Виды моделей данных бд. Развитие языка SQL. блокировку базы данных, файла, записи, поля

Типы моделей баз данных

СУБД используют различные модели данных . Самые старые системы можно разделить на иерархические и сетевые базы данных - это пререляционные модели.

Иерархическая модель

В иерархической модели элементы организованы в структуры, связанные между собой иерархическими или древовидными связями. Родительский элемент может иметь несколько дочерних элементов. Но у дочернего элемента может быть только один предок.

«Система управления информацией » (Information Management System ) компании IMB - пример иерархической СУБД.

Иерархическая модель организует данные в форме дерева с иерархией родительских и дочерних сегментов. Такая модель подразумевает возможность существования одинаковых (преимущественно дочерних ) элементов. Данные здесь хранятся в серии записей с прикреплёнными к ним полями значений. Модель собирает вместе все экземпляры определённой записи в виде «типов записей » - они эквивалентны таблицам в реляционной модели, а отдельные записи — столбцам таблицы. Для создания связей между типами записей иерархическая модель использует отношения типа «родитель-потомок » вида 1:N . Это достигается путём использования древовидной структуры - она «позаимствована » из математики, как и теория множеств, используемая в реляционной модели.

Иерархические системы баз данных

Рассмотрим в качестве примера иерархической модели данных организацию, хранящую информацию о своём работнике: имя, номер сотрудника, отдел и зарплату. Организация также может хранить информацию о его детях, их имена и даты рождения.

Данные о сотруднике и его детях формируют иерархическую структуру, где информация о сотруднике – это родительский элемент, а информация о детях — дочерний элемент. Если у сотрудника три ребёнка, то с родительским элементом будут связаны три дочерних. В иерархической базе данных отношение «родитель-потомок » - это отношение «один ко многим ». То есть у дочернего элемента не может быть больше одного предка.

Иерархические БД были популярны, начиная с конца 1960-х годов, когда компания IBM представила свою СУБД «Система управления информацией. Иерархическая схема состоит из типов записей и типов «родитель-потомок »:

  • Запись - это набор значений полей.
  • Записи одного типа группируются в типы записей.
  • Отношения «родитель-потомок» - это отношения вида 1:N между двумя типами записей.
  • Схема иерархической базы данных состоит из нескольких иерархических схем.

Сетевая модель

В сетевой модели данных у родительского элемента может быть несколько потомков, а у дочернего элемента - несколько предков. Записи в такой модели связаны списками с указателями. IDMS («Интегрированная система управления данными ») от компании Computer Associates international Inc. - пример сетевой СУБД.

Иерархическая модель структурирует данные в виде древа записей, где есть один родительский элемент и несколько дочерних. Сетевая модель позволяет иметь несколько предков и потомков, формирующих решётчатую структуру.

Сетевая модель позволяет более естественно моделировать отношения между элементами. И хотя эта модель широко применялась на практике, она так и не стала доминантной по двум основным причинам. Во-первых, компания IBM решила не отказываться от иерархической модели в расширениях для своих продуктов, таких как IMS и DL/I . Во-вторых, через некоторое время её сменила реляционная модель, предлагавшая более высокоуровневый, декларативный интерфейс.

Популярность сетевой модели совпала с популярностью иерархической модели. Некоторые данные намного естественнее моделировать с несколькими предками для одного дочернего элемента. Сетевая модель как раз и позволяла моделировать отношения «многие ко многим». Её стандарты были формально определены в 1971 году на конференции по языкам систем обработки данных (CODASYL ).

Основной элемент сетевой модели данных - набор, который состоит из типа «запись-владелец », имени набора и типа «запись-член ». Запись подчинённого уровня («запись-член ») может выполнять свою роль в нескольких наборах. Соответственно, поддерживается концепция нескольких родительских элементов.

Запись старшего уровня («запись-владелец ») также может быть «членом » или «владельцем » в других наборах. Модель данных - это простая сеть, связи, типы пересечения записей (в IDMS они называются junction records , то есть «перекрёстные записи ). А также наборы, которые могут их объединять. Таким образом, полная сеть представлена несколькими парными наборами.

