Ученые впервые создали белый лазер. Впервые продемонстрированы белые лазеры, способные потеснить светодиоды

Лампы накаливания уступают CFL и LED, но эти технологии освещения могут также исчезнуть. Команда ученых из Университета штата Аризона разработала лазер, который может производить чистый белый свет, более яркий и эффективный, чем самые лучшие светодиоды. Технически, изначально лазер сам по себе не белого света, но разумное использование наноматериалов позволяет трем цветным лучам стать одним белым.

Лазеры всегда были заманчивой технологией для мира освещения, так как они очень ярки, работают на больших расстояниях, и крайне эффективны. Проблема всегда была в том, что лазер не может быть белым. Новая разработка основана на лазере, созданном в 2011 году в Национальной лаборатории Сандии. Однако, это больше доказательство концепции, чем функциональное устройство. Белый лазер команды Аризонского Университета выдает достаточно света, чтобы его уловил глаз человека. Это шаг в верном направлении.

Пока что нет способа генерировать белый лазер, но этот прорыв выдает тот же результат, смешивая три отдельных луча. Как вы уже догадались, это синий, красный и зеленый, как и пиксели в LCD или AMOLED экранах. Чтобы это работало, команде надо было создать полупроводниковый лазер, который способен работать со всем цветовым спектром, а это далеко не просто. В конце концов, они добились успеха, при помощи наноразмерного полупроводника на основе сплава ZnCdSSe.

Это был серьезный прорыв в настройке полупроводников для получения определенного цвета в пропорциональных объемах. Этого удалось достичь при помощи аккуратного контроля так называемой "постоянной решетки", расстояния между атомами в полупроводнике. Синяя часть спектра была особенно сложной, так как она уже изначально требует применения приемов для создания решетки, чтобы затем сформировать необходимую пропорцию.

Результатом всего этого стал белый лазер, но настраиваемая природа полупроводника означает, что лазер можно сделать любого цвета в спектре, просто увеличивая или уменьшая долю каждого красного, зеленого и синего каналов. Лазер может принимать до 70 разных оттенков, и является более точным, чем LED. В то время, как освещение является самым простым из применений, это только начало. Команда полагает, что белый лазер можно использовать в технологии дисплеев.

Но прежде чем это случится, нужно улучшить сам дизайн. Сейчас он использует обычный лазер как источник питания, но для практичности полупроводник должен уметь вытягивать электроны из батареи. Когда это будет сделано, мы станем на путь к лазерному освещению и дисплеям.

Выращивание наноподложки

Американским учёным из Университета штата Аризона монолитный RGB-лазер. Испускающие свет элементы расположены на одной подложке наноразмера, и цвет выдаваемого луча можно свободно настраивать в широком диапазоне, в том числе получать и луч белого цвета.

Лазер (laser, light amplification by stimulated emission of radiation, «усиление света посредством вынужденного излучения»), преобразует энергию в когерентное монохроматическое (т.е. одноцветное) излучение. Существование эффекта вынужденного излучения предсказал ещё Эйнштейн в 1916 году, а первый лазер на основе кристалла искусственного рубина был сделан в 1960 году.

Отличительная особенность луча лазера – одна постоянная длина волны (или дискретный набор длин), или один конкретный цвет. То, что наш глаз воспринимает, как белый цвет – это ахроматический набор излучений с разными длинами волн, которые имеют равную мощность, поэтому белый лазер изготовить невозможно.

Зато можно комбинировать излучение нескольких лазеров с разными длинами волн. Если, к примеру, скомбинировать лазеры трёх основных цветов (красный, зелёный, синий - RGB), мы получим белый цвет. Лазерные установки, комбинирующие несколько лучей и выдающие разные цвета, широко используются в разных областях человеческой деятельности, включая даже лазерные шоу-программы. Но такие устройства никак не сделаешь достаточно маленькими для использования их в микроэлектронике.


В когда-то популярных, а ныне постепенно уходящих оптических приводах используются лазеры с разными длинами волн для работы с разными типами накопителей – CD, DVD, Blu-Ray. Поэтому в универсальных приводах используют несколько лазеров. Правда, Sony ещё в 2003 году изготовила в лаборатории двухдиапазонный монолитный лазер для использования его как для записи CD-R/RW, так и DVD дисков, но до производства он не добрался.

Создание монолитных лазеров сталкивалось с особыми трудностями, связанными с тем, что необходимо скомбинировать в одной структуре полупроводники с очень разными характеристиками. Кристаллы различаются постоянными решётки – размерами кристаллических ячеек. От этих постоянных зависит длина волны излучения, испускаемого лазером. Но вырастить объединённые вместе кристаллы с очень разными постоянными при помощи традиционных способов не представлялось возможным.

