Решение задач линейного программирования в MS Excel. Пример решения задачи линейного программирования с помощью MS Excel

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Частное образовательное учреждение высшего образования «Санкт-Петербургский университет технологий управления и экономики»

Кафедра экономики и менеджмента

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Выполнил:

Студент (ка) 3 курса, группа № 19731Д/3-2

Крюк Альбина Владимировна

Руководитель:

к.э.н., доцент Ж.М. Козлова.

Барнаул 2016

  • Введение
  • Заключение
  • ВВЕДЕНИЕ
  • Решение широкого круга задач электроэнергетики и других отраслей народного хозяйства основывается на оптимизации сложной совокупности зависимостей, описанных математически с помощью некоторой «целевой функции» (ЦФ). Подобные функции можно записать для определения затрат на топливо для электростанций, на потери электроэнергии при транспорте ее от электростанции к потребителям и многие другие проблемные задачи. В таких случаях требуется найти ЦФ при определенных ограничениях, накладываемых на ее переменные. Если ЦФ линейно зависит от входящих в ее состав переменных и все ограничения образуют линейную систему уравнений и неравенств, то такая частная форма оптимизационной задачи получила название «задачи линейного программирования».
  • Темы контрольной работы «Решение задач линейного программирования в MS Excel», получить практические навыки в использовании электронных таблиц Microsoft Excel и решения оптимизационных задач линейного программирования.

1. Типовые задачи оптимизации и их экономико-математические модели

Экономико-математическое моделирование представляет собой процесс выражения экономических явлений математическими мо­делями. Экономическая модель -- это схематичное представление экономического явления или процесса с использованием научной абстракции, отражение их характерных черт. Математические мо­дели -- основное средство решения задач оптимизации любой дея­тельности. По своей сути эти модели -- средство плановых расче­тов. Ценность их для экономического анализа и оптимизации реше­ний состоит в том, что они позволяют оценить напряженность плановых заданий, определить лимитирующую группу оборудова­ния, видов ресурсов, получать оценки их дефицитности и т.п. Мате­матическое моделирование экономических явлений и процессов дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю струк­туру и внешние связи. Модель -- условный образ объекта управле­ния /1/.

Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемо­го объекта. Отметим принципиальные черты, характерные для по­строения экономико-математической модели любого вида. Процесс моделирования можно условно подразделить на три этапа:

1) ана­лиз теоретических закономерностей, свойственных изучаемому яв­лению или процессу и эмпирических данных о его структуре и особенностях; на основе такого анализа формируются модели;

2) определение методов, с помощью которых можно решить задачу;

3) анализ полученных результатов.

Важнейшим моментом первого этапа моделирования является четкая формулировка конечной цели построения модели, а также определение критерия, по которому будут сравниваться различные варианты решения. Такими критериями в системе менеджмента могут быть:

а) максимизация полезного эффекта товара при ограни­чении совокупности затрат;

б) максимизация прибыли фирмы при условии, что качество товара не снизится; в) снижение себестоимо­сти товара при условии, что его качество не снизится, затраты у потребителя не увеличатся;

г) рост производительности труда, улуч­шение использования оборудования или материалов, повышение оборачиваемости оборотных средств при условии, что качество то­вара не снизится и другие критерии не ухудшатся.

Таким образом, в качестве критерия оптимизации может быть целое или любой компонент прибыли, эффективности товара, объема рынка при ус­ловии, что другие компоненты при этом не ухудшатся.

Например, уравнение целевой функции (L) и система ограниче­ний по оптимизации прибыли фирмы (правда, у авторов нет огра­ничений по качеству товара) будет иметь следующий вид:

где хj -- количество производимой продукции j-го вида в нату­ральных измерениях;

Пj -- прибыль, получаемая от производства единицы про­дукции j-го вида;

аij -- норма расхода i-го производственного ресурса на про­изводство единицы j-го вида продукции;

щj -- запасы i-го вида производственного ресурса на рас­сматриваемый период времени.

Не для всякой экономической задачи нужна собственная модель. Некоторые процессы с математической точки зрения однотипны и могут описываться одинаковыми моделями. Например, в линейном программировании, теории массового обслуживания и других су­ществуют типовые модели, к которым приводится множество конк­ретных задач.

Вторым этапом моделирования экономических процессов являет­ся выбор наиболее рационального математического метода для реше­ния задачи. Например, для решения задач линейного программиро­вания известно много методов: симплексный, потенциалов и др. Луч­шей моделью является не самая сложная и самая похожая на реальное явление, а та, которая позволяет получить самое рациональное реше­ние и наиболее точные экономические оценки. Излишняя детализа­ция затрудняет построение модели, а излишнее укрупнение модели приводит к потере существенной экономической информации, к не­адекватному отражению реальности.