В каждом из них один тип записи является «владельцем » (от него отходит «стрелка» связи ), и один или более типов записи являются «членами » (на них указывает «стрелка» ). Обычно в наборе существует отношение 1:М , но разрешено и отношение 1:1 . Сетевая модель данных CODASYL основана на математической теории множеств.

Известные сетевые базы данных:

  • TurboIMAGE;
  • IDMS;
  • Встроенная RDM;
  • Серверная RDM.

Реляционная модель

В реляционной модели, в отличие от иерархической или сетевой, не существует физических отношений. Вся информация хранится в виде таблиц (отношений ) , состоящих из рядов и столбцов. А данные двух таблиц связаны общими столбцами, а не физическими ссылками или указателями. Для манипуляций с рядами данных существуют специальные операторы.

В отличие от двух других типов СУБД, в реляционных моделях данных нет необходимости просматривать все указатели, что облегчает выполнение запросов на выборку информации по сравнению с сетевыми и иерархическими СУБД. Это одна из основных причин, почему реляционная модель оказалась более удобна. Распространённые реляционные СУБД: Oracle , Sybase , DB2 , Ingres , Informix и MS-SQL Server .

«В реляционной модели, как объекты, так и их отношения представлены только таблицами, и ничем более ».

РСУБД - реляционная система управления базами данных, основанная на реляционной модели Э. Ф. Кодда. Она позволяет определять структурные аспекты данных, обработки отношений и их целостности. В такой базе информационное наполнение и отношения внутри него представлены в виде таблиц - наборов записей с общими полями.

Реляционные таблицы обладают следующими свойствами:

  • Все значения атомарны.
  • Каждый ряд уникален.
  • Порядок столбцов не важен.
  • Порядок рядов не важен.
  • У каждого столбца есть своё уникальное имя.

Некоторые поля могут быть определены как ключевые. Это значит, что для ускорения поиска конкретных значений будет использоваться индексация. Когда поля двух различных таблиц получают данные из одного набора, можно использовать оператор JOIN для выбора связанных записей двух таблиц, сопоставив значения полей.

Часто у полей будет одно и то же имя в обеих таблицах. Например, таблица «Заказы » может содержать пары «ID-покупателя » и «код-товара ». А в таблице «Товар » могут быть пары «код-товара » и «цена ». Поэтому чтобы рассчитать чек для определённого покупателя, необходимо суммировать цену всех купленных им товаров, использовав JOIN в полях «код-товара » этих двух таблиц. Такие действия можно расширить до объединения нескольких полей в нескольких таблицах.

Поскольку отношения здесь определяются только временем поиска, реляционные базы данных классифицируются как динамические системы.

Сравнение трёх моделей

Первая модель данных, иерархическая, имеет древовидную структуру («родитель-потомок »), и поддерживает только отношения типа «один к одному » или «один ко многим ». Эта модель позволяет быстро получать данные, но не отличается гибкостью. Иногда роль элемента (родителя или потомка ) неясна и не подходит для иерархической модели.

Вторая, сетевая модель данных , имеет более гибкую структуру, чем иерархическая, и поддерживает отношения «многие ко многим ». Но быстро становится слишком сложной и неудобной для управления.

Третья модель - реляционная - более гибкая, чем иерархическая и проще для управления, чем сетевая. Реляционная модель сегодня используется чаще всего.

Объект в реляционной модели определяется как позиция информации, хранимой в базе данных. Объект может быть осязаемым или неосязаемым. Примером осязаемого объекта может быть сотрудник организации, а примером неосязаемой сущности - учётная запись покупателя. Объекты определяются атрибутами - информационным отображением свойств объекта. Эти атрибуты также известны как столбцы, а группа столбцов - как ряд. Ряд также можно определить как экземпляр объекта.

Объекты связываются отношениями, основные типы которых можно определить следующим образом:

«Один к одному»

В этом виде отношений один объект связан с другим. Например, Менеджер -> Отдел .

У каждого менеджера может быть только один отдел, и наоборот.

«Один ко многим»

В моделях данных отношение одного объекта с несколькими. Например, Сотрудник -> Отдел .

