуализирование научных данных возможно благодаря графическим редакторам, среди которых можно отметить CorelDRAW,математическое моделирование реализуется посредством программы AutoCAD, передача образовательных документов упрощается благодаря использованию принтеров, сканеров, а в редакции документов и фотоизображений, а также в их распознавании активно применяется пакет программ Adobe, где лидерами в использовании выступают FineReader и Adobe Photoshop.

Постоянно возрастающие объемы научной и технической информации находятся в свободном доступе. Однако необходимы образование и профессиональная подготовка, чтобы знать, как получить доступ к этой информации и как эффективно ее использовать, чтобы реализовать потенциальные выгоды, которые она может дать, в интересах всего общества в целом.

В то же время, ИТ необходимы для самих научных исследований: они дают возможность ученым выполнять фундаментальные и прикладные исследования, осуществлять сотрудничество и формировать научные международные консорциумы, проводить эксперименты, сопоставлять данные, координировать лабораторную деятельность и обмениваться результатами с коллегами и общественностью. Информационный, цифровой мир – это одновременно и результат научной деятельности и основной фактор для дальнейшей научно-исследовательской и образовательной деятельности. Информационные технологии во многом определяют то, каким будут дальнейшие знания о мире, как они будут создаваться и использоваться 10 .

В научной деятельности информационные технологии способствуют ускорению одновременно теоретических разработок и прикладных исследований. В теоретическом аспекте информационные технологии необходимы для:

    Анализа данных и математических расчетов, составления электронных таблиц (Excel, Statistica, SPSS);

    Графического моделирования;

    Автоматизированный перевод (PROMT);

    Распознавание текста;

    Системы принятия решений.

На этапе обработки результатов научных исследований наибольшее применением находят программные средства, обеспечивающие выполнение математических расчетов с использованием теории вероятности, теории ошибок, математической̆ статистики, векторного и растрового анализа изображений, значительно упрощая процесс исследования и делая его результаты более точными и наглядно представленными в виде диаграмм, инфографики и прочих средств.

Обработка научно-исследовательской информации, которая чаще всего представляется в табличной форме, также весьма эффективно выполняется с использованием табличных процессоров. Электронные таблицы применяются на всех этапах исследования.

Публичное представление проделанной работы является неотъемлимой частью процесса обучения, чему способствуют выступления с докладами и сообщениями. Информационные технологии помогают подготовить иллюстративный материал, а также качественно улучшить как процесс, так и результат подготовки. Переоценить новые информационно-техничекие возможности в образовательном процессе невозможно.

Обучающемуся выделяется ключевая роль в образовательно-познавательном процессе, в то время как задачей образования является освоение необходимой информации по исследуемой дисциплине, предмету подготовки. Однако необходимо не только предоставить информацию, но и обеспечить ее запоминание и выработать навык использования полученного материала в повседневной практике, чему существенно способствуют информационные технологии. К двум основным способом получения знания относятся декларативный и процедурный. В первом случае используются компьютерные учебники, тесты, контролирующие программы, учебные аудиоматериалы и видеоролики, во втором случае – имитационные модели, игровые программы для обучающихся.

Для преподавателей ИТ в образовании могут быть применимы для решения вопросов подготовки лекционного материала, электронных учебников, создания информационно-методического обеспечения по изучаемым курсам, подготовки демонстрационных средств поддержки проведения занятий, автоматизации проверки знаний обучаемых.

Существующие в настоящее время средства компьютерных и телекоммуникационных технологий в сфере образования позволяют реализовать практически весь цикл обучения от лекций до контрольных мероприятий. Применение вычислительной техники в образовании позволяет повысить качество обучения, создать новые средства обучающего характера, средства эффективного взаимодействия преподавателя и обучаемого, ускорить передачу знаний. Использование обучающих ИТ – эффективный метод для систем самообразования, продолженного обучения, а также для систем повышения квалификации и переподготовки кадров. Основные преимущества, которые дает использование ИТ в образовании по сравнению с традиционным обучением, заключаются в следующем.

Известно, что наука - это сфера деятельности, направленная на получение новых знаний, которая реализуется с помощью научных исследований (НИ).

Целью НИ является изучение определенных свойств объекта (процесса, явления) и на этой основе разработка теории или получение необходимых для практики обобщенных выводов.

По целевому назначению НИ делят на фундаментальные, прикладные и разработки.

Фундаментальные (ФНИ) связаны с изучением новых явлений и законов природы, с созданием новых принципов исследований (физика, математика, биология, химия и т.д.).

Прикладные исследования (ПНИ) - это нахождение способов использования законов природы и научных знаний, полученных в ФНИ, в практической деятельности человека.

Разработки - это процесс создания новой техники, систем, материалов и технологий, включающий подготовку документов для внедрения в практику результатов ПНИ.

Реализация целей НИ выполняется на основе методов. Метод - это способ достижения цели, программа построения и применения теории. Методы научных исследований делят на следующие группы: эмпирические, экспериментальные и теоретические. Особую группу составляют методы научно - технического творчества (НТТ).

Эмпирические исследования выполняются с целью накопления систематической информации о процессе. При этом используются методы: наблюдение, регистрация, измерение, анкетный опрос, тесты, экспертный анализ.

