Основы работы с MATLAB. Элементарные действия с комплексными числами. Рабочая среда MatLab

Это окно является основным в MatLAB. В нем появляются символы команд, которые набираются пользователем на экране дисплея, отображаются результаты выполнения этих команд, текст исполняемой программы и информация об ошибках выполнения программы, распознанных системой.

Признаком того, что MatLAB готова к восприятию и выполнению очередной команды, является возникновение в последней строке текстового поля окна знака приглашения " >> ", после которого расположена мигающая вертикальная черта.

В верхней части окна (под заголовком) размещена строка меню, в которой находятся меню File, Edit, View, Windows, Help. Чтобы открыть какое-либо меню, следует установить на нем указатель мыши и нажать ее левую кнопку. Подробнее функции команд меню будут описаны далее, в разделе «Интерфейс MatLab и команды общего назначения. Написание М-книг».

Здесь отметим лишь, что для выхода из среды MatLAB достаточно открыть меню File и выбрать в нем команду Exit MATLAB, или просто закрыть командное окно, нажав левую клавишу мыши, когда курсор мыши установлен на изображении верхней крайней правой кнопки этого окна (с обозначением косого крестика).

1.2. Операции с числами

1.2.1. Ввод действительных чисел

Ввод чисел с клавиатуры осуществляется по общим правилам, принятым для языков программирования высокого уровня:

для отделения дробной части мантиссы числа используется десятичная точка (вместо запятой при обычной записи) ;

десятичный показатель числа записывается в виде целого числа после предшествующей записи символа «е» ;

между записью мантиссы числа и символом «е» (который отделяет мантиссу от показателя ) не должно быть никаких символов , включая и символ пропуска.

Если, например, ввести в командном окне MatLAB строку

то после нажатия клавиши <Еnter> в этом окне появится запись:


Следует отметить, что результат выводится в виде (формате), который определяется предварительно установленным форматом представления чисел. Этот формат может быть установлен с помощью команды Preferences меню File (рис. 1.3). После ее вызова на экране появится одноименное окно (рис. 1.4). Один из участков этого окна имеет название Numeric Format . Он предназначен для установки и изменения формата представления чисел, которые выводятся в командное окно в процессе расчетов. Предусмотрены такие форматы:

Short (default) – краткая запись (применяется по умолчанию);

Long – длинная запись;

Hex – запись в виде шестнадцатиричного числа;

Bank – запись до сотых долей;

Plus – записывается только знак числа;

Short Е – краткая запись в формате с плавающей запятой;

Long Е – длинная запись в формате с плавающей запятой;

Short G – вторая форма краткой записи в формате с плавающей запятой;

Long G – вторая форма длинной записи в формате с плавающей запятой;

Rational – запись в виде рациональной дроби.

Избирая с помощью мыши нужный вид представления чисел, можно обеспечить в дальнейшем выведение чисел в командное окно именно в этой форме.

Как видно из рис. 1.2, число, которое выведено на экран, не совпадает с введенным. Это обусловлено тем, что установленный по умолчанию формат пред­ставления чисел (Short ) не позволяет вывести больше 6 значащих цифр. На самом деле введенное число сохраняется внутри MatLAB со всеми введенными его цифрами. Например, если избрать мышью селекторную кнопку Long Е (т. е. установить указанный формат представления чисел), то, повторяя те же действия, получим:

где уже все цифры отображены верно (рис. 1.5).

Следует помнить:

- введенное число и результаты всех вычислений в системе Ма tLAB сохраняются в памяти ПК с относительной погрешностью около 2.10-16 (т. е. с точными значениями в 15 десятичных разрядах ):

- диапазон представления модуля действительных чисел лежит в диапазоне между 10-308 и 10+308 .

1.2.2. Простейшие арифметические действия

В арифметических выражениях языка МаtLAB используются следующие знаки арифметических операций:

+ – сложение;

– – вычитание;

* – умножение;

/ – деление слева направо;

\ – деление справа налево;

^ – возведение в степень.

Использование MatLAB в режиме калькулятора может происходить путем простой записи в командную строку последовательности арифметических действий с числами, то есть обычного арифметического выражения, например: 4.5^2*7.23 – 3.14*10.4.

Если после ввода с клавиатуры этой последовательности нажать клавишу , в командном окне возникнет результат выполнения в виде, представленном на рис. 1.6, т. е. на экран под именем системной переменной ans выводится результат действия последнего выполненного оператора.

Вообще вывод промежуточной информации в командное окно подчиняется таким правилам:

- если запись оператора не заканчивается символом ";", результат действия этого оператора сразу же выводится в командное окно;

- если оператор заканчивается символом ";", результат его действия не отображается в командном окне ;

- если оператор не содержит знака присваивания (= ), т. е. является просто записью некоторой последовательности действий над числами и переменными , значение результата присваивается специальной системной переменной по имени ans ;

- полученное значение переменной ans можно использовать в следующих операторах вычислений, применяя это имя ans; при этом следует помнить, что значение системной переменной ans изменяется после действия очередного оператора без знака присваивания ;

- в общем случае форма представления результата в командном окне имеет вид :

<Имя переменной> = <результат>.

Пример. Пусть нужно вычислить выражение (25+17)*7. Это можно сделать таким образом. Сначала набираем последовательность 25+17 и нажимаем . Получаем на экране результат в виде ans = 42.Теперь записываем последовательность ans*7 и нажимаем . Получаем ans = 294 (рис. 1.7). Чтобы предотвратить выведение промежуточного результата действия 25+17, достаточно после записи этой последовательности добавить символ ";". Тогда будем иметь результаты в виде, представленном на рис. 1.8.

Применяя MatLAB как калькулятор, можно использовать имена переменных для записи промежуточных результатов в память ПК. Для этого служит операция присваивания, которая вводится знаком равенства "=" в соответствия со схемой: <Имя переменной> = <выражение>[;]

Имя переменной может содержать до 30 символов и должно не совпадать с именами функций, процедур системы и системных переменных. При этом система различает большие и маленькие буквы в переменных. Так, имена "amenu", "Amenu", "aMenu" в MatLAB обозначают разные переменные.

Выражение справа от знака присваивания может быть просто числом, арифметическим выражением, строкой символов (тогда эти символы нужно заключить в апострофы) или символьным выражением. Если выражение не заканчивается символом ";", после нажатия клавиши <Еnter> в командном окне возникнет результат выполнения в виде:

<Имя переменной > = <результат >.

Рис. 1.7. Рис. 1.8.

Например, если ввести в командное окно строку "х = 25 + 17", на экране появится запись (рис. 1.9).

Система MatLAB имеет несколько имен переменных, которые используются самой системой и входят в состав зарезервированных:

i, j – мнимая единица (корень квадратный из –1); pi – число p (сохраняется в виде 3.141592653589793); inf – обозначение машинной бесконечности; Na – обозначение неопределенного результата (например, типа 0/0 или inf/inf); eps – погрешность операций над числами с плавающей запятой; ans – результат последней операции без знака присваивания; realmax и realmin – максимально и минимально возможные величины числа, которое может быть использованы.

Эти переменные можно использовать в математических выражениях.

1.2.3. Ввод комплексных чисел

Язык системы MatLAB, в отличие от многих языков программирования высокого уровня, содержит в себе очень простую в пользовании встроенную арифметику комплексных чисел. Большинство элементарных математических функций допускают в качестве аргументов комплексные числа, а результаты формируются как комплексные числа. Эта особенность языка делает его очень удобным и полезным для инженеров и научных работников.

Для обозначения мнимой единицы в языке МatLAB зарезервированы два имени i и j. Ввод с клавиатуры значения комплексного числа осуществляется путем записи в командное окно строки вида:

<имя комплексной переменной > = <значение ДЧ > + i [j ] * <значение МЧ >,

где ДЧ – действительная часть комплексного числа, МЧ – мнимая часть. Например:

Из приведенного примера видно, в каком виде система выводит комплексные числа на экран (и на печать).

1.2.4. Элементарные математические функции

Общая форма использования функции в MatLAB такова:

<имя результата > = <имя функции >(<перечень аргументов или их значений> ).

В языке MatLAB предусмотрены следующие элементарные арифметические функции.

Тригонометрические и гиперболические функции

sin (z) – синус числа z;

sinh (z) – гиперболический синус;

asin (z) – арксинус (в радианах, в диапазоне от к );

а sinh (z) – обратный гиперболический синус;

со s (z) – косинус;

соsh(z) – гиперболический косинус;

acos (z) – арккосинус (в диапазоне от 0 к p );

асо sh (z) – обратный гиперболический косинус;

tan (z) – тангенс;

tanh (z) – гиперболический тангенс;

atan (z) – арктангенс (в диапазоне от от к );

аtап2 (Х, Y) – четырехквадрантный арктангенс (угол в диапазоне от –p до +p между горизонтальным правым лучом и лучом, который проходит через точку с координатами Х и Y );

atanh (z) – обратный гиперболический тангенс;

sec (z) – секанс;

sech (z) – гиперболический секанс;

asec (z) – арксеканс;

asech (z) – обратный гиперболический секанс;

csc (z) – косеканс;

csch (z) – гиперболический косеканс;

acsc (z) – арккосеканс;

acsch (z) – обратный гиперболический косеканс;

cot (z) – котангенс;

coth (z) – гиперболический котангенс;

acot (z) – арккотангенс;

acoth (z) – обратный гиперболический котангенс

Экспоненциальные функции

exp (z) – экспонента числа z;

log (z) – натуральный логарифм;

log 10 (z) – десятичный логарифм;

sqrt (z) – квадратный корень из числа z;

abs (z) – модуль числа z.

Целочисленные функции

fix (z) – округление к ближайшему целому в сторону нуля;

floor (z) – округление к ближайшему целому в сторону отрицательной бесконечности;

ceil (z) – округление к ближайшему целому в сторону положительной бесконечности;

round (z) – обычное округление числа z к ближайшему целому;

mod (X, Y) – целочисленное деление X на Y;

rem (X, Y) – вычисление остатка от деления X на Y;

sign (z) – вычисление сигнум-функции числа z

(0 при z = 0, –1 при z < 0, 1 при z > 0)

1.2.5. Специальные математические функции

Кроме элементарных в языке MatLAB предусмотрен целый ряд специальных математических функций. Ниже приведен перечень и краткое содержание этих функций. Правила обращения к ним и использования пользователь может отыскать в описаниях этих функций, которые выводятся на экран, если набрать команду help и указать в той же строке имя функции.

Функции преобразования координат

cart 2 sph – преобразование декартовых координат в сферические;

cart 2 pol – преобразование декартовых координат в полярные;

pol 2 cart – преобразование полярных координат в декартовые;

sph 2 cart – преобразование сферических координат в декартовые.

Функции Бесселя

besselj – функция Бесселя первого рода;

bessely – функция Бесселя второго рода;

besseli – модифицированная функция Бесселя первого рода;

besselk – модифицированная функция Бесселя второго рода.

Бета-функции

beta – бета-функция;

betainc – неполная бета-функция;

betaln – логарифм бета-функции.

Гамма-функции

gamma – гамма-функция;

gammainc – неполная гамма-функция;

gammaln – логарифм гамма-функции.

Эллиптические функции и интегралы

ellipj – эллиптические функции Якоби;

ellipke – полный эллиптический интеграл;

expint – функция экспоненциального интеграла.

Функции ошибок

erf – функция ошибок;

erfc – дополнительная функция ошибок;

erfcx – масштабированная дополнительная функция ошибок;

erflnv – обратная функция ошибок.

Другие функции

gcd – наибольший общий делитель;

lern – наименьшее общее кратное;

legendre – обобщенная функция Лежандра;

log2 – логарифм по основанию 2;

pow2 – возведение 2 в указанную степень;

rat – представление числа в виде рациональной дроби;

rats – представление чисел в виде рациональной дроби.

1.2.6. Элементарные действия с комплексными числами

Простейшие действия с комплексными числами – сложение, вычитание, умножение, деление и возведение в степень – осуществляются при помощи обычных арифметических знаков +,–,*,/, \ и ^ соответственно.

Примеры использования приведены на рис. 1.11.