Третьим этапом моделирования является всесторонний анализ результата, полученного при изучении экономического явления. Окончательным критерием достоверности и качества модели явля­ются практика, соответствие полученных результатов и выводов реальным условиям, экономическая содержательность полученных оценок. Если результаты не соответствуют реальным условиям, то необходим анализ причин несоответствия, в качестве которых могут быть недостоверность информации, несоответствие модели эконо­мическим условиям и др. По результатам анализа причин несоответствия экономико-математическая модель корректируется и ре­шение задачи повторяется.

Решим графическим методом типовую задачу оптимизации

Некоторая фирма выпускает два набора удобрений для газонов: обычный и улучшенный. В обычный набор входит 3 кг азотных, 4 кг фосфорных и 1 кг калийных удобрений, а в улучшенный - 2 кг азотных, 6 кг фосфорных и 3 кг калийных удобрений. Известно, что для некоторого газона требуется по меньшей мере 10 кг азотных, 20 кг фосфорных и 7 кг калийных удобрений. Обычный набор стоит 3 ден. Ед., а улучшенный - 4 ден. Ед. Какие и сколько наборов удобрений нужно купить, чтобы обеспечить эффективное питание почвы и минимизировать стоимость?

Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум, и почему?

Сформулируем прямую оптимизационную задачу.

Пусть х1 - количество обычных наборов удобрений;

х2 - количество улучшенных наборов удобрений.

А для некоторого газона требуется по крайней мере 10 кг азотных удобрений, следовательно:

3х1 + 2х2 ? 10

4х1 + 6х2 ? 20

Стоимость необходимых наборов удобрений составит:

Таким образом, получим следующую экономико-математическую модель задачи:

min (х) = 3х1 + 4х2

3х1 + 2х2 ? 10

4х1 + 6х2 ? 20

Построим область решений системы ограничений. Для этого рассмотрим равенства и построим их графики - прямые.

1) 3х1 + 2х2 ? 10

3х1 + 2х2 = 10

3) х1 + 3х2 ? 7

Неравенство не выполняется, значит, исходному неравенству соответствует полуплоскость, не содержащая точку О(0;0).

х1 = 0 - ось ОХ2.

х2 = 0 - ось ОХ1.

Следовательно, область решений системы ограничений находится только в первой четверти декартовой системы координат.

Рис.1. Графическое решение ЗЛП

Находим общую часть всех построенных полуплоскостей. Это выпуклая заштрихованная область.

Для нахождения оптимального решения задачи изобразим графически функцию цели:

(х) = d1x1 + d2x2

(х) = 3х1 + 4х2

Для этого строим вектор d, начало которого в точке (0;0), а конец в точке (d1;d2).

И строим одну из линий уровня функции цели (это линия, на которой функция цели принимает постоянное значение).

Для определения минимума данной функции, передвигаем линию уровня в направлении, противоположном вектору d, и видим, что она последний раз соприкасается с областью решений в точке В, где и будет достигнут min(х).

Определим координаты точки В:

3х1 + 2х2 = 10 *(-3)

4х1 + 6х2 = 20

9х1 - 6х2 = -30

4х1 + 6х2 = 20

Складываем почленно уравнения и получаем:

(х) = 3*2 + 4*2 = 14 (ден. ед.)

Таким образом, чтобы минимизировать стоимость удобрений, нужно купить 2 обычных набора удобрений и 2 улучшенных набора удобрений. При этом минимальные затраты на покупку удобрений составят 14 денежных единиц. microsoft excel программирование математический

Если решать данную задачу на максимум, то конечного оптимума не найдем, т.к. функция цели неограниченна, область решений системы ограничений бесконечна.

2. Задачи линейного программирования, решение средствами MS Excel

Линейное программирование является разделом, с которого начала развиваться дисциплина «математическое программирование». Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программ) для ЭВМ» не имеет, так как дисциплина «линейное программирование» возникла еще до того времени, когда ЭВМ стали широко применяться при решении математических, инженерных, экономических и других задач. Термин «линейное программирование» возник в результате неточного перевода английского «linear programming». Одно из значений слова «programming» - составление планов, планирование. Следовательно, правильным переводом «linear programming» было бы не «линейное программирование», а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термин линейное программирование, нелинейное программирование и т.д. в нашей литературе стали общепринятыми. Задачи линейного программирования является удобной математической моделью для большого числа экономических задач (планирование производства, расходование материалов, транспортные перевозки и т.д.). Использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями.
В электронных таблицах Excel с помощью функции поиска решения можно вести поиск значения в целевой ячейке, изменения значения переменных. При этом для каждой переменной можно задать ограничения, например верхнюю границу. Перед тем как запустить поиск решения, необходимо четко сформулировать в модели решаемую проблему, т.е. определить условия, выполняемые при оптимизации. Отправленной точкой при поиске оптимального решения является модель вычисления, созданная в рабочем листе. Программе поиска решения при этом необходимы следующие данные. 1. Целевая ячейка - это ячейка в модели вычисления, значения в которой должно быть максимизировано, минимизировано или же равняться определенному указанному значению. Она должна содержать формулу, которая прямо или косвенно ссылается на изменяемые ячейки, или же самой быть изменяемой. 2. Значения в изменяемых ячейках будут последовательно (методом итераций) изменяться до тех пор, пока не будет получено нужное значение в целевой ячейке. Эти ячейки, следовательно, прямо или косвенно должны влиять на значение целевой ячейки. 3. Вы можете задать как для целевой, так и для изменяемых ячеек, ограничения и граничные условия. Можно задать также ограничения для других ячеек. Прямо или косвенно присутствующих в модели. Программа предоставляет возможность задать специальные параметры, определяющие процесс поиска решения. После задания всех необходимых параметров можно запустить поиск решения. Функция поиска решения создаст по итогам своей работы три отчета, которые можно пометить в рабочую книгу.Ограничения - это условия, которые должны быть выполнены аппаратом поиска решения при оптимизации модели.

