Сетевой фильтр для аудио — своими руками. Способы борьбы с помехами в импульсных блоках питания

Немецкая фирма Epcos (бывшее подразделение Siemens по производству пассивных компонентов) располагает широким спектром изделий для решения вопросов обеспечения электромагнитной совместимости (ЭМС) электрических или электронных устройств.

Значительную подгруппу ЭМС компонентов Epcos составляют фильтры, предназначенные для защиты устройств от высокочастотных электромагнитных помех (радиопомех).

Электромагнитные помехи (ЭМП) возникают в результате функционирования устройств, предназначенных для генерации или преобразования электроэнергии. Они представляют собой электромагнитные поля в пространстве, окружающем такие технические средства (ТС).

Основными источниками высокочастотных помех являются импульсные блока питания (бытовая электронная техника, промышленные и медицинские аппараты и др.), цепи нелинейных

Для борьбы с помехами в цепях соседних ТС, а также узлов и блоков в пределах отдельных ТС используют фильтры ЭМП. В общем случае, обычно фильтры ЭМП представляют собой ФНЧ и могут устанавливаться как непосредственно у источника помех, так и перед приемником помех (рецептором). Фильтры ЭМП Epcos (сетевые фильтры) рассчитаны на подавление помех, поступающих по проводам двух- или трехфазной сети на вход защищаемого устройства, то есть это фильтры «приемной стороны». Настоящая статья посвящена сетевым фильтрам Epcos, каждый из которых представляет собой отдельный законченный узел, устанавливаемый перед приемным устройством. Все рассматриваемые фильтры пропускают беспрепятственно напряжение частоты сети 50/60 Гц.

Напряжение синфазной помехи возникает как разность потенциалов между фазным (сигнальным) проводом, обратным проводом (так называемая масса или нейтральный провод) и землей (корпус прибора, радиатор и т. п.). Ток синфазной помехи имеет одинаковое направление в прямом и обратном проводах сети.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она именуется помехой дифференциального типа (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или помехой общего типа (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен килогерц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Помехи, возникающие в несимметричных цепях, называются несимметричными. Для противофазной помехи несимметричной является цепь с разделенной (симметричной относительно земли) нагрузкой.

Для силовых цепей более характерна несимметричная нагрузка, но, например, сами источники высокочастотных помех (преобразователи на IGBT транзисторах и т. п.) могут генерировать асимметричные (синфазные) помехи. С другой стороны, синфазные помехи при определенных условиях преобразуются в противофазные.

Фильтры ЭМП характеризуются комплексом параметров. Остановимся на параметрах, характеризующих фильтры ЭМП Epcos:

  1. Число проводов сети: 2, 3 (4).
  2. Номинальное (сетевое) напряжение: 250 (220), 440 (380) В и др.
  3. диапазон подавления помех (полоса частот заграждения);
  4. уровень подавления помех (стандартный; с усиленным подавлением и т.п.);
  5. номинальный ток, А;
  6. тип помех, подавляемых фильтром:
    • общего типа;
    • дифференциального типа;
    • несимметричные помехи;
  7. тип разъема;
  8. тип корпуса;
  9. климатическая категория (диапазон температур, в котором фильтр удовлетворяет требованиям (стандартам) по остальным техническим характеристикам).

Конструкции фильтров различаются в зависимости от типа помех. Так, для компенсации симметричной помехи, когда искажения напряжения возникают между фазными проводами сети, используют так называемый du/dt-фильтр НЧ, содержащий помехоподавляющие X-конденсаторы. Заметим, что X-конденсаторами называют такие конденсаторы, которые шунтируют провода линии между собой на высокой частоте.

Ввиду того, что при малом внутреннем сопротивлении источника помехи, ее устранение потребовало бы чрезмерно больших емкостей, необходимых для обеспечения заданного деления напряжения, на практике последовательно конденсатору включают дроссели, что увеличивает сопротивление по последовательной схеме. В результате образуется так называемый Т-образный (или П-образный) фильтр НЧ.

На высоких частотах, с целью ограничения собственной емкости, дроссель нередко исполняют в виде набора отдельных индуктивностей (секций или так называемых «бусин», английское название - beads), соединяемых последовательно. На высоких частотах могут применяться ферритовые дроссели, например, для частот 30, 50 и 100 МГц Epcos серийно выпускает дроссели/бусины серии B8248x в чип исполнении типоразмеров 0603…1806, рассчитанные на ток 0,05…4 А. У Epcos также широко представлены аналогичные дроссели в выводном исполнении. На более высоких частотах достаточное реактивное сопротивление можно обеспечить малой индуктивностью. При этом для получения дросселя силовой кабель достаточно пропустить через группу ферритовых колец.

На рис. 1 представлена эквивалентная схема du/dt-фильтра ЭМП. Он выполняет процедуру вычитания дифференцированного сигнала из исходного. В результате фильтр сглаживает пики и исключает выбросы напряжения, обусловленные симметричной помехой. Однако он почти не влияет на напряжение помехи, существующее между проводами сети и заземлением, а также и на ток утечки.

Рис. 1

Наряду с Х-конденсаторами и обычными дросселями в фильтрах ЭМП Epcos применяют связанные (с общим сердечником) катушки индуктивности двух типов.