Примечание. В приведенном фрагменте использована функция disp (от слова "дисплей"), которая тоже выводит в командное окно результаты вычислений или некоторый текст. При этом численный результат, как видно, выводится уже без указания имени переменной или ans.

1.2.7. Функции комплексного аргумента

Практически все элементарные математические функции , приведенные в п. 1.2.4, вычисляются при комплексных значениях аргумента и получают в результате этого комплексные значения результата.

Благодаря этому, например, функция sqrt вычисляет, в отличие от других языков программирования, квадратный корень из отрицательного аргумента, а функция abs при комплексном значении аргумента вычисляет модуль комплексного числа. Примеры приведены на рис. 1.12.

В МаtLАВ есть несколько дополнительных функций, рассчитанных только на комплексный аргумент:

real (z) – выделяет действительную часть комплексного аргумента z;

і mag (z) – выделяет мнимую часть комплексного аргумента;

angle (z) – вычисляет значение аргумента комплексного числа z (в радианах в диапазоне от –p до +p);

conj (z) – выдает число, комплексно сопряженное относительно z.

Примеры приведены на рис. 1.13.

Рис. 1.12. Рис. 1.3.

Кроме того, в MatLAB есть специальная функция cplxpair (V), которая осуществляет сортировку заданного вектора V с комплексными элементами таким образом, что комплексно-сопряженные пары этих элементов располагаются в векторе-результате в порядке возрастания их действительных частей, при этом элемент с отрицательной мнимой частью всегда располагается первым. Действительные элементы завершают комплексно-сопряженные пары. Например (в дальнейшем в примерах команды, которые набираются с клавиатуры , будут написаны жирным шрифтом , а результат их выполнения – обычным шрифтом ):

>> v = [ -1, -1+2i,-5,4,5i,-1-2i,-5i]

Columns 1 through 4

1.0000 -1.0000 +2.0000i -5.0000 4.0000

Columns 5 through 7

0 + 5.0000i -1.0000-2.0000i 0 - 5.0000i

>> disp(cplxpair(v))

Columns 1 through 4

1.0000 - 2.0000i -1.0000 + 2.0000i 0 - 5.0000i 0 + 5.0000i

Columns 5 through 7

5.0000 -1.0000 4.0000

Приспособленность большинства функций MatLAB к оперированию с ком­плексными числами позволяет значительно проще строить вычисления с действи­тельными числами, результат которых является комплексным, например, находить комплексные корни квадратных уравнений.

1. Гультяев А. К. MatLAB 5.2. Имитационное моделирование в среде Windows: Практическое пособие. - Спб.: КОРОНА принт, 1999. - 288 с.

2. Гультяев А. К. Визуальное моделирование в среде MATLAB: Учебный курс. - Спб.: ПИТЕР, 2000. - 430 с.

3. Дьяконов В. П. Справочник по применению системы PC MatLAB. - M.: Физматлит, 1993. - 113с.

4. Дьяконов В. Simulink 4. Специальный справочник. - Спб: Питер, 2002. – 518 с.

5. Дьяконов В., Круглов В. Математические пакеты расширения MatLAB. Специальный справочник. - СПб.: Питер, 2001. - 475с.

6. Краснопрошина А. А., Репникова Н. Б., Ильченко А. А. Современный анализ систем управления с применением MATLAB, Simulink, Control System: Учебное пособие. - К.: "Корнійчук", 1999. – 144 с.

7. Лазарев Ю. Ф. Початки програмування в среде MatLAB: Уч. пособие. - К.: "Корнійчук", 1999. - 160с.

8. Лазарев Ю. MatLAB 5.x. – К.: "Ирина" (BHV), 2000. – 384 с.

9. Медведев В. С., Потемкин В. Г. Control System Toolbox. MatLAB 5 для студентов. - Г.: "ДИАЛОГ-МИФИ", 1999. – 287 с.

10. Потемкин В. Г. MatLAB 5 для студентов: Справ. пособие. - M.: "ДИАЛОГ-МИФИ", 1998. - 314 с.

Скрипты

Наряду с работой в командной строке, существует еще один способ выполнения команд. Это написание программ.

Скрипт - последовательность команд MATLAB, записанная в файл с расширением «.m». Это обычные текстовые файлы. Для их написания можно использовать любой текстовый редактор.

Чтобы создать скрипт, в общем случае достаточно иметь под рукой обычный текстовый редактор. Мы будем использовать встроенный в среду MATLAB редактор. Используйте кнопку «New Script» в верхнем левом углу для создания нового скрипта. После нажатия данной кнопки появится окно текстового редактора (рисунок 5).

Рисунок 5. Редактор кода MATLAB Создадим небольшую программу:

fprintf("Hello World!\n")

Теперь необходимо сохранить данный скрипт, для этого надо нажать на кнопку «Save» в левом верхнем углу, после чего MATLAB предложит сохранить его в текущей директории («Current Folder»). Дадим скрипту имя «Example1.m» и сохраним его. Желательно, чтобы скрипт был сохранен в текущей директории, так MATLAB будет искать скрипты для запуска

в папках, которые перечислены во внутренней переменной MATLAB path . Также в этот список входит и текущая директория, отображаемая в среде MATLAB справа в специальной плавающей области. По умолчанию скрипт будет сохранен в текущий каталог, поэтому можно сразу же сделать его вызов. Запустить скрипт на выполнение можно введя его имя (имя m-файла в который он был сохранен) в командной строке и нажав «Enter» или кнопку «Run» в редакторе кода. В обоих случаях в командном окне отобразится следующий вывод:

>> Example1 Hello World!

Рассмотрим другой пример. Имеется скрипт:

x = 0:0.02:2*pi; a = 0.3;

y = a * sin(x) + b * cos(x); plot(x, y)

Сохраним в файл Example2.m и запустим на выполнение. В результате MATLAB посчитает и выведет на экран график функции y = a sin(x )+ b cos(x ) .

Так же отметим, что после выполнения скрипта в окне «Workspace» появились переменные x ,a ,b иy . Для объяснения почему так получилось, рассмотри очень важно понятие в MATLAB как рабочая область.

Рабочая область в MATLAB

Рабочая область системы MATLAB - это область памяти, в которой размещены переменные системы. Рабочие области в MATLAB бывают двух типов:

base workspace - базовая рабочая область;

function workspace - рабочая область функции.

Все переменные в рабочей области существуют в ней с момента их объявления при работе с данной рабочей областью и до явного их удаления с помощью команды clear или до конца действия данной рабочей области, например для базовой рабочей области это закрытие MATLAB.

При запуске скрипта он не создает новую рабочую область, а работает с рабочей областью откуда был вызван.

Когда мы вызываем скрипт из командного окна, то он работает с работает с базовой рабочей областью, поэтому ему доступны все переменны, которые мы создали до вызова скрипта. Так же если скрипт создаст еще переменные, то они останутся доступными и после

его завершения.

Комментарии

Хорошим тоном в написании программного кода считается составлять комментарии к написанному вами коду. Комментарии никак не влияют на работу программы и служат для предоставления дополнительной информации. Комментарии помогут другим людям разобраться в вашем алгоритме и помогут вам вспомнить суть написанного через какой-то промежуток времени, когда вы уже забыли что программировали. Для указания начала комментария в MATLAB используется символ «%».

% Генерация равномерно распределенных случайных чисел

% Подсчет математического ожидания сгенерированных чисел

% Отображение данных на графике

% 50 случайных чисел

% Сформировать и присвоить вектор случайных

значений переменной r

% Отобразить на графике сформированный вектор

% Проводим линию

через (0, m) и (n, m)

% Вычислить среднее арифметическое по значениям

вектора r

plot(,)

title("Mean of Random Uniform Data") % Название графика

Функции

Еще одна разновидность программ MATLAB - функции. В отличии от скриптов при вызове функция создает новую рабочую область, поэтому внутри функции не будут видны переменны, объявленные вне ее кода. Поэтому для связи функции с внешним кодом используются входные и выходные параметры. Рассмотрим общий синтаксис объявления функции:

function = имя_функции(x1,...,xM) оператор_1 оператор_2

оператор_n end

Функция содержится в отдельном m-файле.

Функция начинается с ключевого слова function , за которым следуют в квадратных

скобках через запятую имена выходных переменных. Далее идет знак «=» и имя функции. Имя функции подчиняется тем же правилам, что и имена переменных. Так же отметим, что имя функции обязательно должно совпадать с именем файла, в котором она определена. После имени функции в круглых скобках через запятую идут имена входных параметров.

Следующие строки содержат тело функции (любые допустимые выражения MATLAB).

В конце функция заканчивается ключевым словом end, однако оно не является обязательным, и его можно опустить.

Так же отметим, что если функция возвращает только один параметр, то его не обязательно заключать в квадратные скобки, например:

function s = triaArea(a, b)

% вычисление площади прямоугольного треугольника

% a, b - катеты треугольника

s = a * b / 2; end

Если функция вообще не возвращает параметры, то сразу после ключевого слова function идет имя функции, например:

function hellowWorld()

% пример функции без входных и выходных параметров disp("Hello world!");

Для вызова функции применяется следующий синтаксис:

Имя_функции(z1,...,zM)

где k1, ..., kN - переменны, куда будут записаны выходные значения функции, аz1,...,zM - аргументы функции.

В случае если функция возвращает только один параметр, то квадратные скобки можно опустить, например:

s = triaArea(1,2)

Фактические и формальные параметры функции

Важно различать фактические и формальные параметры функции:

фактический параметр - аргумент, передаваемый в функцию при ее вызове;

формальный параметр - аргумент, указываемый при объявлении или определении функции.

Поясним данное различие на примере.

Среда MATLAB включает интерпретатор команд на языке высокого уров­ня, графическую систему, пакеты расширений и реализована на языке C. Вся работа организуется через командное окно (Command Window), которое появля­ется при запуске программы matlab.exe. В процессе работы данные располага­ются в памяти (Workspace), для изображения кривых, поверхностей и других графиков создаются графические окна.

В командном окне в режиме диалога проводятся вычисления. Пользова­тель вводит команды или запускает на выполнение файлы с текстами на языке MATLAB. Интерпретатор обрабатывает введенное и выдает результаты: число­вые и строковые данные, предупреждения и сообщения об ошибках. Строка ввода помечена знаком >>. В командном окне показываются вводимые с кла­виатуры числа, переменные, а также результаты вычислений. Имена перемен­ных должны начинаться с буквы. Знак = соответствует операции присваивания. Нажатие клавиши Enter заставляет систему вычислить выражение и показать результат. Наберите с клавиатуры в строке ввода:

Нажмите клавишу Enter, на экране в зоне просмотра появится результат вычисления:

Все значения переменных, вычисленные в течение текущего сеанса рабо­ты, сохраняются в специально зарезервированной области памяти компьютера, называемой рабочим пространством системы MATLAB (Workspace). Коман­дой clc можно стереть содержимое командного окна, однако это не затронет содержимого рабочего пространства. Когда исчезает необходимость в хранении ряда переменных в текущем сеансе работы, их можно стереть из памяти ком­пьютера командой clear или clear(имя1, имя2, ...). Первая команда удаляет из памяти все переменные, а вторая - переменные с именами имя1 и имя2. Коман­дой who можно вывести список всех переменных, входящих в данный момент в рабочее пространство системы. Для просмотра значения любой переменной из текущего рабочего пространства системы достаточно набрать ее имя и нажать клавишу Enter.

После окончания сеанса работы с системой MATLAB все ранее вычислен­ные переменные теряются. Чтобы сохранить в файле на диске компьютера со­держимое рабочего пространства системы MATLAB, нужно выполнить коман­ду меню File / Save Workspace As ... .По умолчанию расширение имени файла mat, поэтому такие файлы принято называть МАТ-файлами. Для загрузки в па­мять компьютера ранее сохраненного на диске рабочего пространства нужно выполнить команду меню: File / Load Workspace ... .

Вещественные числа и тип данных double

Система MATLAB представляет на машинном уровне все действительные числа заданные мантиссой и показателем степени, например, 2.85093Е+11, где буквой Е обозначается основание степени равное 10. Этот основной тип дан­ных носит название double. MATLAB по умолчанию использует формат short для вывода вещественных чисел, при котором показываются только четыре де­сятичных цифры после запятой.