Изучение литературы показало, что:

1. Линейное программирование - это один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого начала развиваться сама дисциплина «математическое программирование».

Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи:

· рационального использования сырья и материалов; задачи оптимизации раскроя;

· оптимизации производственной программы предприятий;

· оптимального размещения и концентрации производства;

· составления оптимального плана перевозок, работы транспорта;

· управления производственными запасами;

· и многие другие, принадлежащие сфере оптимального планирования.

2. Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки. Оптимальной считается точка, через которую проходит линия уровня, соответствующая наибольшему (наименьшему) значению функции. Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

ЗАКЛЮЧЕНИЕ

С помощью правильной постановки задачи планирования производства и наличия основных производственных параметров, мы можем найти план выпуска продукции, при котором будет достигнута максимальная прибыль.

Благодаря программному продукту Excel, который входит в пакет MS Office, решение наших задач ускоряется в несколько десятков раз. А благодаря точным математическим расчетам данного ПО, мы можем без сомнения найти самые точные результаты исследований.

Размещено на Allbest.ru

...

Подобные документы

    Краткие сведения об электронных таблицах MS Excel. Решение задачи линейного программирования. Решение с помощью средств Microsoft Excel экономической оптимизационной задачи, на примере "транспортной задачи". Особенности оформления документа MS Word.

    курсовая работа , добавлен 27.08.2012

    История развития и функции линейного программирования. Исследование условий типовых задач и возможностей табличного процессора. Решение задач о рационе питания, плане производства, раскрое материалов и рациональной перевозке груза в среде MS Excel.

    курсовая работа , добавлен 28.04.2014

    Принципы решения задач линейного программирования в среде электронных таблиц Excel, в среде пакета Mathcad. Порядок решения задачи о назначении в среде электронных таблиц Excel. Анализ экономических данных с помощью диаграмм Парето, оценка результатов.

    лабораторная работа , добавлен 26.10.2013

    Алгоритм решения задач линейного программирования симплекс-методом. Построение математической модели задачи линейного программирования. Решение задачи линейного программирования в Excel. Нахождение прибыли и оптимального плана выпуска продукции.

    курсовая работа , добавлен 21.03.2012

    Изучение и укрепление на практике всех моментов графического метода решения задач линейного программирования о производстве журналов "Автомеханик" и "Инструмент". Построение математической модели. Решение задачи с помощью электронной таблицы Excel.

    курсовая работа , добавлен 10.06.2014

    Общее понятие и характеристика задачи линейного программирования. Решение транспортной задачи с помощью программы MS Excel. Рекомендации по решению задач оптимизации с помощью надстройки "Поиск решения". Двойственная задача линейного программирования.

    дипломная работа , добавлен 20.11.2010

    Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа , добавлен 29.05.2015

    Разработка таблиц в Excel методами линейного программирования с целью оптимизации расходов ресурсов и запасов на изготовление продукции: определение переменных величин, структуры целевой функции, построение математической модели и блок-схем решения задач.

    курсовая работа , добавлен 07.06.2010

    Методы решения задач линейного программирования: планирования производства, составления рациона, задачи о раскрое материалов и транспортной. Разработка экономико-математической модели и решение задачи с использованием компьютерного моделирования.

    курсовая работа , добавлен 13.03.2015

    Графическое решение задач. Составление математической модели. Определение максимального значения целевой функции. Решение симплексным методом с искусственным базисом канонической задачи линейного программирования. Проверка оптимальности решения.

Использование Microsoft Excel для решения задач линейного программирования .

В Excel 2007 для включения пакета анализа надо нажать перейти в блок Параметры Excel , нажав кнопку в левом верхнем углу, а затем кнопку «Параметры Excel » внизу окна:


Далее в открывшемся списке нужно выбрать Надстройки , затем установить курсор на пункт Поиск решения , нажать кнопку Перейти и в следующем окне включить пакет анализа.