Каждый сотрудник может быть только в одном отделе, но в самом отделе может быть больше одного сотрудника.

«Многие ко многим»

В заданный момент времени объект может быть связан с любым другим. Например, Сотрудник -> Проект .

Сотрудник может участвовать в нескольких проектах, и каждый проект может объединять несколько сотрудников.

В реляционной модели объекты и их отношения представлены двухмерным массивом или таблицей.

Каждая таблица представляет объект.

Каждая таблица состоит из рядов и столбцов.

Отношения между объектами представлены столбцами.

Каждый столбец представляет атрибут объекта.

Значения столбцов выбираются из области или набора всех возможных значений.

Столбцы, которые используются для связи объектов, называются ключевыми. Есть два типа ключей - первичные и внешние.

Первичные служат для однозначного определения объекта. Внешний ключ - это первичный ключ одного объекта, существующий как атрибут в другой таблице.

Преимущества реляционной модели данных:

  1. Простота использования.
  2. Гибкость.
  3. Независимость данных.
  4. Безопасность.
  5. Простота практического применения.
  6. Слияние данных.
  7. Целостность данных.

Недостатки:

  1. Избыточность данных.
  2. Низкая производительность.

Другие модели баз данных (ООСУБД)

В последнее время на рынке СУБД появились продукты, представленные объектными и объектно-ориентированной моделью данных, такие как Gem Stone и Versant ОСУБД. Также производятся исследования в области многомерных и логических моделей данных.

Особенности объектно-ориентированных систем управления базами данных (ООСУБД):

  • При интеграции возможностей базы данных с объектно-ориентированным языком программирования получается объектно-ориентированная СУБД.
  • ООСУБД представляет данные как объекты одного или нескольких языков программирования.
  • Такая система должна отвечать двум критериям: являться СУБД и должна быть объектно-ориентированной. То есть должна насколько это возможно соответствовать современным объектно-ориентированным языкам программирования. Первый критерий подразумевает: длительное хранение данных, управление вторичным хранилищем, параллельный доступ к данным, возможность восстановления, а также поддержку нерегламентированных запросов. Второй критерий подразумевает: сложные объекты, идентичность объектов, инкапсуляцию, типы или классы, механизм наследования, переопределение в сочетании с динамическим связыванием, расширяемость и вычислительную полноту.
  • ООСУБД дают возможность моделирования данных в виде объектов.

А также поддержку классов объектов и наследование свойств и методов классов подклассами и их объектами.

Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными - одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель - единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково - таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели - реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления ( полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL .

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности . Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор , называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты - текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая , не существует. В большой степени, поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных , связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Рассмотрим более подробно эти модели данных далее.

Иерархическая модель базы данных

Иерархические базы данных - самая ранняя модель представления сложной структуры данных. Информация в иерархической базе организована по принципу древовидной структуры, в виде отношений "предок- потомок ". Каждая запись может иметь не более одной родительской записи и несколько подчиненных. Связи записей реализуются в виде физических указателей с одной записи на другую. Основной недостаток иерархической структуры базы данных - невозможность реализовать отношения " многие-ко-многим ", а также ситуации, когда запись имеет несколько предков.

Иерархические базы данных . Иерархические базы данных графически могут быть представлены как перевернутое дерево , состоящее из объектов различных уровней. Верхний уровень ( корень дерева ) занимает один объект , второй - объекты второго уровня и так далее.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка ( объект , более близкий к корню) к потомку ( объект более низкого уровня), при этом объект -предок может не иметь потомков или иметь их несколько, тогда как объект - потомок обязательно имеет только одного предка. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows , с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол . На втором уровне находятся папки Мой компьютер , Мои документы, Сетевое окружение и Корзина , которые являются потомками папки Рабочий стол , а между собой является близнецами. В свою очередь , папка Мой компьютер является предком по отношению к папкам третьего уровня -папкам дисков ( Диск 3,5(А:), (С:), (D:), (Е:), (F:)) и системным папкам ( сканер , bluetooth и.т.д.) - на рис. 4.1 .


Рис. 4.1.