Введите с клавиатуры пример:

» res=5.345*2.868/3.14-99.455+1.274

Получите результат вычисления:

Если требуется полное представление вещественного числа res, введите с клавиатуры команду:

нажмите клавишу Enter и получите более подробную информацию:

res = -93.29900636942675

Теперь все результаты вычислений будут показываться с такой высокой точностью в течение данного сеанса работы в среде системы MATLAB. Если требуется до прекращения текущего сеанса работы вернуться к старой точности визуального представления вещественных чисел в командном окне, нужно вве­сти и исполнить (нажав клавишу Enter) команду:

Целые числа показываются системой в командном окне в виде целых чисел.

Над вещественными числами и переменными типа double производятся арифметические операции: сложения +, вычитания -, умножения *, деления / и возведения в степень ^ . Приоритет в выполнении арифметических операций обычный. Операции одинакового приоритета выполняются в порядке слева на­право, но круглые скобки могут изменить этот порядок.

Если нет необходимости видеть в командном окне результат вычисления некоторого выражения, то в конце введенного выражения следует поставить точку с запятой и только после этого нажать Enter.

В системе MATLAB присутствуют все основные элементарные функции для вычислений с вещественными числами. Любая функция характеризуется своим именем, списком входных аргументов (перечисляются через запятую и стоят внутри круглых скобок, следующих за именем функции) и вычисляемым (возвращаемым) значением. Список всех имеющихся в системе элементарных математических функций может быть получен по команде help elfun. В Прило­жении 1 перечислены стандартные функции вещественного аргумента.

Вычислите выражение, включающее вычисление функции арксинус:

Убедитесь, что получился следующий результат:

соответствующее числу «пи». В системе MATLAB для вычисления числа «пи» есть специальное обозначение: pi. (Список системных переменных MATLAB находится в Приложении 2).

MATLAB имеет также логические функции, функции, связанные с цело­численной арифметикой (округления до ближайшего целого: round, усечение дробной части числа: fix). Есть еще функция mod - остаток от деления с учетом знака, sign - знак числа, lcm - наименьшее общее кратное, perms - вычисление числа перестановок и nchoosek - числа сочетаний и много других. Многие из функций имеют область определения, отличную от множества всех действи­тельных чисел.

Помимо арифметических операций над операндами типа double выполня­ются еще операции отношения и логические операции. Операции отношения сравнивают между собой два операнда по величине. Эти операции записывают­ся следующими знаками или комбинациями знаков (Таблица 1):

Таблица 1


В случае истинности операции отношения ее величина равна 1, а в случае ложности - 0. Операции отношения имеют более низкий приоритет, чем ариф­метические операции.

Наберите с клавиатуры выражение с операциями отношения и вычислите

» a=1; b=2; c=3;

» res=(a

Вы получите следующий результат:

Логические операции над вещественными числами обозначаются знаками, перечисленными в таблице 2:

Таблица 2


& | ~
И ИЛИ НЕ

Первые две из этих операций являются бинарными (двухоперандными), а последняя - унарной (однооперандной). Логические операции трактуют свои операнды как «истинные» (не равные нулю) или «ложные» (равные нулю). Ес­ли оба операнда операции «И» истинны (не равны нулю), то результат этой операции равен 1 («истина»); во всех остальных случаях операция «И» выраба­тывает значение 0 («ложь»). Операция «ИЛИ» вырабатывает 0 («ложь») только в случае, когда являются ложными (равными нулю) оба операнда. Операция «НЕ» инвертирует «ложь» на «истину». Логические операции имеют самый низкий приоритет.

Комплексные числа и комплексные функции

Комплексные переменные, как и вещественные автоматически имеют тип double и не требуют никакого предварительного описания. Для записи мнимой единицы зарезервированы буквы i или j. В случае, когда коэффициентом перед мнимой единицей является не число, а переменная, между ними следует обяза­тельно использовать знак умножения. Итак, комплексные числа можно записывать следующим образом:

» 2+3i; -6.789+0.834e-2*i; 4-2j; x+y*i;

Почти все элементарные функции допускают вычисления с комплексны­ми аргументами. Вычислите выражение:

» res=sin(2+3i)*atan(4i)/(1 -6i)

Получится результат:

1.8009 - 1.91901

Специально для работы с комплексными числами предназначены следую­щие функции: abs (абсолютное значение комплексного числа), conj (комплекс­но сопряженное число), imag (мнимая часть комплексного числа), real (дейст­вительная часть комплексного числа), angle (аргумент комплексного числа), isreal («истина», если число действительное). Функции комплексного перемен­ного перечислены в Приложении 1.

В отношении арифметических операций ничего нового для комплексных чисел (по сравнению с вещественными) сказать невозможно. То же самое отно­сится и к операциям отношения «равно» и «не равно». Остальные операции от­ношения вырабатывают результат исходя только из действительных частей этих операндов.

Введите выражение, получите результат и объясните его:

» c=2+3i; d=2i; » c>d

Логические операции трактуют операнды как ложные, если они равны ну­лю. Если же у комплексного операнда не равна нулю хотя бы одна его часть (вещественная или мнимая), то такой операнд трактуется как истинный.

Числовые массивы

Для создания одномерного массива можно использовать операцию конка­тенации, которая обозначается с помощью квадратных скобок . Элементы массива помещаются между скобками и отделяются друг от друга пробелом или запятой:

» al=; d=;

Для доступа к индивидуальному элементу массива нужно применить операцию индексации, для чего после имени элемента указать в круглых скоб­ках индекс элемента.

Можно изменять элементы уже сформированного массива путем примене­ния операций индексации и присваивания. Например, введя:

мы изменим третий элемент массива. Или, после введения:

» al(2)=(al(1)+al(3))/2;

второй элемент массива станет равным среднему арифметическому первого и третьего элементов. Запись несуществующего элемента вполне допустима - она означает добавление нового элемента к уже существующему массиву:

Применяя после выполнения этой операции к массиву а1 функцию length, находим, что количество элементов в массиве возросло до четырех:

Тоже самое действие - «удлинение массива а1» - можно выполнить и с помощью операции конкатенации:

Можно задать массив, прописывая все его элементы по отдельности:

» a3(1)=67; a3(2)=7.8; a3(3)=0.017;

Однако этот способ создания не является эффективным. Еще один способ создания одномерного массива основан на применении специальной функции, обозначаемой двоеточием (операция формирования диапазона числовых значений). Через двоеточие следует набрать первое число диапазона, шаг (приращение) и конечное число диапазона. Например:

» diap=3.7:0.3:8.974;

Если не нужно выводить на экран весь получившийся массив, то в конце набора (после конечного числа диапазона) следует набрать точку с запятой. Чтобы узнать, сколько элементов в массиве, следует вызвать функцию length (имя массива).

Для создания двумерного массива (матрицы) также можно использовать операцию конкатенацию. Элементы массива набираются один за другим со­гласно их расположению в строках, в качестве разделителя строк используется точка с запятой.

Введите с клавиатуры:

» a=

Нажмите ENTER, получим:

Полученную матрицу а размером 3x2 (первым указывается число строк, вторым - число столбцов) можно сформировать также вертикальной конкате­нацией вектор-строк:

» a=[;;];

или горизонтальной конкатенацией вектор-столбцов:

» a=[,];

Структуру созданных массивов можно узнать с помощью команды whos(имя массива), размерность массива - функцией ndims, а размер массива - size.

Двумерные массивы можно задать также с помощью операции индекса­ции, прописывая по отдельности его элементы. Номер строки и столбца, на пе­ресечении которых находится задаваемый элемент массива, указываются через запятую в круглых скобках. Например:

» a(1,1)=1; a(1,2)=2; a(2,1)=3; » a(2,2)=4; a(3,1)=5; a(3,2)=6;

Однако будет намного эффективнее, если до начала прописывания элементов массива, создать массив нужного размера функциями ones (m,n) или zeros(m,n), заполненный единицами или нулями (m - число строк, n - число столбцов). При вызове этих функций предварительно выделяется память под заданный размер массива, после этого постепенное прописывание элементов нужными значениями не требует перестройки структуры памяти, отведенной под массив. Использование этих функций возможно и при задании массивов других раз­мерностей.

Если после формирования массива Х потребуется, не изменяя элементов массива, изменить его размеры, можно воспользоваться функцией reshape (Х, М, N), где M и N - новые размеры массива Х

Объяснить работу этой функции можно, только исходя из способа, каким система MATLAB хранит элементы массивов в памяти компьютера. Она хра­нит их в непрерывной области памяти упорядоченно по столбцам: сначала рас­полагаются элементы первого столбца, вслед за ними расположены элементы второго столбца и т.д. Помимо собственно данных (элементов массива) в памя­ти компьютера хранится также управляющая информация: тип массива (напри­мер, double), размерность и размер массива, другая служебная информация. Этой информации достаточно для определения границ столбцов. Отсюда сле­дует, что для переформирования матрицы функцией reshape достаточно изме­нить только служебную информацию и не трогать собственные данные.

Поменять местами строки матрицы с ее столбцам можно операцией транс­портирования, которая обозначается знаком." (точка и апостроф). Например,

» A=;

Операция " (апостроф) выполняет транспонирование для вещественных матриц и транспонирование с одновременным комплексным сопряжением для комплексных матриц.

Объекты, с которыми работает MATLAB, являются массивами. Даже од­но заданное число во внутреннем представлении MATLAB является массивом, состоящим из одного элемента. MATLAB позволяет делать вычисления с ог­ромными массивами чисел также легко как и с одиночными числами, и это яв­ляется одним из самых заметных и важных преимуществ системы MATLAB над другими программными пакетами, ориентированными на вычисления и программирование. Помимо памяти, необходимой для хранения числовых эле­ментов (по 8 байт на каждый в случае вещественных чисел и по 16 байт в слу­чае комплексных чисел), MATLAB автоматически при создании массивов вы­деляет еще и память для управляющей информации.

Вычисления с массивами

В традиционных языках программирования вычисления с массивами осу­ществляются поэлементно в том смысле, что нужно запрограммировать каж­дую отдельную операцию над отдельным элементом массива. В М-языке сис­темы MATLAB допускаются мощные групповые операции над всем массивом сразу. Именно групповые операции системы MATLAB позволяют чрезвычайно компактно задавать выражения, при вычислении которых реально выполняется гигантский объем работы.

Операции сложения и вычитания матриц обозначаются стандартными знаками + и -.

Задайте матрицы А и В и выполните операцию сложения матриц:

» A=; B=;

Если используются операнды разных размеров, выдается сообщение об ошибке, за исключением случая, когда один из операндов является скаляром. При выполнении операции А + скаляр (А - матрица) система расширит скаляр до массива размера А, который и складывается далее поэлементно с А.

Для поэлементного перемножения и поэлементного деления массивов одинаковых размеров, а также поэлементного возведения в степень массивов, применяются операции, обозначаемые комбинациями двух символов: .* , ./, и.^. Использование комбинаций символов объясняется тем, что символами * и / обозначены специальные операции линейной алгебры над векторами и матри­цами.

Кроме операции./, называемой операцией правого поэлементного деления, есть еще операция левого поэлементного деления.\. Разница между этими операциями: выражение А./ В приводит к матрице с элементами А (k, m) /В (k, m), а выражение А.\В приводит к матрице с элементами В (k, m) /А (k, m).

Знак * закреплен за перемножением матриц и векторов в смысле линейной алгебры.

Знак \ закреплен в системе MATLAB за решением довольно сложной зада­чи линейной алгебры - нахождением корней системы линейных уравнений. Например, если требуется решить систему линейных уравнений Ay = b, где А - заданная квадратная матрица размера N´N, b - заданный вектор- столбец длины N, то для нахождения неизвестного вектор-столбца у достаточно вычислить выражение А\b (это равносильно операции: A -1 B).