Для того чтобы решить задачу ЛП в табличном процессоре Microsoft Excel , необходимо выполнить следующие действия:

1. Ввести условие задачи:

a) создать экранную форму для ввода условия задачи :

· переменных,

· целевой функции (ЦФ),

· ограничений,

· граничных условий;

b) ввести исходные данные в экранную форму :

· коэффициенты ЦФ,

· коэффициенты при переменных в ограничениях,

· правые части ограничений;

c) ввести зависимости из математической модели в экранную форму :

· формулу для расчета ЦФ,

· формулы для расчета значений левых частей ограничений;

d) задать ЦФ (в окне "Поиск решения" ):

· целевую ячейку,

· направление оптимизации ЦФ;

e) ввести ограничения и граничные условия (в окне "Поиск решения" ):

· ячейки со значениями переменных,

· граничные условия для допустимых значений переменных,

· соотношения между правыми и левыми частями ограничений.

2. Решить задачу:

a) установить параметры решения задачи (в окне "Поиск решения" );

b) запустить задачу на решение (в окне "Поиск решения" ) ;

c) выбрать формат вывода решения (в окне "Результаты поиска решения" ).

Рассмотрим подробно использование MS Excel на примере решения следующей задачи.

Задача.

Фабрика "GRM pic" выпускает два вида каш для завтрака - "Crunchy" и "Chewy". Используемые для производства обоих продуктов ингредиенты в основ-ном одинаковы и, как правило, не являются дефицитными. Основным ограничением, накладываемым на объем выпуска, является наличие фонда рабочего времени в каждом из трех цехов фабрики.

Управляющему производством Джою Дисону необходимо разработать план производства на месяц. В приведенной ниже таблице указаны общий фонд рабочего времени и число человеко-часов, требуемое для производства 1 т продукта.


Цех

Необходимый фонд рабочего времени
чел.-ч/т

Общий фонд рабочего времени
чел.-ч. в месяц

"Crunchy"

"Chewy"

А. Производство


10

4

1000

В. Добавка приправ


3

2

360

С. Упаковка


2

5

600

Доход от производства 1 т "Crunchy" составляет 150 ф. ст., а от производства "Chewy" - 75 ф, ст. На настоящий момент нет никаких ограничений на возможные объемы продаж. Имеется возможность продать всю произведенную продукцию.

Требуется:

а) Сформулировать модель линейного программирования, максимизи-рующую общий доход фабрики за месяц.

б) Решить ее c помощью MS Excel.

Формальная постановка данной задачи имеет вид:

(1)
Ввод исходных данных
Создание экранной формы и ввод исходных данных

Экранная форма для решения в MS Excel представлена на рисунке 1.


Рисунок 1.

В экранной форме на рисунке 1 каждой переменной и каждому коэффициенту задачи поставлена в соответствие конкретная ячейка на листе Excel. Имя ячейки состоит из буквы, обозначающей столбец, и цифры, обозначающей строку, на пересечении которых находится объект задачи ЛП. Так, например, переменным задачи 1 соответствуют ячейки B4 (), C4 (), коэффициентам ЦФ соответствуют ячейки B6 (150), C6 (75), правым частям ограничений соответствуют ячейки D 18 (1000), D 19 (360), D 20 (600) и т.д.
Ввод зависимостей из формальной постановки задачи в экранную форму

Для ввода зависимостей определяющих выражение для целевой функции и ограничений используется функция MS Excel СУММПРОИЗВ , которая вычисляет сумму попарных произведений двух или более массивов.

Одним из самых простых способов определения функций в MS Excel является использование режима "Вставка функций", который можно вызвать из меню "Вставка" или при нажатии кнопки "

Рисунок 2

Так, например, выражение для целевой функции из задачи 1 определяется следующим образом:

· курсор в поле D 6;

· нажав кнопку "

· в окне "Функция" выберитефункцию СУММПРОИЗВ (рис. 3);


Рисунок 3

· в появившемся окне "СУММПРОИЗВ" в строку "Массив 1" введите выражение B $4: C $4 , а в строку "Массив 2" - выражение B 6: C 6 (рис. 4);

Рисунок 4

Левые части ограничений задачи (1) представляют собой сумму произведений каждой из ячеек, отведенных для значений переменных задачи (B 3, C 3 ), на соответствующую ячейку, отведенную для коэффициентов конкретного ограничения (B 13, C 13 - 1-е ограничение; B 14, С14 - 2-е ограничение и B 15, С15 - 3-е ограничение). Формулы, соответствующие левым частям ограничений, представлены в табл.1.

Таблица 1.
Формулы, описывающие ограничения модели (1)


Левая часть ограничения

Формула Excel


=СУММПРОИЗВ(B 4: C 4; B 13: C 13))


=СУММПРОИЗВ(B 4: C 4; B 14: C 14))


=СУММПРОИЗВ(B 4: C 4; B 15: C 15)

Задание ЦФ

Дальнейшие действия производятся в окне "Поиск решения" , которое вызывается из меню "Сервис" (рис.5):

· поставьте курсор в поле "Установить целевую ячейку" ;

· введите адрес целевой ячейки $ D $6 или сделайте одно нажатие левой клавиши мыши на целевую ячейку в экранной форме ¾ это будет равносильно вводу адреса с клавиатуры;

· введите направление оптимизации ЦФ, щелкнув один раз левой клавишей мыши по селекторной кнопке "максимальному значению".