Организация данных в СУБД иерархического типа определяется в терминах: элемент, агрегат, запись ( группа ), групповое отношение , база данных .

Атрибут (элемент данных) - наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент данных также часто называют полем.
Запись - именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи - конкретная запись с конкретным значением элементов.
Групповое отношение - иерархическое отношение между записями двух типов. Родительская запись (владелец группового отношения) называется исходной записью, а дочерние записи (члены группового отношения) - подчиненными. Иерархическая база данных может хранить только такие древовидные структуры.

Корневая запись каждого дерева обязательно должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальное значение только в рамках группового отношения. Каждая запись идентифицируется полным сцепленным ключом, под которым понимается совокупность ключей всех записей от корневой, по иерархическому пути.

При графическом изображении групповые отношения изображают дугами ориентированного графа, а типы записей - вершинами ( диаграмма Бахмана).

Для групповых отношений в иерархической модели обеспечивается автоматический режим включения и фиксированное членство. Это означает, что для запоминания любой некорневой записи в БД должна существовать ее родительская запись .

Пример

Рассмотрим следующую модель данных предприятия (см. рис. 4.2): предприятие состоит из отделов, в которых работают сотрудники. В каждом отделе может работать несколько сотрудников, но сотрудник не может работать более чем в одном отделе.

Поэтому, для информационной системы управления персоналом необходимо создать групповое отношение, состоящее из родительской записи ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА, ЧИСЛО_РАБОТНИКОВ) и дочерней записи СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД). Это отношение показано на рис. 4.2 (а) (Для простоты полагается, что имеются только две дочерние записи).

Для автоматизации учета контрактов с заказчиками необходимо создание еще одной иерархической структуры: заказчик - контракты с ним - сотрудники, задействованные в работе над контрактом. Это дерево будет включать записи ЗАКАЗЧИК (НАИМЕНОВАНИЕ_ЗАКАЗЧИКА, АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА), ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ, НАИМЕНОВАНИЕ_ОТДЕЛА) (

Темы: логические модели баз данных, идентификация объектов и записей, поиск записей.

1. Иерархическая и сетевая модели данных.

Ядром любой базы данных является модель данных. Модель данных — совокупность структур данных и операций их обработки. По способу установления связей между данными различают иерархическую, сетевую и реляционную модели.

Иерархическая модель позволяет строить базы данных с древовидной структурой. В них каждый узел содержит свой тип данных (сущность) На верхнем уровне дерева в этой модели имеется один узел — «корень», на следующем уровне располагаются узлы, связанные с этим корнем, затем узлы, связанные с узлами предыдущего уровня и т д., причем каждый узел может иметь только одного предка (рис. 1)

Поиск данных в иерархической системе всегда начинается с корня. Затем производится спуск с одного уровня на другой пока не будет достигнут искомый уровень. Перемещения по системе от одной записи к другой осуществляются с помощью ссылок.

Использование ссылок для организации доступа к отдельным элементам структуры не позволяет сократить процедуру поиска, в основу которой положен последовательный перебор. Процедура поиска будет эффективнее, если будет предварительно установлен некоторый порядок перехода к следующему элементу дерева.

Основные достоинства иерархической модели — простота описания иерархических структур реального мира и быстрое выполнение запросов, соответствующих структуре данных, однако, они часто содержат избыточные данные. Кроме того, не всегда удобно каждый раз начинать поиск нужных данных с корня, а другого способа перемещения по базе в иерархических структурах нет.

Иерархические модели характерны для многих областей, однако во многих случаях отдельная запись требует более одного представления или связана с несколькими другими. В результате получаются обычно более сложные структуры по сравнению с древовидными. В сетевой структуре любой элемент может быть связан с любым другим элементом. Примеры сетевых структур приведены на рис. 2

Сетевую структуру можно описать с помощью исходных и порожденных элементов. Удобно представлять ее так, чтобы порожденные элементы располагались ниже исходных.

Желательно отличать простые и сложные сетевые структуры.

Если один информационный объект связан с целой совокупностью других объектов или все объекты связаны со всеми, то такая структура называется сложной.