Типичные задачи аналитической геометрии в пространстве, связанные с нахождением длин векторов и углов между ними, с вычислением скалярного и векторного произведений, легко решаются разнообразными средствами систе­мы MATLAB. Например, для нахождения векторного произведения векторов предназначена специальная функция cross, например:

» u=; v=;

Скалярное произведение векторов можно вычислить с помощью функции общего назначения sum, вычисляющей сумму всех элементов векторов (для матриц эта функция вычисляет суммы для всех столбцов). Скалярное произве­дение, как известно, равно сумме произведений соответствующих координат (элементов) векторов. Таким образом, выражение: » sum(u.*v)

вычисляет скалярное произведение двух векторов u и v. Скалярное произведе­ние можно также вычислить как: u*v".

Длина вектора вычисляется с помощью скалярного произведения и функ­ции извлечения квадратного корня, например:

» sqrt(sum(u.*u))

Ранее рассмотренные для скаляров операции отношения и логические опе­рации выполняются в случае массивов поэлементно. Оба операнда должны быть одинаковых размеров, при этом операция возвращает результат такого же размера. В случае, когда один из операндов скаляр, производится его предвари­тельное расширение, смысл которого уже был пояснен на примере арифметиче­ских операций.

Среди функций, генерирующих матрицы с заданными свойствами, часто испольльзуется функция eye , производящую единичные квадратные матрицы, а так­же широко применяемую на практике функцию rand, генерирующую массив со случайными элементами, равномерно распределенными на интервале от 0 до 1. Например, выражение

порождает массив случайных чисел размером 3х3 с элементами, равномерно распределенными на интервале от 0 до 1.

Если вызвать эту функцию с двумя аргументами, например R=rand(2,3), то получится матрица R случайных элементов размером 2x3. При вызове функции rand с тремя и более скалярными аргументами производятся многомерные мас­сивы случайных чисел.

Определитель квадратной матрицы вычисляется с помощью функции det. Среди функций, производящих простейшие вычисления над массивами, помимо рассмотренной выше функции sum, используется еще и функция prod, ко­торая во всем аналогична функции sum, только вычисляет она не сумму эле­ментов, а их произведение. Функции max и min ищут соответственно макси­мальный и минимальный элементы массивов. Для векторов они возвращают единственное числовое значение, а для матриц они порождают набор экстре­мальных элементов, вычисленных для каждого столбца. Функция sort сортиру­ет в возрастающем порядке элементы одномерных массивов, а для матриц она производит такую сортировку для каждого столбца отдельно.

В MATLAB есть уникальная возможность производить групповые вычисления над массивами, используя обыч­ные математические функции, которые в традиционных языках программиро­вания работают только со скалярными аргументами. В результате с помощью крайне компактных записей, удобных для ввода с клавиатуры в интерактивном режиме работы с командным окном системы MATLAB, удается произвести большой объем вычислений. Например, всего два коротких выражения

» x=0:0.01:pi/2; y=sin(x);

вычисляют значения функции sin сразу в 158 точках, формируя два вектора x и у со 158 элементами каждый.

Построение графиков функций

Графические возможности системы MATLAB являются мощными и разно­образными. Изучим наиболее простые в использовании возможности (высоко­уровневую графику).

Сформируйте два вектора х и у:

» x=0:0.01:2; y=sin(x);

Вызовите функцию:

и вы получите на экране график функции (рис. 1).

Рис. 1. График функции y=sin(x)

MATLAB показывает графические объекты в специальных графических окнах, имеющих в заголовке слово Figure. Не убирая с экрана дисплея первое графическое окно, введите с клавиату­ры выражения

и получите новый график функции в том же самом графическом окне (при этом старые оси координат и график пропадают - этого также можно добиться ко­мандой clf, командой cla удаляют только график с приведением осей коорди­нат к их стандартным диапазонам от 0 до 1).

Если нужно второй график провести «поверх первого графика», то перед вторичным вызовом графической функции plot нужно выполнить команду hold on, которая предназначена для удержания текущего графического окна:

» x=0:0.01:2; y=sin(x);

Практически тоже самое получится (рис. 2), если набрать:

» x=0:0.01:2; y=sin(x); z=cos(x);

» plot(x,y,x,z)

Рис. 2. Графики функций y=sin(x), z=cos(x), построенные в одном графи­ческом окне

Если нужно одновременно визуализировать несколько графиков так, что­бы они не мешали друг другу, то это можно сделать двумя способами. Первым решением является построение их в разных графических окнах. Для этого пе­ред вторичным вызовом функции plot следует набрать команду figure, которая создает новое графическое окно и заставляет все последующие за ней функции построения графиков выводить их туда.

Вторым решением показа нескольких графиков без конфликта диапазонов осей координат является использование функции subplot. Эта функция позволя­ет разбить область вывода графической информации на несколько подобластей, в каждую из которых можно вывести графики различных функций.

Например, для ранее выполненных вычислений с функциями sin и cos по­стройте графики этих двух функций в первой подобласти, а график функции exp(x) - во второй подобласти одного и того же графического окна (рис. 3):

» subplot(1,2,1); plot(x,y,x,z)

» subplot(1,2,2); plot(x,w)

Рис. 3. Графики функций y=sin(x), z=cos(x) и w=exp(x), построенные в двух подобластях одного графического окна

Диапазоны изменения переменных на осях координат этих подобластей не­зависимы друг от друга. Функция subplot принимает три числовых аргумента, первый из которых равен числу рядов подобластей, второй равен числу коло­нок подобластей, а третий аргумент - номеру подобласти (номер отсчитывается вдоль рядов с переходом на новый ряд по исчерпании). Снять действие функ­ции subplot можно командой:

» subplot(1,1,1)

Если для одиночного графика диапазоны изменения переменных вдоль од­ной или обеих осей координат слишком велик, то можно воспользоваться функциями построения графиков в логарифмических масштабах. Для этого предназначены функции semilogx, semilogy и loglog.

Построить график функции в полярных координатах (рис. 4) можно с по­мощью графической функции polar.

» phi=0:0.01:2*pi; r=sin(3*phi);

Рис. 4. График функции r=sin(3*phi) в полярных координатах

Рассмотрим дополнительные возможности, связанные с управлением внешним видом графиков - задание цвета и стиля линий, а также размещение различных надписей в пределах графического окна. Например, команды

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y, "ko")

позволяют придать графику вид красной сплошной линии (рис. 5), на которой в дискретных вычисляемых точках проставляют черные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как "r-", что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Вто­рой стиль, помечен как "ko", означает проведение черным цветом (буква k) ок­ружностей (буква o) на месте вычисляемых точек.

Рис. 5. Построение графика функции y=sin(x) в двух разных стилях

В общем случае функция plot (x1, y1, s1, x2, y2, s2, ...) позволяет объеди­нить в одном графическом окне несколько графиков функций y1(x1), y2(x2), ... проведя их со стилями s1, s2, ... и т. д.

Стили s1, s2,... задаются в виде набора трех символьных маркеров, заклю­ченных в одиночные кавычки (апострофы). Один из этих маркеров задает тип линии (Таблица 3). Другой маркер задает цвет (Таблица 4). Последний маркер задает тип проставляемых «точек» (Таблица 5). Можно указывать не все три маркера. Тогда используются маркеры, установленные по умолчанию. Порядок, в котором указывают маркеры, не является существенным, то есть "r+-" и "-+r" приводит к одинаковому результату.

Таблица 3. Маркеры, задающие тип линии

Таблица 4 Маркеры, задающие цвет линии

Таблица 5 Маркеры, задающие тип точки

Если в строке стиля поставить маркер на тип точки, но не проставить мар­кер на тип линии, то тогда отображаются только вычисляемые точки, а непре­рывной линией они не соединяются.


Сис­тема MATLAB устанавливает пределы на горизонтальной оси равными тем значениям, что указаны пользователем для независимой переменной. Для зави­симой переменной по вертикальной оси MATLAB самостоятельно вычисляет диапазон изменения значений функции. Если надо отказаться от этой осо­бенности масштабирования при построении графиков в системе MATLAB, то нужно явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции axis().

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel создает подпись у горизон­тальной оси, функция ylabel - тоже для вертикальной оси (причем эти надписи ориентированы вдоль осей координат). Если требуется разместить надпись в произвольном месте рисунка, применяют функцию text. Общий заголовок для графика создается функцией title. Кроме того, используя команду grid on, мож­но нанести измерительную сетку на всю область построения графика. Напри­мер (рис. 6):

» x=0:0.1:3; y=sin(x);

» plot(x,y,"r-",x,y,"ko")

»title("Function sin(x) graph");

» xlabel("xcoordinate"); ylabel("sin(x)");

» text(2.1, 0.9, "\leftarrowsin(x)"); grid on

Надпись функцией text помещается начиная от точки с координатами, указанными первыми двумя аргументами. По умолчанию координаты задаются в тех же единицах измерения, что и координаты, указанные на горизонтальной и вертикальной осях. Специальные управляющие символы вводятся внутри текста после символа \ (обратная косая черта).

Трехмерная графика

Каждая точка в пространстве характеризуется тремя координатами. Набор точек, принадлежащих некоторой линии в пространстве, нужно задать в виде трех векторов, первый из которых содержит первые координаты этих точек, второй вектор - вторые их координаты, третий вектор - третьи координа­ты. После чего эти три вектора можно подать на вход функции plot3, которая и осуществит проектирование соответствующей трехмерной линии на плоскость и построит результирующее изображение (рис. 7). Введите с клавиатуры:

» t=0:pi/50:10*pi; x=sin(t);

» y=cos(t); plot3(x,y,t); grid on

Рис. 7. График винтовой линии, построенный с помощью функции plot3

Эту же функцию plot3 можно применить и для изображения поверхностей в пространстве, если, конечно, провести не одну линию, а много. Наберите с клавиатуры:

» u=-2:0.1:2; v=-1:0.1:1;

» =meshgrid(u,v);

» z=exp(-X.^2-Y.^2);

Получите трехмерное изображение графика функции (рис. 8).

Функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трехмерной поверхности плоскостями, парал­лельными плоскости yOz. Помимо этой простейшей функции система MATLAB располагает еще рядом функций, позволяющих добиваться большей реалистичности в изображении трехмерных графиков.

Рис. 8. График поверхности в пространстве, построенный с помо­щью функции plot3


Сценарии и m-файлы.

Для простых операций удобен интерактивный режим, но если вычисле­ния нужно многократно выполнять или необходимо реализовывать сложные алгоритмы, то следует использовать m-файлы MATLAB (расширение файла со­стоит из одной буквы m). script-m-файл (или сценарий) - текстовый файл, содержащий инструкции на языке MATLAB, подле­жащими исполнению в автоматическом пакетном режиме. Создать такой файл удобнее с помощью редактора системы MATLAB. Он вызывается из командно­го окна системы MATLAB командой меню File/New/M-file (или самой левой кнопкой на полосе инструментов, на которой изображен чистый белый лист бумаги). Записанные в script-файлы команды будут выполнены, если в команд­ной строке ввести имя script-файла (без расширения). Переменные, определяе­мые в командном окне и переменные, определяемые в сценариях, составляют единое рабочее пространство системы MATLAB, причем переменные, опреде­ляемые в сценариях, являются глобальными, их значения заместят значения таких же переменных, которые были использованы до вызова данного script- файла.