Рисунок 5
Ввод ограничений и граничных условий
Задание ячеек переменных

В окно "Поиск решения" в поле "Изменяя ячейки" впишите адреса $ B $4:$С$4 . Необходимые адреса можно вносить в поле "Изменяя ячейки" и автоматически путем выделения мышью соответствующих ячеек переменных непосредственно в экранной форме.
Задание граничных условий для допустимых значений переменных

В нашем случае на значения переменных накладывается только граничное условие неотрицательности, то есть их нижняя граница должна быть равна нулю (см. рис. 1).

· Нажмите кнопку "Добавить" , после чего появится окно "Добавление ограничения" (рис.6).

· В поле "Ссылка на ячейку" введите адреса ячеек переменных $ B $4:$С$4 . Это можно сделать как с клавиатуры, так и путем выделения мышью всех ячеек переменных непосредственно в экранной форме.

· В поле знака откройте список предлагаемых знаков и выберите .

· В поле "Ограничение" введите 0.

Рис.6 - Добавление условия неотрицательности переменных задачи (1)
Задание знаков ограничений , , =

· Нажмите кнопку "Добавить" в окне "Добавление ограничения" .

· В поле "Ссылка на ячейку" введите адрес ячейки левой части конкретного ограничения, например $ B $18 . Это можно сделать как с клавиатуры, так и путем выделения мышью нужной ячейки непосредственно в экранной форме.

· В соответствии с условием задачи (1) выбрать в поле знака необходимый знак, например, .

· В поле "Ограничение" введите адрес ячейки правой части рассматриваемого ограничения, например $ D $18 .

· Аналогично введите ограничения: $ B $19<=$ D $19 , $ B $20<=$ D $20 .

· Подтвердите ввод всех перечисленных выше условий нажатием кнопки OK .

Окно "Поиск решения" после ввода всех необходимых данных задачи (1) представлено на рис. 5.

Если при вводе условия задачи возникает необходимость в изменении или удалении внесенных ограничений или граничных условий, то это делают, нажав кнопки "Изменить" или "Удалить" (см. рис. 5).
Решение задачи
Установка параметров решения задачи

Задача запускается на решение в окне "Поиск решения". Но предварительно для установления конкретных параметров решения задач оптимизации определенного класса необходимо нажать кнопку "Параметры" и заполнить некоторые поля окна "Параметры поиска решения" (рис. 7).

Рис. 7 - Параметры поиска решения, подходящие для большинства задач ЛП

Параметр "Максимальное время" служит для назначения времени (в секундах), выделяемого на решение задачи. В поле можно ввести время, не превышающее 32 767 секунд (более 9 часов).

Параметр "Предельное число итераций" служит для управления временем решения задачи путем ограничения числа промежуточных вычислений. В поле можно ввести количество итераций, не превышающее 32 767.

Параметр "Относительная погрешность" служит для задания точности, с которой определяется соответствие ячейки целевому значению или приближение к указанным границам. Поле должно содержать число из интервала от 0 до 1. Чем меньше количество десятичных знаков во введенном числе, тем ниже точность. Высокая точность увеличит время, которое требуется для того, чтобы сошелся процесс оптимизации.

Параметр "Допустимое отклонение" служит для задания допуска на отклонение от оптимального решения в целочисленных задачах. При указании большего допуска поиск решения заканчивается быстрее.

Параметр "Сходимость" применяется только при решении нелинейных задач.Установка флажка "Линейная модель" обеспечивает ускорение поиска решения линейной задачи за счет применение симплекс-метода.

Подтвердите установленные параметры нажатием кнопки " OK " .
Запуск задачи на решение

Запуск задачи на решение производится из окна "Поиск решения" путем нажатия кнопки "Выполнить".

После запуска на решение задачи ЛП на экране появляется окно "Результаты поиска решения" с сообщением об успешном решении задачи, представленном на рис. 8.


Рис. 8 -. Сообщение об успешном решении задачи

Появление иного сообщения свидетельствует не о характере оптимального решения задачи, а о том, что при вводе условий задачи в Excel были допущены ошибки , не позволяющие Excel найти оптимальное решение, которое в действительности существует.

Если при заполнении полей окна "Поиск решения" были допущены ошибки, не позволяющие Excel применить симплекс-метод для решения задачи или довести ее решение до конца, то после запуска задачи на решение на экран будет выдано соответствующее сообщение с указанием причины, по которой решение не найдено. Иногда слишком малое значение параметра "Относительная погрешность" не позволяет найти оптимальное решение. Для исправления этой ситуации увеличивайте погрешность поразрядно, например от 0,000001 до 0,00001 и т.д.

В окне "Результаты поиска решения" представлены названия трех типов отчетов: "Результаты", "Устойчивость", "Пределы" . Они необходимы при анализе полученного решения на чувствительность. Для получения же ответа (значений переменных, ЦФ и левых частей ограничений) прямо в экранной форме просто нажмите кнопку " OK ". После этого в экранной форме появляется оптимальное решение задачи (рис. 9).