Например, одна группа студентов связана со всеми студентами группы. Или в примере учебного заведения на рис. 3 каждый преподаватель может обучать много (теоретически всех) студентов, и каждый студент может обучаться у многих (теоретически всех) преподавателей. Поскольку на практике это, естественно, невозможно, приходится прибегать к некоторым ограничениям.


Некоторые структуры содержат циклы. Циклом считается ситуация, в которой предшественник узла является в то же время его последователем. Отношения «исходный — порожденный» образуют при этом замкнутый контур. Например, завод выпускает различную продукцию. Некоторые изделия производятся на других заводах-субподрядчиках. С одним контрактом может быть связано производство нескольких изделий. Представление этих отношений и образует цикл.

Иногда объекты связаны с другими объектами того же типа. Такая ситуация называется петлей. На рис. 4 приведены две достаточно распространенные ситуации, где могут использоваться петли. В массиве служащих специфицированы связи, существующие между некоторыми служащими. В базу данных списка материалов введено дополнительное усложнение: некоторые узлы сами состоят из узлов.

Разделение сетевых структур на простые и сложные необходимо потому, что сложные структуры требуют более сложных методов физического представления. Это не всегда является недостатком, поскольку сложную сетевую структуру можно (а в большинстве случаев и следует) преобразовать к простому виду.

Использование иерархической и сетевой моделей ускоряет доступ к информации в базе данных. Но поскольку каждый элемент данных должен содержать ссылки на некоторые другие элементы, требуются значительные ресурсы как дисковой, так и основной памяти ЭВМ. Недостаток основной памяти, конечно, снижает скорость обработки данных. Кроме того, для таких моделей характерна сложность реализации системы управления базами данных (СУБД).

2. Идентификация объектов и записей

В задачах обработки информации атрибуты именуют (обозначают) и приписывают им значения.

При обработке информации пользователь имеет дело с совокупностью объектов, информацию о свойствах каждого из которых надо сохранять (записывать) как данные, чтобы при решении задач их можно было найти и выполнить необходимые преобразования.

Таким образом, любое состояние объекта характеризуется совокупностью атрибутов, имеющих некоторое из значений в этот момент времени. Атрибуты фиксируются на некотором материальном носителе в виде записи. Запись — совокупность (группа) формализованных элементов данных (значений атрибутов, представленных в том или ином формате). Значение атрибута идентифицирует объект, т.е. использование значения в качестве поискового признака позволяет реализовать простой критерий отбора по условию сравнения.

Отдельный объект всегда уникален, поэтому запись, содержащая данные о нем, также должна иметь уникальный идентификатор, причем никакой другой объект не должен иметь такой же идентификатор. Поскольку идентификатор — суть значение элемента данных, в некоторых случаях для обеспечения уникальности требуется использовать более одного элемента. Например, для однозначной идентификации записей о дисциплинах учебного плана необходимо использовать элементы СЕМЕСТР и НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ, так как возможно преподавание одной дисциплины в разных семестрах.

Предложенная выше схема представляет атрибутивный способ идентификации содержания объекта. Она является достаточно естественной для хорошо структурированных (фактографических) данных. Причем, структурированность относится не только к форме представления данных (формат, способ хранения), но и к способу интерпретации значения пользователем (значение параметра не только представлено в предопределенной форме, но и обычно сопровождается указанием размерности величины, что позволяет пользователю понимать ее смысл без дополнительных комментариев). Таким образом, фактографические данные предполагают возможность их непосредственной интерпретации.

Однако этот способ практически не подходит для идентификации слабо структурированной информации, связанной с объектами, имеющими идеальную природу. Такие объекты зачастую определяются логически и опосредованно — через другие объекты. Для их описания используются естественные или искусственные. Соответственно, для понимания смысла пользователю необходимо использовать соответствующие правила языка, и располагать некоторой информацией, позволяющей идентифицировать и связать получаемую информацию с наличным знанием. То есть процесс интерпретации такого рода данных имеет опосредованный характер и требует использования дополнительной информации, причем такой, которая не обязательно присутствует в формализованном виде в базе данных.