После создания текста сценария его надо сохранить на диске. Путь к каталогу с файлом обязательно должен быть известен сис­теме MATLAB. Командой File/Set Path вызывается диалоговое окно просмотрщика путей доступа к каталогам. Для добавления нового каталога в список пу­тей доступа необходимо выполнить далее команду меню Path/Add to path.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Теоретическая часть
  • 1.1 MATLAB и его связь с другими языками программирования
  • 1.2 MatLab и его основные компоненты
  • 1.3 Немного о работе с системой MATLAB
  • 2. Практическая часть
  • 2.1 Постановка задачи
  • 2.2 История развития задачи
  • 2.3 Используемые формулы
  • 2.4 Программный код поставленной задачи
  • 2.5 Описание программы
  • Заключение
  • Список использованных источников
  • ВВЕДЕНИЕ
  • Современная компьютерная математика предлагает целый набор интегрированных программных систем и пакетов программ для автоматизации математических расчетов: Gauss, Derive, Mathcad, Mathematica, и др. Возникает вопрос: какое место занимает среди них система MATLAB?
  • MATLAB - одна из старейших, тщательно проработанных систем автоматизации математических расчетов, построенная на расширенном представлении и применении матричных операций.
  • В течение нескольких лет MATLAB развивался, ориентируясь на различных пользователей. В университетской среде, он представлял собой стандартный инструмент для работы в различных областях математики, машиностроении и науки.
  • Язык программирования системы MATLAB весьма прост, он содержит лишь несколько десятков операторов; незначительное количество операторов здесь компенсируется большим числом процедур и функций, содержание которых понятно пользователю, имеющему соответствующую математическую и инженерную подготовку.
  • MATLAB включает в себя вычисления, визуализацию и программирование в удобной среде, где задачи и решения выражаются в форме, близкой к математической. Типичное использование MATLAB - это: математические вычисления, создание алгоритмов, моделирование, анализ данных, исследования и визуализация, научная и инженерная графика, разработка приложений, включая создание графического интерфейса.
  • Программы, написанные на MATLAB, бывают двух типов -- функции и скрипты. Функции имеют входные и выходные аргументы, а также собственное рабочее пространство для хранения промежуточных результатов вычислений и переменных. Скрипты же используют общее рабочее пространство. Как скрипты, так и функции не компилируются в машинный код и сохраняются в виде текстовых файлов.
  • В данной работе поставлена цель рассмотреть, как движется тело (или материальная точка), брошенное под углом к горизонту. А также, на основе рассмотренных данных из механики, написание программы, которая бы моделировала данное движение. Работа включает в себя создание графиков движения, графиков зависимости координат от времени, а также, создание динамической модели движения тела, брошенного под углом к горизонту.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 MATLAB И ЕГО СВЯЗЬ С ДРУГИМИ ЯЗЫКАМИ ПРОГРАММИРОВАНИЯ

Система MATLAB разработана специалистами компании MathWork Inc. (г. Нейтик, штат Массачусетс, США). Хотя впервые эта система начала использоваться в конце 1970-х годов, широкое распространение она получила в конце 80-х, в особенности после появления на рынке версии 4.0. Последние версии MATLAB - это системы, которые содержат множество процедур и функций, необходимых инженеру и научному работнику для осуществления сложных численных расчетов, моделирования технических и физических систем и оформления результатов этих расчетов. MATLAB (сокращение от MATrix LABoratory - матричная лаборатория) представляет собой интерактивную систему, предназначенную для выполнения инженерных и научных расчетов и ориентированную на работу с массивами данных. Система обеспечивает возможность обращения к программам, которые написаны на языках FORTRAN, C и C++.

Привлекательной особенностью системы MATLAB является наличие встроенной матричной и комплексной арифметики. Система поддерживает выполнение операций с векторами, матрицами и массивами данных, реализует сингулярное и спектральное разложение, расчет ранга и чисел обусловленности матриц, поддерживает работу с алгебраическими полиномами, решение нелинейных уравнений и задач оптимизации, интегрирование функций в квадратурах, численное интегрирование дифференциальных и разностных уравнений, построение различных графиков, трехмерных поверхностей и линий уровня.

Система MATLAB обеспечивает выполнение операций с векторами и матрицами даже в режиме непосредственных вычислений. Ею можно пользоваться как мощнейшим калькулятором, в котором наряду с обычными арифметическими и алгебраическими действиями могут использоваться такие сложные операции, как обращение матрицы, вычисление ее собственных значений и векторов, решение систем линейных алгебраических уравнений и много других. Характерной особенностью системы является ее открытость, то есть возможность ее модификации и адаптации к конкретным задачам пользователя.

Система MATLAB использует собственный М-язык, который сочетает в себе положительные свойства различных известных языков программирования высокого уровня. С языком BASIC систему MATLAB роднит то, что она представляет собой интерпретатор (осуществляет пооператорное компилирование и выполнение программы, не образуя отдельного исполняемого файла), М-язык имеет незначительное количество операторов, в нем отсутствует необходимость объявлять типы и размеры переменных. От языка Pascal система MATLAB позаимствовала объективно-ориентированную направленность, то есть такое построение языка, которое обеспечивает образование новых типов вычислительных объектов на основе типов объектов, уже существующих в языке. Новые типы объектов (в MATLAB они называются классами) могут иметь собственные процедуры их преобразования (они определяют методы этого класса), причем новые процедуры могут быть вызваны с помощью обычных знаков арифметических операций и некоторых специальных знаков, которые применяются в математике.

Принципы сохранения значений переменных в MATLAB наиболее близки к тем, которые присущи языку FORTRAN, а именно: все переменные являются локальными - действуют лишь в границах той программной единицы (процедуры, функции или главной, управляющей программы), где им присвоены некоторые конкретные значения. При переходе к выполнению другой программной единицы, значения переменных предыдущей программной единицы либо теряются (в случае, если выполненная программная единица представляет собой процедуру или функцию), либо становятся недосягаемыми (если выполненная программа является управляющей). В отличие от языков BASIC и Pascal, в языке MATLAB нет глобальных переменных, действие которых распространялось бы на все программные единицы. Но при этом язык MATLAB обладает возможностью, которая отсутствует в других языках. Интерпретатор MATLAB позволяет в одном и том же сеансе работы выполнять несколько самостоятельных программ, причем все переменные, используемые в этих программах, являются для них общими и образуют единое рабочее пространство. Это дает возможность более рационально организовывать сложные (громоздкие) вычисления по типу оверлейных структур.

Вышеуказанные особенности системы MATLAB делают ее весьма гибкой и удобной в использовании вычислительной системой.

1.2 MATLAB И ЕГО ОСНОВНЫЕ КОМПОНЕНТЫ

MATLAB - это высокопроизводительный язык для технических расчетов. Он включает в себя вычисления, визуализацию и программирование в удобной среде, где задачи и решения выражаются в форме, близкой к математической. Типичное использование MATLAB - это:

Математические вычисления;

Создание алгоритмов;

Моделирование;

Анализ данных, исследования и визуализация;

Научная и инженерная графика;

Разработка приложений, включая создание графического интерфейса.

MATLAB - это интерактивная система, в которой основным элементом данных является массив. Это позволяет решать различные задачи, связанные с техническими вычислениями, особенно в которых используются матрицы и вектора, в несколько раз быстрее, чем при написании программ с использованием "скалярных" языков программирования, таких как Си или Фортран. математический программирование matlab

В MATLAB важная роль отводится специализированным группам программ, называемых toolboxes. Они очень важны для большинства пользователей MATLAB, так как позволяют изучать и применять специализированные методы. Toolboxes - это всесторонняя коллекция функций MATLAB (М-файлов), которые позволяют решать частные классы задач. Toolboxes применяются для обработки сигналов, систем контроля, нейронных сетей, нечеткой логики, вэйвлетов, моделирования и т.д.

Система MATLAB состоит из пяти основных частей.

1. Язык MATLAB. Это язык матриц и массивов высокого уровня с управлением потоками, функциями, структурами данных, вводом-выводом и особенностями объектно-ориентированного программирования.

2. Среда MATLAB. Это набор инструментов и приспособлений, с которыми работает пользователь или программист MATLAB. Она включает в себя средства для управления переменными в рабочем пространстве MATLAB, вводом и выводом данных, а также создания, контроля и отладки М-файлов и приложений MATLAB.

3. Управляемая графика. Это графическая система MATLAB, которая включает в себя команды высокого уровня для визуализации двух- и трехмерных данных, обработки изображений, анимации и иллюстрированной графики. Она также включает в себя команды низкого уровня, позволяющие полностью редактировать внешний вид графики, также как при создании Графического Пользовательского Интерфейса (GUI) для MATLAB приложений.

4. Библиотека математических функций. Это обширная коллекция вычислительных алгоритмов от элементарных функций, таких как сумма, синус, косинус, комплексная арифметика, до более сложных, таких как обращение матриц, нахождение собственных значений, функции Бесселя, быстрое преобразование Фурье.

5. Программный интерфейс. Это библиотека, которая позволяет писать программы на Си и Фортране, которые взаимодействуют с MATLAB. Она включает средства для вызова программ из MATLAB (динамическая связь), вызывая MATLAB как вычислительный инструмент и для чтения-записи МАТ-файлов.

Simulink, сопутствующая MATLAB программа, - это интерактивная система для моделирования нелинейных динамических систем. Она представляет собой среду, управляемую мышью, которая позволяет моделировать процесс путем перетаскивания блоков диаграмм на экране и их манипуляцией. Simulink работает с линейными, нелинейными, непрерывными, дискретными, многомерными системами.

Blocksets - это дополнения к Simulink, которые обеспечивают библиотеки блоков для специализированных приложений, таких как связь, обработка сигналов, энергетические системы.

Real-Time Workshop - это программа, которая позволяет генерировать С код из блоков диаграмм и запускать их на выполнение на различных системах реального времени.

1.3 НЕМНОГО О РАБОТЕ С СИСТЕМОЙ MATLAB

После того как вы кликнули на иконке MATLAB, перед вами появится экран, в верхней части которого имеется строка с выпадающими меню, инструментальная панель с кнопками, реализующими наиболее часто выполняемые действия (см. рис. 1.1), и в самом окне - строка запроса в виде двух знаков>>.Это командное окно MATLAB

Рис унок 1. 1 - Инструментальная па нель командного окна

Стандартное выпадающее меню File содержит такие пункты, как New для создания новых файлов, Open M-file - открытие существующего файла-программы или файла-функции для редактирования, проверки текста или отладки. При использовании этого пункта вам предлагается стандартное окно выбора файлов, а после выбора необходимого файла открывается окно редактора/отладчика m-файлов.

M-файлами называются текстовые файлы с расширением.m, содержащие тексты программ-сценариев или тексты функций из стандартных или собственных библиотек. В редакторе их можно исправлять, устанавливать точки остановки для отладки, но следует помнить, что для того, чтобы новый, исправленный вариант функции или программы вступил в силу, необходимо стандартным образом (через меню редактора File или с помощью соответствующей кнопки на панели инструментов редактора/отладчика) сохранить измененный файл.

Инструментальная панель (см. рис 1.1) командного окна позволяет выполнять требуемые действия простым нажатием на соответствующую кнопку. Большинство кнопок имеют стандартный вид и выполняют стандартные, подобные другим программам действия - это копирование (Copy), открытие файла (Open), печать (Print) и т.д. Следует обратить внимание на кнопку Path Browser, которая позволяет прокладывать пути к разным директориям и делать необходимую директорию текущей, а также на кнопку Workspace Browser , позволяющую просматривать и редактировать переменные в рабочей области.

Команда help, набранная в ответ на запрос, завершаемая нажатием клавиши Enter, или кнопка инструментальной панели со знаком вопроса позволяет получить список функций, для которых доступна оперативная помощь. Команда help <имя_функции> позволяет получить на экране справку по конкретной функции.

Например, команда help eig позволяет получить оперативную справку по функции eig - функции вычисления собственных значений матрицы. С некоторыми возможностями системы MATLAB можно познакомиться с помощью команды demo.

В этом кратком введении следует отметить, что основные объекты - переменные, с которыми работает MATLAB, - это прямоугольные матрицы. Это дает возможность записывать программы очень кратко, делает прораммы легко обозримыми. Предусмотрено множество операций, выполняемых над матрицами. Разумеется, запись таких операций, как умножение и сложение матриц, следует запомнить. Изучать же и запоминать все возможности «впрок», до того, как они понадобятся, бессмысленно.

Если необходимо прервать работу, но сохранить все созданные в рабочей области переменные, то проще всего это сделать с помощью команды save <имя_файла>. Все переменные в двоичном виде сохраняются в файле <имя_файла>.mat. Впоследствии, при повторной загрузке системы можно загрузить всю рабочую область с помощью команды load <имя_файла> и продолжить вычисления с того же места. Для очистки рабочей области используется команда clear без аргументов, и в этом случае очищается вся область от всех переменных. Если команда clear сопровождается списком переменных, разделенных пробелами, то удаляются только перечисленные переменные.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1 ПОСТАНОВКА ЗАДАЧИ

Основной задачей данной курсовой работы является: написание программы в системе MATLAB, которая бы моделировала движение тела брошенного под углом к горизонту.