А вот учёным из Аризоны удалось создать полупроводниковую структуру, состоящую из трёх сегментов, каждый из которых излучает волны в своём диапазоне. Она состоит из цинка, кадмия, серы и селена, поделённых на сегменты. При возбуждении подложки кадмий и селен вместе испускают красное излучение, кадмий и сера – зелёное, а цинк и сера – синее. Это достижение стало возможным благодаря более чем десяти годам исследований, связанных с нанотехнологиями. Для роста кристалла был использован метод «двойного обмена ионами».

По утверждению учёных, лазеры - более эффективный источник света, чем светодиоды, к тому же при помощи лазера можно передать больше цветов. Как говорит профессор Кун-Жен Нинг, руководивший исследованием, по их данным монолитный лазер способен воспроизводить на 70% больше цветов, чем это предусмотрено сегодняшним стандартом для светодиодных дисплеев.

Кроме освещения и дисплеев, лазеры можно использовать для разработки наиболее эффективной системы передачи данных типа Li-Fi. Эта система использует освещение комнаты для передачи данных через световые импульсы в пределах прямой видимости. Такая система на светодиодах, которая сейчас находится в стадии разработки, должна обеспечить скорости передачи, на порядок превышающие текущие возможности Wi-Fi. При этом, по утверждению исследователь, лазерный Li-Fi может быть на один или два порядка быстрее, чем на основе LED.

Лазеры не являются новой технологией в науке. Они были разработаны еще в 1960-х годах прошлого века. Однако единственное, что пока не удавалось ученым, так это создать белый лазер. Не удавалось до недавнего времени. Группа исследователей из Аризонского университета доказала, что полупроводниковые лазеры способны излучать свет по всему диапазону видимого спектра, обеспечивая все цвета, необходимые для создания белого луча лазера.

Новые разработанные лазеры состоят из трех расположенных параллельно листов полупроводников, каждый из которых толщиной всего несколько микрон. Каждый из этих листов может излучать один из трех элементарных цветов - красный, зеленый и синий. В зависимости от настройки, они способны создавать любой цвет спектра. При правильном сочетании и соединении всех трех лучей, эти полупроводники также могут излучать и белый луч лазера. Результаты этих исследований были опубликованы в последнем номере научного журнала Nature Nanotechnology.

Ученые отмечают, что это достижение не просто очередной успешный лабораторный эксперимент. Белый лазер может найти очень широкое практическое применение. Лазеры сами по себе намного более энергоэффективны, даже больше, чем светодиоды, поэтому, по крайней мере в теории, лазеры можно использовать для создания новых типов освещения и систем отображения (лазерных дисплеев).

Более того, отмечается, что в то время, как другие группы ученых, например из Сандийских национальных лабораторий, скрещивали лучи лазера для получения белого света, используя разные лазерные установки, новая технология позволяет уместить все необходимое оборудование внутри одного-единственного блока, что только увеличивает перспективы использования лазеров для освещения и разработки новых технологий дисплеев.

Помимо этого, белый лазер можно использовать в сфере оптической связи, которую иногда называют технологией Li-Fi, где информация кодируется и содержится в свете ультравысокой частоты, который освещает комнату. До сегодняшнего дня подобные системы требовали использования в зданиях светодиодного света, однако команда Аризонского университета предполагает, что за счет лазеров данную технологию можно сделать еще более совершенной, увеличив скорость передачи данных по таким каналам связи от 10 до 100 раз.

Конечно, загадывать наперед пока рановато. Ученым предстоит преодолеть еще немало испытаний перед тем, как лазеры смогут стать неотъемлемой и обычной частью нашей жизни. Тем не менее достижение аризонских ученых заслуживает упоминания, и будем надеяться, что разработки в этом направлении продолжатся.

Были изобретены в 1960-х годах, и с тех пор они используются во многих современных технологических решениях. Однако до сегодняшнего дня существовали только лазеры отдельных цветов (синие, красные, зелёные), но никому не удавалось объединить все длины волн оптического спектра для создания белого лазера.

Революционную разработку представила команда из Университета Аризоны. Эти учёные доказали, что полупроводниковые лазеры способны излучать полный видимый цветовой спектр, который в сумме даст белый свет.

Ведущий автор исследования Нин Цунь-Чжэн (Cun-Zheng Ning) и его коллеги создали полупроводник длиной в одну пятую от толщины человеческого волоса и толщиной в одну тысячную от той же величины с тремя параллельными сегментами, каждый из которых поддерживает лазерное излучение трёх основных цветов (длин волн) — синего, зелёного и красного.

Устройство способно генерировать свет любой длины волны видимого спектра и при суммировании этих цветов излучать белый свет, рассказывается в статье журнала Nature Nanotechnology.