3. Поиск записей

Программисту или пользователю необходимо иметь возможность обращаться к отдельным, нужным ему записям или отдельным элементам данных.

Для этого можно использовать следующие способы:

Задать машинный адрес данных и в соответствии с физическим форматом записи прочитать значение. Это случаи, когда программист должен быть «навигатором».

Сообщить системе имя записи или элемента данных, которые он хочет получить, и возможно, организацию набора данных. В этом случае система сама произведет выборку (по предыдущей схеме), но для этого она должна будет использовать вспомогательную информацию о структуре данных и организации набора. Такая информация по существу будет избыточной по отношению к объекту, однако общение с базой данных не будет требовать от пользователя знаний программиста.

В качестве ключа , обеспечивающего доступ к записи, можно использовать идентификатор — отдельный элемент данных. Ключ , который идентифицирует запись единственным образом, называется первичным (главным).

В том случае, когда ключ идентифицирует некоторую группу записей, имеющих определенное общее свойство, ключ называется вторичным (альтернативным) . Набор данных может иметь несколько вторичных ключей, необходимость введения которых определяется требованием оптимизации процессов нахождения записей по соответствующему ключу.

Иногда в качестве идентификатора используют составной сцепленный ключ — несколько элементов данных, которые в совокупности, например, обеспечат уникальность идентификации каждой записи набора данных.

При этом ключ может храниться в составе записи или отдельно. Например, ключ для записей, имеющих неуникальные значения атрибутов, для устранения избыточности целесообразно хранить отдельно.

Введенное понятие ключа является логическим и его не следует путать с физической реализацией ключа — индексом, обеспечивающим доступ к записям, соответствующим отдельным значениям ключа.

Один из способов использования вторичного ключа в качестве входа — организация инвертированного списка, каждый вход которого содержит значение ключа вместе со списком идентификаторов соответствующих записей. Данные в индексе располагаются в возрастающем или убывающем порядке, поэтому алгоритм нахождения нужного значения довольно прост и эффективен, а после нахождения значения запись локализуется по указателю физического расположения. Недостатком индекса является то, что он занимает дополнительное пространство и его надо обновлять каждый раз, когда удаляется, обновляется или добавляется запись.

В общем случае инвертированный список может быть построен для любого ключа, в том числе составного.

В контексте задач поиска можно сказать, что существуют два основных способа организации данных: Первый способ представляет прямую организацию массива, второй — является инверсией первого. Прямая организация массива удобна для поиска по условию «Каковы свойства указанного объекта?», а инвертированная — для поиска по условию «Какие объекты обладают указанным свойством?».

Классификация моделей данных базируется на понятиях о взаимосвязи объектов. Между таблицами базами данных могут существовать четыре типа различных связей: «один к одному»; «один ко многим»; «многие ко многим».

При отношении «один к одному » в каждый момент времени одной записи таблицы «1» соответствует не более одной записи таблицы «2». Например, одному клиенту соответствует только один номер в гостинице. Этот тип связи используют не очень часто, поскольку такие данные могут быть помещены в одну таблицу. Такую связь используют для разделения очень широких таблиц, например, для разделения таблицы с информацией о сотрудниках фирмы на две – служебной и личной информацией.

Связь с отношением «один ко многим » характеризует то, что одному экземпляру информационного объекта «1» соответствует 0,1,2 и более экземпляров объекта «2». Такое отношение существует, например, между таблицами «Поставщики» и «Товары», т.е. каждый поставщик может продавать различные товары, но у каждого товара есть единственный поставщик.

Отношение «многие ко многим » предполагает, что в каждый момент времени одной записи таблицы «1» соответствует несколько экземпляров таблицы «2» и наоборот. Примером может служить связь между информационными объектами «Клиент» и «Банк». Один клиент хранит средства во многих банках. Один банк обслуживает многих клиентов. Реализуется отношение с помощью третьей (связующей) таблицы, ключ которой состоит, по крайней мере, из двух полей, которые являются полями внешнего ключа в исходных таблицах.

Известны три основных типа моделей данных.