2.2 ИСТОРИЯ РАЗВИТИЯ ЗАДАЧИ

Механика (с греч. МзчбнйкЮ переводится как искусство построения машин) - область физики, изучающая движение материальных объектов и взаимодействие между ними. Важнейшими разделами механики являются классическая механика и квантовая механика.

Движение тела, брошенного под углом к горизонту, необходимо рассматривать, как криволинейное движение, которое в свою очередь является одним из разделов механики.

Изучение особенностей такого движения началось довольно давно, еще в XVI веке и было связано с появлением и совершенствованием артиллерийских орудий.

Представления о траектории движения артиллерийских снарядов в те времена были довольно забавными. Считалось, что траектория эта состоит из трех участков: насильственного движения, смешанного движения и естественного движения, при котором ядро падает на солдат противника сверху (см. рис. 2.1).

Рис. 2.1 - Траектория движения артиллерийских снарядов

Законы полета метательных снарядов не привлекали особого внимания ученых до тех пор, пока не были изобретены дальнобойные орудия, которые посылали снаряд через холмы или деревья - так, что стреляющий не видел их полета.

Сверхдальняя стрельба из таких орудий на первых порах использовалась в основном для деморализации и устрашения противника, а точность стрельбы не играла вначале особенно важной роли.

Близко к правильному решению о полете пушечных ядер подошел итальянский математик Тарталья, он сумел показать, что наибольшей дальности полета снарядов можно достичь при направлении выстрела под углом 45° к горизонту. В его книге "Новая наука" были сформулированы правила стрельбы, которыми артиллеристы руководствовались до середины ХVII века.

Однако, полное решение проблем, связанных с движением тел брошенных горизонтально или под углом к горизонту, осуществил все тот же Галилей. В своих рассуждениях он исходил из двух основных идей: тела, движущиеся горизонтально и не подвергающиеся воздействию других сил будут сохранять свою скорость; появление внешних воздействий изменит скорость движущегося тела независимо от того, покоилось или двигалось оно до начала их действия. Галилей показал, что траектории снарядов, если пренебречь сопротивлением воздуха, представляют собой параболы. Галилей указывал, что при реальном движении снарядов, вследствие сопротивления воздуха, их траектория уже не будет напоминать параболу: нисходящая ветвь траектории будет идти несколько круче, чем расчетная кривая.

Ньютон и другие ученые разрабатывали и совершенствовали новую теорию стрельбы, с учетом возросшего влияния на движение артиллерийских снарядов сил сопротивления воздуха. Появилась и новая наука - баллистика. Прошло много-много лет, и теперь снаряды движутся столь быстро, что даже простое сравнение вида траекторий их движения подтверждает возросшее влияние сопротивления воздуха.

В современной баллистике для решения подобных задач используется электронно-вычислительная техника - компьютеры, а мы пока ограничимся простым случаем - изучением такого движения, при котором сопротивлением воздуха можно пренебречь. Это позволит нам повторить рассуждения Галилея почти без всяких изменений.

2.3 ИСПОЛЬЗУЕМЫЕ ФОРМУЛЫ

Изучим движение тела, брошенного с начальной скоростью V 0 под углом б к горизонту, рассматривая его как материальную точку массы m. При этом сопротивлением воздуха пренебрежём, а поле тяжести будем считать однородным (Р=const), полагая, что дальность полёта и высота траектории малы по сравнению с радиусом Земли.

Поместим начало координат О в начальном положении точки. Направим ось Oy вертикально вверх; горизонтальную ось Ox расположим в плоскости, проходящей через Оy и вектор V 0 , а ось Oz проведём перпендикулярно первым двум осям (рис.2.2). Тогда угол между вектором V 0 и осью Ox будет равен б.

Рис.2.2 - Движение тела, брошенного под углом к горизонту.

Изобразим движущуюся точку М где-нибудь на траектории. На точку действует одна только сила тяжести F, проекции которой на оси координат равны:

Подставляя эти величины в дифференциальные уравнения и замечая, что

и т.д. мы после сокращения на m получим:

Умножая обе части этих уравнений на dt и интегрируя, находим:

Начальные условия в нашей задаче имеют вид:

при t=0:

Удовлетворяя начальным условиям, будем иметь:

Подставляя эти значения C 1 , C 2 и C 3 в найденное выше решение и заменяя Vx , Vy , Vz на

придём к уравнениям:

Интегрируя эти уравнения, получим:

Подстановка начальных данных даёт C 4 =C 5 =C 6 =0, и мы окончательно находим уравнения движения точки М в виде:

Из последнего уравнения следует, что движение происходит в плоскости Оxy.

Имея уравнение движения точки, можно методами кинематики определить все характеристики данного движения.

Найдем время полета тела от начальной точки до точки падения.

Время полета:

2.4 ПРОГРАММНЫЙ КОД ПОСТАВЛЕННОЙ ЗАДАЧИ

clc; %очистка командного окна

v0=36; %начальная скорость

g=9.81; %ускорение свободного падения

k=1;

alfa=pi/3; %угол, под которым брошено тело

m=(2*v0*sin(alfa))/g %время полета

while k<5

k=menu("выбрать категорию", ...

sprintf("зависимость координаты х от t"), ...

sprintf("зависимость координаты у от t"), ...

sprintf("график движения тела брошенного под углом к горизонту"), ...

sprintf("динамическая модель движения тела брошенного под углом к горизонту"), ...

"выход");

if k == 1

t=0:0.001:m;

x=v0*t*cos(alfa);

plot(x);

title("зависимость координаты х от t");

xlabel("x"); ylabel("y");

elseif k == 2

t=0:0.001:m;

y=v0*t*sin(alfa)-(g*t.^2)/2;

plot(y);

title("зависимость координаты y от t");

xlabel("x"); ylabel("y");

elseif k == 3

t=0:0.001:m;

x=v0*t*cos(alfa);

y=v0*t*sin(alfa)-(g*t.^2)/2;

plot(x,y);

title("график движения тела брошенного под углом к горизонту");

xlabel("x"); ylabel("y");

elseif k == 4

t=0:0.001:m;

x=v0*t*cos(alfa);

y=v0*t*sin(alfa)-(g*t.^2)/2;

comet(x,y);

title("динамическая модель движения тела брошенного под углом к горизонту");

xlabel("x"); ylabel("y");

end;

end;

2.5 ОПИСАНИЕ ПРОГРАММЫ

Данная программа содержит функции и процедуры такие как clc, plot, menu, comet и др., а также переменные и их значения.

Опишем процедуры и функции использованные в данной программе:

CLC . Команда, предназначенная для очистки командного окна.

MENU . Удобным инструментом выбора одной из альтернатив будущих вычислительных действий является функция menu, которая создает окно пользовательского меню. К функции menu нужно обращаться следующим образом:

K=MENU("ЗАГОЛОВОК МЕНЮ","альтернатива 1","альтернатива 2","альтернатива n")

Такое обращение приводит к появлению окна меню (см. рис.2.3).

Рисунок 2.3 - Окно меню

Выполнение программы временно приостанавливается, и система ожидает выбора одной из кнопок меню с альтернативами. После правильного выбора исходному параметру k присваивается значение, соответствующее номеру альтернативы (1,2…n). В общем случае число альтернатив может достигать 32.

WHILE . Оператор цикла с предусловием имеет такой вид:

While <условие>

<операторы>

end

Операторы внутри цикла выполняются лишь в случае, если выполнено условие, записанное после слова while. При этом среди операторов внутри цикла обязательно должны быть такие, которые изменяют значение одной из переменных.

SPRINTF . Функция, которая на каждой кнопке меню размещает информацию о текущем значении соответствующего параметра.

IF . В общем виде синтаксис оператора условного перехода таков:

If < условие >

< операторы1 >

Else

< операторы2 >

E nd

Работает этот оператор следующим образом. Сначала производится проверка, выполняется ли указанное условие. Если результат проверки положителен, программа выполняет совокупность операторов <операторы1> . В противном случае выполняется последовательность операторов <операторы2>.

PLOT . Основной функцией обеспечивающей построение графиков на экране дисплея, является plot (см. рис 2.4). Общая форма обращения к ней такова:

Plot(x1,y1,s1,x2,y2,s2…)

Здесь x1,y1 - заданные векторы, элементами которых являются массивы значений аргумента (х1) и функции (у1), отвечающие первой кривой графика; х2,у2 - массивы значений аргумента и функции второй кривой и т.д. При этом предполагается, что значение аргумента откладываются вдоль горизонтальной оси графика, а значение функции - вдоль вертикальной оси. Переменные s1,s2,… являются символьными (их указание не является обязательным).

Рисунок 2.4 - Действие фенкции plot.

TITLE . Процедура, с помощью которой задается заголовок графика.

XLABEL и YLABEL . Функции, задающие объяснения вдоль горизонтальной и вертикальной осей.

COMET . Процедура comet(x,y) («комета») строит график зависимости у(х) постепенно в виде траектории кометы. При этом «изображающая» точка на графике имеет вид маленькой кометы, которая плавно перемещается от одной точки к другой.

В конечном итоге, программа показывает, как движется тело, брошенное под углом к горизонту. Также в программе можно увидеть зависимость координат тела от времени (см рис. 2.5 и рис. 2.6), график траектории тела (см. рис. 2.7) и саму модель движения тела (см. рис.2.8).

Рисунок 2.5 - График зависимости x от t.

Рисунок 2.6 - График зависимости y от t.

Рисунок 2.7 - График движения тела, брошенного под углом к горизонту.

Рисунок 2.8 - Динамическая модель движения тела, брошенного под углом к горизонту.

ЗАКЛЮЧЕНИЕ

Курсовой проект выполнен в среде MatLab 6.5. Разработка проекта проходила в несколько стадий, заключавшихся в изучении предметной области задачи; изучении основных законов механики; разработке самой программы, позволяющей моделировать движение тела, брошенного под углом к горизонту.

Результатом проделанной работы стала программа, реализующая модель движения тела, брошенного под углом к горизонту.

Практическая ценность программы заключается в том, что она наглядно показывает как движется тело брошенное под углом к горизонту.

Также курсовая работа поспособствовала развитию навыков самостоятельного планирования и выполнения научно-исследовательской работы, получению опыта сбора и обработки исходного материала, анализа научно-технической литературы, справочников, стандартов и технической документации, приобретению навыков обоснования принимаемых проектных решений и профессионального оформления проектной документации.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Лазарев, Ю. Моделирование процессов и систем в MatLab. Учебный курс. / Ю. Лазарев. - СПб.: Питер; Киев: Издательская группа BHV, 2005. - 512 с.

2. Алешкевич, В.А. Механика / В.А. Алешкевич, Л.Г. Деденко, В.А. Караваев. - Академия 2004.

3. Коткин, Г.Л. Черкасский В.С., Компьютерное моделирование физических процессов с использованием MATLAB: Учеб. пособие / Г.Л. Коткин, В.С. Черкасский. - Новосиб. ун-т. Новосибирск, 2001. - 173 с.

Размещено на Allbest.ru

...

Подобные документы

    Общая характеристика и свойства системы Matlab - пакета прикладных программ для решения задач технических вычислений. Разработка математической модели в данной среде, программирование функций для задающего воздействия. Проектирование GUI-интерфейса.

    курсовая работа , добавлен 23.05.2013

    Особенности работы в режиме командной строки в системе Matlab. Переменные и присваивание им значений. Комплексные числа и вычисления в системе Matlab. Вычисления с использованием функции sqrt. Неправильное использование функций с комплексными аргументами.

    дипломная работа , добавлен 30.07.2015

    Изучение программирования в MATLAB. Использование команд Save и Load, операторы ввода и вывода для работы в командном окне. Отладка собственных программ. Интерфейс MATLAB. Отличия поздней версии MATLAB от более ранних. Средство Source Control Interface.

    контрольная работа , добавлен 25.12.2011

    Matlab - матричная лаборатория - система программирования для научно-технических расчетов. Особенности ввода векторов. Специальные матрицы, простые команды. Простые примеры, иллюстрирующие эффективность Matlab. Графический способ решения уравнений.

    реферат , добавлен 05.01.2010

    Математическая основа параллельных вычислений. Свойства Parallel Computing Toolbox. Разработка параллельных приложений в Matlab. Примеры программирования параллельных задач. Вычисление определенного интеграла. Последовательное и параллельное перемножение.