Белые лазеры обладают большим потенциалом для различного рода применений. Прежде всего, они могут стать заменой привычным для нас светодиодам, поскольку являются более энергоэффективными и излучают более яркий свет. Также группа Цунь-Чжэна утверждает, что их разработка может заменить светодиоды не только в вопросах освещения помещений, но и в дисплеях компьютеров и телевизоров. Расчёты и эксперименты показали, что белые лазеры могут охватить на 70% больше цветов и оттенков видимого спектра, чем существующие сегодня на рынке дисплеи.

Другое немаловажное потенциальное применение — это . Эксперты уже не раз говорили, что в ближайшие десятилетия на смену радиоволновому Wi-Fi, скорее всего, передающий данные на основе света. Учёные подсчитали, что Li-Fi может быть более чем в 10 раз быстрее, чем существующий Wi-Fi, а Li-Fi, работающий на белых лазерах, может быть ещё в 10-100 раз быстрее, чем аналогичная светодиодная технология, которая по-прежнему .

"Концепция белых лазеров, на первый взгляд, противоречит здравому смыслу, поскольку свет обычного лазера содержит ровно один цвет, определённую длину волны электромагнитного спектра, а не широкий диапазон различных длин волн. Белый свет, как правило, рассматривается как смесь всех длин волн видимого спектра", — поясняет Цунь-Чжэн.

Привычные светодиоды белого цвета, как правило, покрытый люминофором для преобразования части синего света в зелёный, жёлтый и красный свет. Подобное смешение цветов воспринимается человеком как обычный белый свет и потому может использоваться для иллюминации помещений.

Добавим, что ещё в 2011 году сотрудники Сандийских национальных лабораторий США продемонстрировали слияние цветов четырёх отдельных цветных лазеров с последующим появлением эффекта белого света. Исследования показали, что подобное излучение воспринимается человеческим глазом столь же комфортно, как и свет от светодиодов. Эта работа и вдохновила команду из Университета Аризоны на дальнейшие исследования, в ходе которых было представлено единое устройство, излучающее белый лазерный свет.

"То, что делали наши коллеги из Сандийских национальных лабораторий, было проверкой концепции, но, к сожалению, не изобретением, пригодным к практическим применениям. Один маленький кусочек полупроводникового материала, излучающий лазерный белый свет — это гораздо более практичная технология, которую можно коммерциализировать", — рассказывает глава исследования в пресс-релизе .

(фото ASU/Nature Nanotechnology).

На пути к своему открытию физикам пришлось преодолеть немало трудностей и совершить ряд замысловатых разработок. Как правило, полупроводники, используемые для компьютерных чипов или генерации света в телекоммуникационных системах, способны излучать свет одной длины волны и, соответственно, одного цвета — синего, зелёного или красного — что определяется уникальной атомной структурой материала и шириной запрещённой энергетической зоны .

Для получения всех возможных длин волн в видимом спектральном диапазоне необходимо было получить несколько полупроводников, у каждого из которых должны были быть разные периоды решётки и разные ширины запрещённой энергетической зоны.

"Нашей целью было создание одного куска полупроводникового материала, который можно было бы использовать для генерации трёх основных цветов лазерного излучения. Более того, этот кусок должен быть достаточно мал, чтобы человеческий глаз мог воспринимать исходящее излучение как белое, а не как три отдельных цвета. Это была непростая задача", — рассказывает Цунь-Чжэн.

Основным препятствием на пути к победе, рассказывают исследователи, было так называемое несоответствие параметров кристаллической решётки или слишком большая разница между периодами решётки для разных материалов, используемых в эксперименте. Для преодоления этого обстоятельства Цунь-Чжэн и его коллеги обратились к нанотехнологиям.

Дело в том, что в нанометровом масштабе крупные несоответствия становятся менее заметными для технологии в целом, чем при традиционных методах выращивания цельных материалов. Таким образом, высококачественные кристаллы могут быть выращены даже при больших несоответствиях параметров кристаллической решётки.

Другим важным препятствием стало то, что вырастить полупроводники, излучающие синий свет, оказалось намного сложнее, чем кристаллы для красного или зелёного света. После двухлетних исследований команда, наконец, разработала технологию создания необходимой формы будущей подложки, а затем придумала и оптимальный состав полупроводника, который должен излучать синий свет.

Новая стратегия получила название двойной ионный обменный процесс. Именно благодаря ей физикам удалось создать единое наноустройство, способное излучать белый лазерный свет.

Теперь команде Цунь-Чжэна предстоит продумать систему питания своего инновационного устройства. Пока что о коммерциализации технологии речи не идёт. Однако её потенциал позволяет ожидать внедрения белых лазеров на рынок в ближайшие десятилетия.