Иерархическая модель. Предполагает организацию данных в виде древовидной структуры. Дерево представляет собой иерархию элементов. На самом верхнем уровне структуры находится корень дерева. У одного дерева может быть только один корень, остальные - узлы, называемые порожденными. Каждый узел имеет исходный, находящийся выше него.

Иерархическая базой данных представляет собой как множество отношений и веерных отношений, для которых соблюдаются два ограничения: существует единственное отношение, называемое корневым, которое не является зависимым ни в одном веерном отношении; все остальные отношения (кроме корневого) являются зависимыми отношениями только в одном веерном отношении.

Записью иерархической БД называется множество значений, содержащее одно значение корневого отношения и все вееры, доступные от него. В нашем примере запись образуют данные, относящиеся к одному факультету.

Сетевая модель . В основу модели положены сетевые структуры, в которых любой элемент может быть связан с любым другим элементом. Информационными конструкциями в модели являются отношения и веерные отношения. Последние подразделяют на основные и зависимые. Веерным отношением W(R,S) называется пара отношений R и S и связь между ними при условии, что каждое значение S связано с единственным значением R . Отношение R называют исходным (основным), а S - порожденным (зависимым).

В структуру основного и зависимого отношений вводится дополнительный атрибут, называемый адресом связи, который обеспечивает соответствие каждого значения зависимого отношения S с единственным значением основного отношения R . Адрес связи хранит начальный адрес или номер следующей обрабатываемой записи. Кольцевая структура адресов связи называется веером . Роль "ручки" веера играет запись основного отношения.

Недостатком рассмотренных выше моделей данных является то, что при добавлении новых вершин или установлении новых связей возникают проблемы выгрузки данных из базы и загрузки их в новую структуру. При этом возможна утрата данных или возникновения неопределенных значений данных.

Реляционная модель. В основе структуры данных этоймодели лежит аппарат реляционной алгебры и теории нормализации. Модель предполагает использование двумерных таблиц (отношений).

Ограничения на отношения реляционной модели: каждый элемент таблицы представляет собой простой элемент данных; в таблице нет одинаковых строк; столбцам (полям) присвоены уникальные имена; все строки таблицы имеют одну и ту же структуру; в таблице порядок строк и столбцов произволен.

Связь между таблицами осуществляется посредством значений одного или нескольких совпадающих полей. Каждая строка таблицы в реляционных базах данных уникальна. Для обеспечения уникальности строк используют ключи, которые содержат одно или несколько полей таблицы. Ключи хранятся в упорядоченном виде, что обеспечивает прямой доступ к записям таблицы во время поиска.

Классификация по модели данных (по структуре организации).

История.

История возникновения и развития технологий баз данных может рассматриваться как в широком, так и в узком аспекте.

В широком аспекте понятие истории баз данных обобщается до истории любых средств, с помощью которых человечество хранило и обрабатывало данные. В таком контексте упоминаются, например, средства учёта царской казны и налогов в древнем Шумере (4000 г. до н.э.), узелковая письменность инков, клинописи, содержащие документы Ассирийского царства и т.п. Следует помнить, что недостатком этого подхода является размывание понятия «база данных» и фактическое его слияние с понятиями «архив» и даже «письменность».

История баз данных в узком аспекте рассматривает базы данных в традиционном (современном) понимании. Эта история начинается с 1955 года, когда появилось программируемое оборудование обработки записей. Программное обеспечение этого времени поддерживало модель обработки записей на основе файлов. Для хранения данных использовались перфокарты. Оперативные сетевые базы данных появились в середине 1960-х. Операции над оперативными базами данных обрабатывались в интерактивном режиме с помощью терминалов. Простые индексно-последовательные организации записей быстро развились к более мощной модели записей, ориентированной на наборы. За руководство работой Data Base Task Group (DBTG), разработавшей стандартный язык описания данных и манипулирования данными, Чарльз Бахман получил Тьюринговскую премию.

В это же время в сообществе баз данных COBOL (один из старейших языков программирования (первая версия в 1959), предназначенный, в первую очередь, для разработки бизнес-приложений) была проработана концепция схем баз данных и концепция независимости данных.