    курсовая работа , добавлен 15.12.2010

    MATLAB – матричная лаборатория – наиболее развитая система программирования для научно-технических расчетов. Переменные и элементы xy-графики. Простые примеры, иллюстрирующие эффективность MATLAB. Системы линейных алгебраических уравнений и полиномы.

    методичка , добавлен 26.01.2009

    Создание и представление символьных переменных в программе Matlab, операции над полиномами и упрощение выражений. Пример подстановки значения в функцию, решения уравнений и систем, дифференцирования, интегрирования и вычисления пределов функций.

    презентация , добавлен 24.01.2014

    Возможности и синтаксис команд MATLAB, листинг программы и описание цикла. Порядок составления программы вычисления коэффициентов алгебраического интерполяционного многочлена и построения сплайн-функции, "склеенной" из кусков многочленов 3-го порядка.

    лабораторная работа , добавлен 04.07.2009

    Анализ возможностей пакета MATLAB и его расширений. Язык программирования системы. Исследование выпрямительного устройства. Моделирование трёхфазного трансформатора. Схема принципиальная регулируемого конвертора. Возможности гибкой цифровой модели.

    презентация , добавлен 22.10.2013

    Методы численного интегрирования. Характеристика основных составляющих структурного программирования. Решение задания на языке высокого уровня Паскаль. Построение графического решения задачи в пакете Matlab. Решение задания на языке высокого уровня C.

). Среди средств общего назначения, используемых в хемометрике, особое место занимает пакет MatLab. Его популярность необычайно высока. Это объясняется тем, что MatLab является мощным и универсальным обработки многомерных данных. Сама структура пакета делает его удобным средством для проведения матричных вычислений. Спектр проблем, исследование которых может, осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, нейронные сети и многие другие. MatLab - это язык высокого уровня, имеющий открытый код, что дает возможность опытным пользователям разбираться в запрограммированных алгоритмах. Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. За много лет использования MatLab создано огромное количество функций и ToolBox (пакетов специализированных средств). Самым популярным является пакет PLS ToolBox компании Eigenvector Research, Inc .

1. Базовые сведения

1.1. Рабочая среда MatLab

Чтобы запустить программу дважды щелкните на иконку . Перед Вами откроется рабочая среда, изображенная на рисунке.

Рабочая среда MatLab 6.х немного отличается от рабочей среды предыдущих версий, она имеет более удобный интерфейс для доступа ко многим вспомогательным элементам

Рабочая среда MatLab 6.х содержит следующие элементы:

    панель инструментов с кнопками и раскрывающимся списком;

    окно с вкладками Launch Pad и Workspace , из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;

    окно с вкладками Command History и Current Directory , предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;

    командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;

    строку состояния.

Если в рабочей среде MatLab 6.х отсутствуют некоторые окна, приведенные на рисунке, то следует в меню View выбрать соответствующие пункты: Command Window , Command History , Current Directory , Workspase , Launch Pad .

Команды следует набирать в командном окне. Символ » , обозначающий приглашение к вводу командной строки, набирать не нужно. Для просмотра рабочей области удобно использовать полосы скроллинга или клавиши Home , End , для перемещения влево или вправо, и PageUp , PageDown для перемещения вверх или вниз. Если вдруг после перемещения по рабочей области командного окна пропала командная строка с мигающим курсором, просто нажмите Enter .

Важно помнить, что набор любой команды или выражения должен заканчиваться нажатием на Enter , для того, чтобы программа MatLab выполнила эту команду или вычислила выражение.

1.2. Простейшие вычисления

Наберите в командной строке 1+2 и нажмите Enter . В результате в командном окне MatLab отображается следующее:

Рис. 2 Графическое представление метода главных компонент

Что сделала программа MatLab? Сначала она вычислила сумму 1+2 , затем записала результат в специальную переменную ans и вывела ее значение, равное 3 , в командное окно. Ниже ответа расположена командная строка с мигающим курсором, обозначающая, что MatLab готов к дальнейшим вычислениям. Можно набирать в командной строке новые выражения и находить их значения. Если требуется продолжить работу с предыдущим выражением, например, вычислить (1+2)/4.5 , то проще всего воспользоваться уже имеющимся результатом, который хранится в переменной ans . Наберите ans/4.5 (при вводе десятичных дробей используется точка) и нажмите Enter , получается

Рис. 3 Графическое представление метода главных компонент

1.3. Эхо команд

Выполнение каждой команды в MatLab сопровождается эхом. В приведенном выше примере - это ответ ans = 0.6667 . Часто эхо затрудняет восприятие работы программы и тогда его можно отключить. Для этого команда должна завершаться символом точка с запятой. Например

Рис. 4 Пример ввода функции ScoresPCA

1.4. Сохранение рабочей среды. MAT файлы

Самый простой способ сохранить все значения переменных - использовать в меню File пункт Save Workspase As. При этом появляется диалоговое окно Save Workspase Variables , в котором следует указать каталог и имя файла. По умолчанию предлагается сохранить файл в подкаталоге work основного каталога MatLab. Программа сохранит результаты работы в файле с расширением mat . Теперь можно закрыть MatLab. В следующем сеансе работы для восстановления значений переменных следует открыть этот сохраненный файл при помощи подпункта Open меню File . Теперь все переменные, определенные в прошлом сеансе, опять стали доступными. Их можно использовать во вновь вводимых командах.

1.5. Журнал

В MatLab имеется возможность записывать исполняемые команды и результаты в текстовый файл (вести журнал работы), который потом можно прочитать или распечатать из текстового редактора. Для начала ведения журнала служит команда diary . В качестве аргумента команды diary следует задать имя файла, в котором будет храниться журнал работы. Набираемые далее команды и результаты их исполнения будут записываться я в этот файл, например последовательность команд

производит следующие действия:

    открывает журнал в файле exampl-1.txt ;

    производит вычисления;

    сохраняет все переменные в MAT файле work-1.mat ;

    сохраняет журнал в файле exampl-1.txt в подкаталоге work корневого каталога MatLab и закрывает MatLab;

Посмотрите содержимое файла exampl-1.txt в каком-нибудь текстовом редакторе. В файле окажется следующий текст:

a1=3;
a2=2.5;
a3=a1+a2

Save work-1
quit

1.6. Система помощи

Окно справки MatLab появляется после выбора опции Help Window в меню Help или нажатием кнопки вопроса на панели инструментов. Эта же операция может быть выполнена при наборе команды helpwin . Для вывода окна справки по отдельным разделам, наберите helpwin topic . Окно справки предоставляет Вам такую же информацию, как и команда help , но оконный интерфейс обеспечивает более удобную связь с другими разделами справки. Используя адрес Web-страницы фирмы Math Works , вы можете выйти на сервер фирмы и получить самую последнюю информацию по интересующим вас вопросам. Вы можете ознакомиться с новыми программными продуктами или найти ответ на возникшие проблемы на странице технической поддержки .

2. Матрицы

2.1. Скаляры, векторы и матрицы

В MatLab можно использовать скаляры, векторы и матрицы. Для ввода скаляра достаточно приписать его значение какой-то переменной, например

Заметим, что MatLab различает заглавные и прописные буквы, так что p и P - это разные переменные. Для ввода массивов (векторов или матриц) их элементы заключают в квадратные скобки. Так для ввода вектора-строки размером 1×3, используется следующая команда, в которой элементы строки отделяются пробелами или запятыми.

При вводе вектора-столбца элементы разделяют точкой с запятой. Например,

Вводить небольшие по размеру матрицы удобно прямо из командной строки. При вводе матрицу можно рассматривать как вектор-столбец, каждый элемент которого является вектором-строкой.

или матрицу можно трактовать как вектор строку, каждый элемент которой является вектором-столбцом.

2.2. Доступ к элементам

Доступ к элементам матриц осуществляется при помощи двух индексов - номеров строки и столбца, заключенных в круглые скобки, например команда B(2,3) выдаст элемент второй строки и третьего столбца матрицы B . Для выделения из матрицы столбца или строки следует в качестве одного из индексов использовать номер столбца или строки матрицы, а другой индекс заменить двоеточием. Например, запишем вторую строку матрицы A в вектор z

Также можно осуществлять выделение блоков матриц при помощи двоеточия. Например, выделим из матрицы P блок отмеченный цветом

Если необходимо посмотреть переменные рабочей среды, в командной строке необходимо набрать команду whos .

Видно, что в рабочей среде содержатся один скаляр (p ), четыре матрицы (A, B, P, P1 ) и вектор-строка (z ).

2.3. Основные матричные операции

При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус

а умножение - знаком звездочка * . Введем матрицу размером 3×2

Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^

Проверьте полученный результат, умножив матрицу Р саму на себя.

2.4. Создание матриц специального вида

Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros

Единичная матрица создается при помощи функции eye

Матрица, состоящая из единиц, образуется в результате вызова функции ones

MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn - матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.

Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.

2.5. Матричные вычисления

MatLab содержит множество различных функций для работы с матрицами. Так, например, транспонирование матрицы производится при помощи апострофа "

Нахождение обратной матрицы проводится с помощью функции inv для квадратных матриц

3. Интегрирование MatLab и Excel

Интегрирование MatLab и Excel позволяет пользователю Excel обращаться к многочисленным функциям MatLab для обработки данных, различных вычислений и визуализации результата. Надстройка excllink.xla реализует данное расширение возможностей Excel. Для связи MatLab и Excel определены специальные функции.

3.1. Конфигурирование Excel

Перед тем как настраивать Excel на совместную работу с MatLab, следует убедиться, что Excel Link входит в установленную версию MatLab. В подкаталоге exclink основного каталога MatLab или подкаталога toolbox должен находиться файл с надстройкой excllink.xla . Запустите Excel и в меню Tools выберите пункт Add-ins . Откроется диалоговое окно, содержащее информацию о доступных в данный момент надстройках. Используя кнопку Browse , укажите путь к файлу excllink.xla . В списке надстроек диалогового окна появится строка Excel Link 2.0 for use with MatLab с установленным флагом. Нажмите OK , требуемая надстройка добавлена в Excel.

Обратите внимание, что в Excel теперь присутствует панель инструментов Excel Link , содержащая три кнопки: putmatrix , getmatrix , evalstring . Эти кнопки реализуют основные действия, требуемые для осуществления взаимосвязи между Excel и MatLab - обмен матричными данными, и выполнение команд MatLab из среды Excel. При повторных запусках Excel надстройка excllink.xla подключается автоматически.

Согласованная работа Excel и MatLab требует еще нескольких установок, которые приняты в Excel по умолчанию (но могут быть изменены). В меню Tools перейдите к пункту Options , открывается диалоговое окно Options . Выберите вкладку General и убедитесь, что флаг R1C1 reference style выключен, т.е. ячейки нумеруются A1 , A2 и т.д. На вкладке Edit должен быть установлен флаг Move selection after Enter .

3.2. Обмен данными между MatLab и Excel

Запустите Excel, проверьте, что проделаны все необходимые настройки так, как описано в предыдущем разделе (MatLab должен быть закрыт). Введите в ячейки с A1 по C3 матрицу, для отделения десятичных знаков используйте точку в соответствии с требованиями Excel.

Выделите на листе данные ячейки и нажмите кнопку putmatrix , появляется окно Excel с предупреждением о том, что MatLab не запущен. Нажмите OK , дождитесь открытия MatLab.

Появляется диалоговое окно Excel со строкой ввода, предназначенной для определения имени переменной рабочей среды MatLab, в которую следует экспортировать данные из выделенных ячеек Excel. Введите к примеру, М и закройте окно при помощи кнопки OK . Перейдите к командному окну MatLab и убедитесь, что в рабочей среде создалась переменная М , содержащая массив три на три:

Проделайте некоторые операции в MatLab с матрицей М , например, обратите ее.

Вызов inv для обращения матрицы, как и любой другой команды MatLab можно осуществить прямо из Excel. Нажатие на кнопку evalstring , расположенную на панели Excel Link , приводит к появлению диалогового окна, в строке ввода которого следует набрать команду MatLab

IM=inv(M) .