Рис.9 - Экранная форма задачи (1) после получения решения

Лабораторная работа "Использование средства Поиск решения"

Задание:

Решить в Excel все приведенные ниже задачи (каждую на отдельном листе) и сохранить решения в файле LAB4.xls на своем пользовательском диске.

Задача 1 1

Решение задачи линейного программирования с помощью EXCEL. 2

Задача 2 4

Задача планирования производства красок 4

Задача 3 5

Решение транспортной задачи с помощью средства Поиск решения 5

Задача 1

Задача распределения ресурсов.

Если финансы, оборудование, сырье и даже людей полагать ресурсами, то значительное число задач в экономике можно рассматривать как задачи распределения ресурсов. Достаточно часто математической моделью таких задач является задача линейного программирования.

Например:

Требуется определить, в каком количестве надо выпускать продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье, финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведена ниже.Составим математическую модель, для чего введем следущие обозначения:

x j - количество выпускаемой продукции j-го типа, j=1,4 ;

b i - количество располагаемого ресурса i-го вида, i=1,3 ;

a ij - норма расхода i-го ресурса для выпуска единицы продукции j-го типа;

c j - прибыль, получаемая от реализации единицы продукции j-го типа.

Теперь приступим к составлению модели.

Для выпуска единицы Прод1 требуется 6 единиц сырья, значит, для выпуска всей продукции Прод1 требуется 6 х 1 единиц сырья, где х 1 - количество выпускаемой продукции Прод1. С учетом того, что для других видов продукции зависимости аналогичны, ограничение по сырью будет иметь вид:

1 +5х 2 +4х 3

В этом ограничении левая часть равна величине потребного ресурса, а правая показывает количество имеющегося ресурса. Аналогично можно составить ограничения для остальных ресурсов и написать зависимость для целевой функции. Тогда математическая модель задачи будет иметь вид:

F=60x 1 +70x 2 +120x 3 +130x 4 --> max

x 1 +x 2 +x 3 +x 4

6x 1 +5x 2 +4x 3 +3x 4

4x 1 +6x 2 +10x 3 +13x 4

x j >=0; j=1,4

Решение задачи линейного программирования с помощью EXCEL.

1
. Сделать активной ячейку F6.

2. Мастер функций Математические СУММПРОИЗВ на жмите кнопку Далее. На экране диалоговое окно


3. Введите зависимости для левых частей ограничений.

Работа в диалоговом окне Поиск решения.

1

. Сервис, Поиск решения...

2 . Курсор в поле Установить целевую ячейку и введите адрес F6.

3 . Введите направление целевой функции: Максимальному значению .

4 . Курсор в поле Изменяя ячейки и введите адреса B3:E3

5. Нажмите кнопку Добавить... и в ведите граничные условия на переменные

6. После ввода ограничений, нажмите кнопку Выполнить . В результате вычислений в ячейках В3:Е3, будут отражены найденные числовые значения х i , а в ячейке F6 – значение целевой функции.

Т.О, видно, что в оптимальном решении Прод1=В3=10, Прод2=С3=0, Прод3=D3=6, Прод4=Е3=0.

При этом максимальная прибыль будет составлять F6=1320 , количество использованных ресурсов равно трудовых=F9=16, сырья=F10=84, финансов=F11=100.




С помощью диалогового окна Результат поиска решения. Решение найдено можно получить отчеты трех типов: результаты, устойчивость, пределы.

Задача 2

Задача планирования производства красок

Для производства красок для наружных и внутренних работ используют два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 6 и 8 тонн, соответственно.

Суточный спрос на краску для внутренних работ никогда не превышает спроса на краску для наружных работ более чем на 1т.

Спрос на краску для внутренних работ не превышает 2т. в сутки.

Оптовые цены одной тонны красок равны: 3000 руб. для краски для наружных работ и 2000 руб. для краски для внутренних работ .

Какое количество краски каждого вида следует производить, чтобы доход от реализации был максимальным?

Расходы продуктов А и В на 1т. приведены в таблице:

исходный продукт

расход исходных продуктов на тонну краски

максимально возможный запас

для внутренних работ

для наружных работ

х 1 - суточный объем производства краски для внутренних работ

х 2 - суточный объем производства краски для наружных работ

f -суммарная суточная прибыль от производства обоих видов красок (целевая функция)

f = 3000х 1 +2000х 2

Определить при каких допустимых значениях х 1 и х 2 значение f - максимальное

Ограничения:

Решение задачи в Excel

Переменные

Целевая функция:

3000*А3+2000*В3

Ограничения

Выполните: Cервис, Поиск решения

Целевая ячейка С4

Установить: М аксимальному значению

Изменяемые ячейки: А3:В3

Ограничения:

После ввода данных нажмите кнопку Выполнить

Полученное решение:

Переменные

Целевая функция:

Ограничения:

Вывод: оптимальным является производство 3,3 т. краски для наружных работ и 1,3 т. краски для внутренних работ в сутки. Этот объем принесет прибыль 12,7 тыс. руб.