Экспериментальный уровень НИ - это изучение свойств объекта по определенной программе.

Теоретические исследования проводятся с целью разработки новых методов решения научно-технических задач, обобщения и объяснения эмпирических и экспериментальных данных, выявления общих закономерностей и их формализации.

На двух последних уровнях используются методы моделирования, методы анализа и синтеза, логические построения (предположения, умозаключения), аналогии, идеализации.

В НТТ используются как названные общенаучные методы, так и эвристические приемы эффективного решения творческих задач, способствующие наиболее быстрому нахождению решения (озарению), т.е. разного рода оригинальные находки.

Рациональная организация НИР строится с использованием принципов системного подхода и схематично может быть представлена следующим образом: сбор и обработка эмпирической научно-технической информации (результаты эмпирических исследований подвергаются теоретическому анализу и экспериментальной проверке), затем с помощью различных методов проводится обработка результатов, моделирование различных процессов, интерпретация и т.д., завершает процесс оформление, представление и публикация результатов. Эти результаты представляют собой новую информацию, которая становится доступна широкому кругу исследователей.

Исходя из задач НИ и порядка их реализации, можно определить следующие основные направления рационального применения информационных технологий в научных исследованиях:

1. Сбор, хранение, поиск и выдача научно-технической информации (НТИ).

2. Подготовка программ НИ, подбор оборудования и экспериментальных устройств.

3. Математические расчеты.

4. Решение интеллектуально - логических задач.

5. Моделирование объектов и процессов.

6. Управление экспериментальными установками.

7. Регистрация и ввод в ЭВМ экспериментальных данных.

8. Обработка одномерных и многомерных (изображения) сигналов.

9. Обобщение и оценка результатов НИ.

10. Оформление и представление итогов НИ.

11. Управление научно-исследовательскими работами (НИР).

Наиболее эффективно, когда эти задачи реализуются в рамках автоматизированных систем научных исследований (АСНИ).

При системном подходе НИ начинаются со сбора и предварительной обработки НТИ по теме исследования. Эта информация может включать сведения о достижениях в исследуемой области, об оригинальных идеях, об открытых эффектах, научных разработках, технических решениях и т.д.

Целью данного этапа является получение ответов на следующие вопросы:

2. Каковы известные решения по исследуемой теме?

3. Какими известными методами и средствами решаются исследуемые проблемы?

4. Каковы недостатки известных решений и какими путями их пытаются преодолеть?

Углубленное изучение информации по предмету исследования позволяет исключить риск ненужных затрат времени на уже решенную проблему, детально изучить весь круг вопросов по исследуемой теме и найти научно - техническое решение, отвечающее высокому уровню.

Основным источником информации являются научные документы, которые по способу представления могут быть текстовыми, графическими, аудиовизуальными и машиночитаемыми.

Научные документы подразделяются на первичные и вторичные, опубликованные и неопубликованные.

Первичные документы - это книги, брошюры, периодические издания (журналы, труды), научно-технические документы (стандарты, методические указания). Важное значение здесь имеет также патентная документация, под которой подразумеваются издания, содержащие сведения об открытиях, изобретениях и т.п.

Вторичные документы содержат краткую обобщенную информацию из одного или нескольких первичных документов: справочники, реферативные издания, библиографические указатели и т.п.

Сбор и обработка НТИ может быть выполнена следующими способами:

Анкетирование, собеседование, экспертный опрос и т.д., но основой является

Работа с научно-техническими документами, которая включает поиск, ознакомление, проработку документов и систематизацию информации.

Поиск выполняется по каталогам, реферативным и библиографическим изданиям. Автоматизация этой процедуры обеспечивается использованием специализированных информационно-поисковых систем (ИПС) библиотек и научно-исследовательских институтов (НИИ), электронных каталогов, поиском в машиночитаемых базах данных (БД), а также с помощью программ поиска в сетях Internet .

Необходимо иметь в виду, что ИПС делятся на:

Документальные, позволяющие работать с полными текстами или адресами документов;

Фактографические, которые выдают необходимые сведения из имеющихся документов;

Информационно-логические (интеллектуальные) представляют информацию, полученную в результате логического поиска и целенаправленного выбора в автоматизированном режиме.

При наличии в БД полных текстов документов названные средства и позволяют реализовывать процедуру ознакомления. Часто для этого вполне достаточны рефераты или аннотации документов.

В проработке и автоматизации НТИ преобладают такие операции, как:

Формирование выписок - создание картотеки;

Извлечение фрагментов документов с помощью средств текстовых редакторов;

Создание гипертекстовых документов (структурированных).

Создание локальных (по проблеме) БД и баз знаний (БЗ).

Таким образом, применение информационных технологий способствуют повышению эффективности научного исследования на всех его этапах (снижают некоторые ресурсные затраты, позволяют реализовать удаленный доступ к документам, автоматизировать часть операций). Кроме того, информационные технологии обеспечивают точность регистрации данных, а в некоторых случаях расширяют список самих данных, возможных к регистрации. Некоторые направления научных исследований вообще не могут существовать без соответствующих технологий (например, компьютерного моделирования).


Похожая информация.