Результат аналогичен полученному при выполнении команды в среде MatLab.

Вернитесь в Excel, сделайте текущей ячейку A5 и нажмите кнопку getmatrix . Появляется диалоговое окно со строкой ввода, в которой требуется ввести имя переменной, импортируемой в Excel. В данном случае такой переменной является IM . Нажмите OK , в ячейки с A5 по A7 введены элементы обратной матрицы.

Итак, для экспорта матрицы в MatLab следует выделить подходящие ячейки листа Excel, а для импорта достаточно указать одну ячейку, которая будет являться верхним левым элементом импортируемого массива. Остальные элементы запишутся в ячейки листа согласно размерам массива, переписывая содержащиеся в них данные, поэтому следует соблюдать осторожность при импорте массивов.

Вышеописанный подход является самым простым способом обмена информацией между приложениями - исходные данные содержатся в Excel, затем экспортируются в MatLab, обрабатываются там некоторым образом и результат импортируется в Excel. Пользователь переносит данные при помощи кнопок панели инструментов Excel Link . Информация может быть представлена в виде матрицы, т.е. прямоугольной области рабочего листа. Ячейки, расположенные в строку или столбец, экспортируются, соответственно, в векторы -строки и векторы -столбцы MatLab. Аналогично происходит и импорт векторов-строк и векторов-столбцов в Excel.

4. Программирование

4.1. М-файлы

Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file . Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files ), содержащие последовательность команд, и файл-функции, (Function M-Files ), в которых описываются функции, определяемые пользователем.

4.2. Файл-программа

Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug . На экране появится графическое окно Figure 1 , содержащее графики функций.

Команды файл-программы осуществляют вывод в командное окно. Для подавления вывода следует завершать команды точкой с запятой. Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибки в командное окно.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1 . Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift , первые четыре команды и выполните их из пункта Text . Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9 .

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:

Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов.

4.3. Файл-функция

Рассмотренная выше файл-программа является только последовательностью команд MatLab, она не имеет входных и выходных аргументов. Для использования численных методов и при программировании собственных приложений в MatLab необходимо уметь составлять файл-функции, которые производят необходимые действия с входными аргументами и возвращают результат действия в выходных аргументах. Разберем несколько простых примеров, позволяющих понять работу с файл-функциями.

Проводя предобработку данных многомерного анализа хемометрики часто применяет центрирование . Имеет смысл один раз написать файл-функцию, а потом вызывать его всюду, где необходимо производить центрирование. Откройте в редакторе М-файлов новый файл и наберите

Слово function в первой строке определяет, что данный файл содержит файл-функцию. Первая строка является заголовком функции, в которой размещается имя функции и списка входных и выходных аргументов. В примере имя функции centering , один входной аргумент X и один выходной - Xc. После заголовка следуют комментарии, а затем - тело функции (оно в данном примере состоит из двух строк), где и вычисляется ее значение. Важно, что вычисленное значение записывается в Xc . Не забудьте поставить точку с запятой для предотвращения вывода лишней информации на экран. Теперь сохраните файл в рабочем каталоге. Обратите внимание, что выбор пункта Save или Save as меню File приводит к появлению диалогового окна сохранения файла, в поле File name которого уже содержится название centering . Не изменяйте его, сохраните файл функцию в файле с предложенным именем!

Теперь созданную функцию можно использовать так же, как и встроенные sin , cos и другие. Вызов собственных функций может осуществляться из файл-программы и из другой файл-функции. Попробуйте сами написать файл-функцию, которая будет шкалировать матрицы, т.е. делить каждый столбец на величину среднеквадратичного отклонения по этому столбцу.

Можно написать файл-функции с несколькими входными аргументами, которые размещаются в списке через запятую. Можно также создавать и функции, возвращающие несколько значений. Для этого выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды.

При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины.

4.4 Создание графика

MatLab имеет широкие возможности для графического изображения векторов и матриц, а также для создания комментариев и печати графиков. Дадим описание несколько важных графических функций.

Функция plot имеет различные формы, связанные с входными параметрами, например plot(y) создает кусочно-линейный график зависимости элементов y от их индексов. Если в качестве аргументов заданы два вектора, то plot(x,y) создаст график зависимости y от x . Например, для построения графика функции sin в интервале от 0 до 2π, сделаем следующее

Программа построила график зависимости, который отображается в окне Figure 1

MatLab автоматически присваивает каждому графику свой цвет (исключая случаи, когда это делает пользователь), что позволяет различать наборы данных.

Команда hold on позволяет добавлять кривые на существующий график. Функция subplot позволяет выводить множество графиков в одном окне

4.5 Печать графиков

Пункт Print в меню File и команда print печатают графику MatLab. Меню Print вызывает диалоговое окно, которое позволяет выбирать общие стандартные варианты печати. Команда print обеспечивает большую гибкость при выводе выходных данных и позволяет контролировать печать из М-файлов. Результат может быть послан прямо на принтер, выбранный по умолчанию, или сохранен в заданном файле.

5. Примеры программ

В этом разделе приведены наиболее употребительные алгоритмы, используемые при анализе многомерных данных. Рассмотрены как простейшие методы преобразования данных центрирование и шкалирование, так и алгоритмы для анализа данных - PCA, PLS.

5.1. Центрирование и шкалирование

Часто при анализе требуется преобразовать исходные данные. Наиболее используемыми методами преобразования данных выступают центрирование и шкалирование каждой переменной на стандартное отклонение. В приводился код функции для центрирования матрицы. Поэтому ниже показан только код функции, которая шкалирует данные. Обратите внимание, что исходная матрица должна быть центрирована

function Xs = scaling(X)
% scaling: the output matrix is Xs
% matrix X must be centered

Xs = X * inv(diag(std(X)));

%end of scaling

5.2. SVD/PCA

Наиболее популярным способом сжатия данных в многомерном анализе является метод главных компонент (PCA) . С математической точки зрения PCA - это декомпозиция исходной матрицы X , т.е. представление ее в виде произведения двух матриц T и P

X = TP t + E

Матрица T называется матрицей счетов (scores) , матрица - матрицей остатков.

Простейший способ найти матрицы T и P - использовать SVD разложение через стандартную функцию MatLab, называемую svd .

function = pcasvd(X)

Svd(X);
T = U * D;
P = V;

%end of pcasvd

5.3 PCA/NIPALS

Для построения PCA счетов и нагрузок, используется рекуррентный алгоритм NIPALS , который на каждом шагу вычисляет одну компоненту. Сначала исходная матрица X преобразуется (как минимум – центрируется; см. ) и превращается в матрицу E 0 , a =0. Далее применяют следующий алгоритм.

t 2. p t = t t E a / t t t 3. p = p / (p t p ) ½ 4. t = E a p / p t p 5. Проверить сходимость, если нет, то идти на 2

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p E a +1 = E a t p a на a +1.

Код алгоритма NIPALS может быть написан и самими читателями, в данном же пособии авторы приводят свой вариант. При расчете PCA, можно вводить число главных компонент (переменная numberPC ). Если же не известно, сколько необходимо компонент, следует написать в командной строке = pcanipals (X) и тогда программа задаст число компонент равным наименьшему из показателей размерности исходной матрицы X .

function = pcanipals(X, numberPC)

% calculation of number of components
= size(X); P=; T=;

If lenfth(numberPC) > 0
pc = numberPC{1};
elseif (length(numberPC) == 0) & X_r < X_c
pc = X_r;
else
pc = X_c;
end;

for k = 1:pc
P1 = rand(X_c, 1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1))"; P1 = P1/norm(P1); T1 = X * P1; d = T1" * T1;

While d - d0 > 0.0001;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d = T1"*T1;
end

X = X - T1 * P1; P = cat(1, P, P1"); T = ;
end

О вычислении PCA с помощью надстройки Chemometrics рассказано в пособии

5.4 PLS1

Самым популярным способом для многомерной калибровки является метод проекции на латентные структуры (PLS). В этом методе проводится одновременная декомпозиция матрицы предикторов X и матрицы откликов Y :

X =TP t +E Y =UQ t +F T =XW (P t W ) –1

Проекция строится согласованно – так, чтобы максимизировать корреляцию между соответствующими векторами X -счетов t a и Y -счетов u a . Если блок данных Y включает несколько откликов (т.е. K >1), можно построить две проекции исходных данных – PLS1 и PLS2. В первом случае для каждого из откликов y k строится свое проекционное подпространство. При этом и счета T (U ) и нагрузки P (W , Q ) , зависят от того, какой отклик используется. Этот подход называется PLS1. Для метода PLS2 строится только одно проекционное пространство, которое является общим для всех откликов.

Детальное описание метода PLS приведено в этой книге Для построения PLS1 счетов и нагрузок, используется рекуррентный алгоритм. Сначала исходные матрицы X и Y центрируют

= mc(X);
= mc(Y);

и они превращаются в матрицу E 0 и вектор f 0 , a =0. Далее к ним применяет следующий алгоритм

1. w t = f a t E a 2. w = w / (w t w ) ½ 3. t = E a w 4. q = t t f a / t t t 5. u = q f a / q 2 6. p t = t t E a / t t t

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код этого алгоритма, взятый из книги

function = pls(x, y)
%PLS: calculates a PLS component.
%The output vectors are w, t, u, q and p.
%
% Choose a vector from y as starting vector u.

u = y(:, 1);

% The convergence criterion is set very high.
kri = 100;

% The commands from here to end are repeated until convergence.
while (kri > 1e - 10)

% Each starting vector u is saved as uold.
uold = u; w = (u" * x)"; w = w/norm(w);
t = x * w; q = (t" * y)"/(t" * t);
u = y * q/(q" * q);

% The convergence criterion is the norm of u-uold divided by the norm of u.
kri = norm(uold - u)/norm(u);
end;

% After convergence, calculate p.
p = (t" * x)"/(t" * t);

% End of pls

О вычислении PLS1 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

5.5 PLS2

Для PLS2 алгоритм выглядит следующим образом. Сначала исходные матрицы X и Y преобразуют (как минимум – центрируют; см. ), и они превращаются в матрицы E 0 и F 0 , a =0. Далее к ним применяет следующий алгоритм.

1. Выбрать начальный вектор u 2. w t = u t E a 3. w = w / (w t w ) ½ 4. t = E a w 5. q t = t t F a / t t t 6. u = F a q / q t q 7. Проверить сходимость, если нет, то идти на 2 8. p t = t t E a / t t t

После вычисления очередной (a -ой) PLS2 компоненты надо положить: t a =t , p a =p, w a =w , u a =u и q a =q . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и F a +1 = F a tq t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код, которой также заимствован из из книги .

function = plsr(x, y, a)
% PLS: calculates a PLS component.
% The output matrices are W, T, U, Q and P.
% B contains the regression coefficients and SS the sums of
% squares for the residuals.
% a is the numbers of components.
%
% For a components: use all commands to end.

For i=1:a
% Calculate the sum of squares. Use the function ss.
sx = ;
sy = ;

% Use the function pls to calculate one component.
= pls(x, y);

% Calculate the residuals.
x = x - t * p";
y = y - t * q";

% Save the vectors in matrices.
W = ;
T = ;
U = ;
Q = ;
P = ;
end;

% Calculate the regression coefficients after the loop.
B=W*inv(P"*W)*Q";

% Add the final residual SS to the sum of squares vectors.
sx=;
sy=;

% Make a matrix of the ss vectors for X and Y.
SS = ;

%Calculate the fraction of SS used.
= size(SS);
tt = (SS * diag(SS(1,:).^(-1)) - ones(a, b)) * (-1)

%End of plsr

function = ss(x)
%SS: calculates the sum of squares of a matrix X.
%

ss=sum(sum(x. * x));
%End of ss

О вычислении PLS2 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

Заключение

MatLab ­ это это очень популярный инструмент для анализа данных. По данным опроса, его используют до трети всех исследователей, тогда как программа the Unsrambler применяется только 16% ученых. Главным недостатком MatLab являются его высокая цена. Кроме того, MatLab хорош для рутинных расчетов. Отсутствие интерактивности делает его неудобным при выполнении поисковых, исследовательских расчетов для новых, неисследованных массивов данных.