Задача 3

Решение транспортной задачи с помощью средства Поиск решения

Фирма имеет четыре фабрики: А, В, С, D и пять центров распределения ее товаров: №1, №2, №3, №4, №5.

Производственные возможности фабрик соответственно составляют:

А – 200, В – 150, С – 225, D – 175 единиц продукции ежедневно.

Потребности центров распределения соответственно составляют:

№1 – 100, №2 – 200, №3 – 50, №4 – 250, №5 – 150 единиц продукции ежедневно.

Хранение на фабрике единицы продукции, не поставленной в центр распределения, составляет $0,75 в день.

Штраф за просроченную поставку единицы продукции, заказанной потребителем в центре распределения, но там не находящейся, равен $2,5 в день.

Стоимость перевозки единицы продукции с фабрик в пункты распределения представлена в таблице:

Спланировать перевозки так, чтобы минимизировать суммарные транспортные расходы.

Модель рассматриваемой задачи сбалансирована (суммарный объем произведенной продукции равен суммарному объему потребностей в ней), значит не нужно учитывать издержки, связанные как со складированием, так и с недопоставками продукции. В противном случае в модель следует ввести:

    В случае перепроизводства – фиктивный пункт распределения, стоимость перевозок единицы продукции, в который полагается равной стоимости складирования, а объемы перевозок – объемам складирования излишков продукции на фабриках.

    В случае дефицита – фиктивную фабрику, стоимость перевозок единицы продукции с которой полагается равной стоимости штрафов за недопоставку продукции, а объемы перевозок – объемам недопоставок продукции в пункты распределения.

x ij – объем перевозок с i-й фабрики в j-й центр распределения.

c ij – стоимость перевозки единицы продукции с i-й фабрики в j-й центр распределения.

а i – объем производства на i-й фабрике.

в j – спрос в j-м центре распределения.

Т

ребуется минимизировать суммарные транспортные расходы, т.е.

Ограничения:

x



ij 0 , i , j

Механизм решения задачи в Excel с использованием средства Поиск решения

    В ячейки А1:Е4 введите стоимости перевозок.

    А6:Е9 – отведите под значения неизвестных (объемы перевозок).

    В ячейки G6:G9 введите объемы производства на фабриках.

    В А11:Е11 – потребность в продукции в пунктах распределения.

    В ячейку F10 – введите целевую функцию

    В А10:Е10 –введите формулы, определяющие объем продукции, ввозимой в центры распределения

    В F6: F9 – формулы, вычисляющие объем продукции, вывозимой с фабрик.

СУММ(A6:E6)

СУММ(A7:E7)

СУММ(A8:E8)

СУММ(A9:E9)

СУММ(A6:A9)

СУММ(B6:B9)

СУММ(C6:C9)

СУММ(D6:D9)

СУММ(E6:E9)

СУММПРОИЗВ(A1:E4;A6:E9)

    Сервис Поиск решения

    В окне диалога Поиск решения:
    Установить целевую ячейку $F$10
    Равной мин имальному значению
    Изменяя ячейки: $А$6:$E$9
    Ограничения:
    $А$10:$E$10=$A$11:$E$11
    $А$6:$E$9>=0
    $F$6:$F$9=$G$6:$G$9

    Щелкните на кнопке Параметры… и установите флажок Линейная модель

    Нажмите кнопку Выполнить

    Оптимальное решение транспортной задачи будет отражено в диапазоне А6:Е9

Решите транспортную задачу самостоятельно, используя выше описанный механизм.

Excel необходимо: ...

  • Задачи линейного программирования. Графический метод решения задач линейного программирования

    Решение

    Microsoft Excel . Решение задач выпуклого программирования при помощи линейной аппроксимации. Приближённое решение задач математического программирования методом сепарабельного программирования . Экономические задачи , решаемые с помощью ...

  • Инструкция по использованию microsoft Excel для решения задач лп 5 3 Одноиндексные задачи лп 6 > 3 Ввод исходных данных 6 > 3 Решение задачи 13

    Инструкция

    1. ЛАБОРАТОРНАЯ РАБОТА №1 “РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ Microsoft Excel ” 1.1. ЦЕЛЬ РАБОТЫ Приобретение навыков решения задач линейного программирования (ЛП) в табличном...

  • Некоторые понятия линейного программирования

    Документ

    Мы приведем решение этой задачи с помощью программы Tora. рассмотрим реализацию задачи линейного программирования в... задачи с помощью Microsoft Excel . 1. Осуществляем ввод данных в таблицу Excel (рис. 1). Рис. 1. Заполнение листа для решения задачи ...