Следующий важный этап связан с появлением в начале 1970-х реляционной модели данных, благодаря работам Эдгара Ф. Кодда. Работы Кодда открыли путь к тесной связи прикладной технологии баз данных с математикой и логикой. За свой вклад в теорию и практику Эдгар Ф. Кодд также получил премию Тьюринга.

Сам термин database (база данных) появился в начале 1960-х годов, и был введён в употребление на симпозиумах, организованных фирмой SDC (System Development Corporation) в 1964 и 1965 годах, хотя понимался сначала в довольно узком смысле, в контексте систем искусственного интеллекта. В широкое употребление в современном понимании термин вошёл лишь в 1970-е годы.

Основные классификации БД.

При работе с БД СУБД поддерживает в памяти компьютера некоторую модель предметной области, называемую моделью данных. Модель данных определяется типом СУБД.



Иерархическая модель . Иерархически организованные данные встречаются в повседневной жизни очень часто. Например, структура высшего учебного заведения. Иерархическая модель данных - представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Верхний уровень занимает один объект, второй - объекты второго уровня и т. д. Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможно, когда объект-предок не имеет потомков или имеет их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами. Основным недостатком данной модели является необходимость использования той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных привело к созданию более общей модели – сетевой.

Сетевая модель. Сетевой подход к организации данных является расширением иерархического подхода. К основным понятиям сетевой модели базы данных относятся: уровень, элемент (узел), связь. Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. В сетевой структуре каждый элемент может быть связан с любым другим элементом. Сетевые базы данных подобны иерархическим, за исключением того, что в них имеются указатели в обоих направлениях, которые соединяют родственную информацию. Несмотря на то, что эта модель решает некоторые проблемы, связанные с иерархической моделью, выполнение простых запросов остается достаточно сложным процессом. Также, поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

(Данная модель отличается от иерархической тем, что каждый порожденный элемент может иметь более одного поражающего элемента. Т.е. в сетевой структуре каждый элемент может быть связан с любым другим элементом).

Реляционная модель . Реляционная база данных - база данных, основанная на реляционной модели данных. Была разработана Коддом в 1969-70 годы на основе математической теории отношений и опирается на систему понятий, важнейшими из которых являются таблица , отношение , поле , запись . Эта модель получила наибольшее признание. Слово «реляционная» происходит от английского «relation», что означает отношение. Отношения удобно представлять в виде таблиц. Т.е. в качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране. Некорректное и нестрогое использование термина «таблица» вместо термина «отношение» нередко приводит к недопониманию. Наиболее частая ошибка состоит в рассуждениях о том, что РМД имеет дело с «плоскими», или «двумерными» таблицами, тогда как таковыми могут быть только визуальные представления таблиц. Отношения же являются абстракциями, и не могут быть ни «плоскими», ни «неплоскими»

Реляционной считается такая БД, в которой все данные представлены для пользователя в виде таблиц, и все операции на БД сводятся к манипуляциям с таблицами .

Поле (столбец) – элемент данных, отражающий атрибут объекта (например, если объектом является студент, то его атрибутами будут ФИО, адрес, телефон и т.д.). У полей базы данных есть параметры , определяющие тип сохраняемых данных, способ их отображения и набор производимых над ними операций. Одним из важных параметров поля является тип данных.

Объектная и объектно-ориентированная. Объектно-ориентированная база данных - база данных, в которой данные оформлены в виде моделей объектов, включающих прикладные программы, которые управляются внешними событиями. Результатом совмещения возможностей (особенностей) баз данных и возможностей объектно-ориентированных языков программирования являются Объектно-ориентированные системы управления базами данных (ООСУБД). ООСУБД позволяет работать с объектами баз данных также, как с объектами в программировании на ООЯП. ООСУБД расширяет языки программирования, прозрачно вводя долговременные данные, управление параллелизмом, восстановление данных, ассоциированные запросы и другие возможности. Объектно-ориентированные базы данных обычно рекомендованы для тех случаев, когда требуется высокопроизводительная обработка данных, имеющих сложную структуру.

Объектно-реляционная - реляционная СУБД (РСУБД), поддерживающая некоторые технологии, реализующие объектно-ориентированный подход.