  • Линейное программирование является разделом, с которого начала развиваться дисциплина «математическое программирование». Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программ) для ЭВМ» не имеет, так как дисциплина «линейное программирование» возникла еще до того времени, когда ЭВМ стали широко применяться при решении математических, инженерных, экономических и других задач. Термин «линейное программирование» возник в результате неточного перевода английского «linear programming». Одно из значений слова «programming» - составление планов, планирование. Следовательно, правильным переводом «linear programming» было бы не «линейное программирование», а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термин линейное программирование, нелинейное программирование и т.д. в нашей литературе стали общепринятыми. Задачи линейного программирования является удобной математической моделью для большого числа экономических задач (планирование производства, расходование материалов, транспортные перевозки и т.д.). Использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями.В электронных таблицах Excel с помощью функции поиска решения можно вести поиск значения в целевой ячейке, изменения значения переменных. При этом для каждой переменной можно задать ограничения, например верхнюю границу. Перед тем как запустить поиск решения, необходимо четко сформулировать в модели решаемую проблему, т.е. определить условия, выполняемые при оптимизации. Отправленной точкой при поиске оптимального решения является модель вычисления, созданная в рабочем листе. Программе поиска решения при этом необходимы следующие данные. 1. Целевая ячейка - это ячейка в модели вычисления, значения в которой должно быть максимизировано, минимизировано или же равняться определенному указанному значению. Она должна содержать формулу, которая прямо или косвенно ссылается на изменяемые ячейки, или же самой быть изменяемой. 2. Значения в изменяемых ячейках будут последовательно (методом итераций) изменяться до тех пор, пока не будет получено нужное значение в целевой ячейке. Эти ячейки, следовательно, прямо или косвенно должны влиять на значение целевой ячейки. 3. Вы можете задать как для целевой, так и для изменяемых ячеек, ограничения и граничные условия. Можно задать также ограничения для других ячеек. Прямо или косвенно присутствующих в модели. Программа предоставляет возможность задать специальные параметры, определяющие процесс поиска решения. После задания всех необходимых параметров можно запустить поиск решения. Функция поиска решения создаст по итогам своей работы три отчета, которые можно пометить в рабочую книгу.Ограничения - это условия, которые должны быть выполнены аппаратом поиска решения при оптимизации модели.

    Изучение литературы показало, что:

    1. Линейное программирование - это один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого начала развиваться сама дисциплина «математическое программирование».

    Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи:

    • · рационального использования сырья и материалов; задачи оптимизации раскроя;
    • · оптимизации производственной программы предприятий;
    • · оптимального размещения и концентрации производства;
    • · составления оптимального плана перевозок, работы транспорта;
    • · управления производственными запасами;
    • · и многие другие, принадлежащие сфере оптимального планирования.
    • 2. Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

    Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки. Оптимальной считается точка, через которую проходит линия уровня, соответствующая наибольшему (наименьшему) значению функции. Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

    Ввод условий задачи состоит из следующих основных шагов:

      Создание формы для ввода условий задачи.

      Ввод исходных данных.

      Ввод зависимостей из математической модели.

      Назначение целевой функции.

      ввод ограничений и граничных условий.

    Ход решения задачи:

    Форма для ввода условий задачи:

    Переменные

    Значение

    Коэффициент в целевой функции

    (формула)

    Ограничения

    Коэффициенты в ограничениях

    Правая часть ограничения

    Поочередно в представленную форму заносятся коэффициенты целевой функции, ограничений, их знаки, формулы описания целевой функции и ограничений, представленные в математической модели задачи.

    Для описания формулы целевой функции и ограничений используется диалоговое окно Мастер функций; категория функций – математические; функция СУММПРОИЗВ. (в диалоговом окне в массиве 1 указывается интервал ячеек значения переменной В3:С3, в массиве 2 – коэффициенты при этих переменных. В функции это интервал ячеек В4:С4, в ограничениях – В8:C8, В9:C9 и т.д.)

    Решение задачи осуществляется с использованием команд Сервис, Поиск решения…

    В диалоговом окне Поиск решения заполняем строки, указывая адреса ячеек:

    Целевая функция: Е4

    Равная: max (min)

    Изменяя ячейки: указывается месторасположения переменных (В3:C3)

    Ограничения: с использованием клавиши Добавить записываются адреса ячеек с указанием условий ограничений (например: D8>= F8 и т.д.). Обязательным является ввод ограничения целочисленного решения.

    Если при вводе задачи возникает необходимость в изменении или удалении внесенных ограничений или граничных условий, то это осуществляется с помощью команд Изменить.., Удалить.

    Для получения оптимального решения задачи линейного программирования в Поиске решения задействуется клавиша Параметры…:

    Максимальное время: 100 сек

    Предельное число итераций: 100

    Относительная погрешность 0,000001

    Допустимое отклонение: 5%

    Устанавливаем флажок Линейная модель, что обеспечивает применение симплекс-метода.

    В появившемся окне Поиск решения выполняем команду Выполнить.

    Решение найдено, результат оптимального решения приведен в исходной таблице.

    Решение задач линейного программирования в Excel

    Используя данные прямой двойственной задачи, решите ее в системе Excel, с помощью следующих таблиц

    Переменные

    Ограничения

    Вид ресурса

    Коэффициенты в ограничениях

    Левая часть ограничения (формула)

    Правая часть ограничения