Тококомпенсированные дроссели подавления ЭМП Epcos обычно выполняются на кольцевом ферритовом сердечнике. В них используются две катушки (два провода) для двухпроводной сети, три - для трехпроводной и т. п. При этом встречная намотка проводов геометрически может быть реализована их сонаправленной намоткой на две половины ферритового кольца.

Z-образный дроссель фирмы Epcos выполняется намоткой двух проводов на кольцевом сердечнике, изготовленном из металлического порошка и имеющем высокий порог насыщения, что линеаризует ВАХ катушек и уменьшает опасность искажений, связанных с их нелинейностью.

Ниже приводится ряд конкретных примеров фильтров ЭМП Epcos с принципиальными схемами и пояснением особенностей.

Пример A1: du/dt-фильтр ЭМП Epcos серии B84110-B c подавлением синфазной помехи (без Y-конденсаторов).

Данный фильтр используется для защиты импульсных блоков питания, телевизоров, компьютеров, промышленного и портативного оборудования. Применение фильтров асимметричных помех, в частности, значительно снимает ограничения по длине кабеля, подводимого к двигателю от преобразователя при промышленном применении.

Пример А2: фильтр ЭМП Epcos серии SIFI-D (номер B84114-D) c подавлением синфазной помехи и Y-конденсаторами6 (в дополнение к Х-конденсаторам фильтра B84110-B). Резистор на входе (рис. 3), установленный параллельно Х-конденсатору, предназначен для его разряда (конденсатора большой емкости).

Для компенсации нескольких видов помех ставится комбинация дросселей (последовательная и т. п.).

Пример А3: фильтр ЭМП Epcos серии SIFI-E (номер B84115-E). Он отличается от предыдущего дополнительно подключенным Z-образным дросселем для дополнительного ослабления симметричной помехи (рис. 4).

На рис. 5 приведены сравнительные характеристики вносимого затухания (по симметричным помехам) для двух серий фильтров. Из него видно, что первый фильтр имеет значительно меньший уровень подавления частот в полосе до нескольких сотен килогерц.


Рис. 5

Кроме связанных катушек в составе фильтров ЭМП Epcos часто присутствует многозвенный (проходной) конденсатор. Собственная индуктивность такого конденсатора весьма мала. При этом он может компенсировать как противофазную, так и синфазную помехи.

Фирма Epcos предлагает фильтры ЭМП, рассчитанные на подавление помех в широком диапазоне высоких и сверхвысоких частот, начиная от частоты примерно 10 кГц вплоть до 40 ГГц и выше. При этом средняя ширина полосы частот подавления всех фильтров составляет около 1 МГц. Среди различных моделей фильтров ЭМП Epcos можно выделить, в частности, специальные, с заданным током утечки.

Параметры фильтра накладывают отпечаток на возможные области его применения. Область применения конкретного фильтра Epcos более точно можно определить из фирменного каталога и на сайте www.epcos.com в Интернете. Ниже перечислен ряд сфер (но не все возможные), где целесообразно применение фильтров ЭМП Epcos.

1. Модульные системы автоматизированного (плавного) пуска приводов электродвигателей («Активный терминал»/AFE) с помощью мощных полупроводниковых ключей (IGBT-транзисторов), управляемых постоянным напряжением. Ключи коммутируются постоянным напряжением с выхода преобразователей напряжения (переменное/постоянное). Например:

  • станки с ЧПУ;
  • лифты и т. п.

2. Преобразователи напряжения электрогенераторов (ветряных электростанций и т. п.).

3. Транспорт, например:

  • конверторные приводы современных городских рельсовых средств, в частности, трамваи;
  • метро, электропоезда и т. п.;
  • транспортные средства, требующие малого тока утечки (при сложной процедуре заземления), в частности троллейбусы и т. п.;
  • скоростные поезда (дальние).

4. Приводы сталепрокатных станов (помехи при мощной коммутации, а также регулировке скорости вращения приводов подачи листа).

5. Конвейерные (лентопротяжные) линии.

6. Фильтры для импульсных блоков питания и UPS.

7. Насосы.

8. Системы нагрева, вентиляции и кондиционирования (HVAC-системы).

9. Фильтры для подавления наводок сигналов в установках/шкафах с большой концентраций блоков электронного оборудования (при малом объеме пространства).

10. При использовании силовых кабелей в качестве проводников для связных коммуникаций (домашний Интернет, а также охранные системы с ограниченным числом проводов в кабеле ввода).

11. Фильтры для передачи данных и телефонных линий (ISDN и т. п.).

Примеры применения фильтров ЭМП

Домашний Интернет: передача данных внутри дома и между домом и силовой подстанцией (рис. 6). Подавление помех при использовании силовых кабелей в качестве проводников связных коммуникаций. В отсутствии фильтра ЭМП, радиоэлектронное оборудование абонента зашумлено наводками от сетевого напряжения.


Рис. 6

Приведенная на рис. 7 схема используется для преобразователей напряжения электрогенераторов. Сам преобразователь необходим из-за того, что параметры сигнала, например амплитуда напряжения, формируемого на выходе генератора, обычно не соответствуют параметрам сети. Фильтры же ЭМП защищают генератор (к примеру, ветряной электростанции) от проникновения высокочастотных помех из преобразователя напряжения.


Рис. 7

Модульные системы автоматизированного плавного пуска приводов электродвигателей «Активный терминал»/AFE (рис. 8).


Рис. 8

IGBT-транзисторы, активизируемые простым постоянным напряжением с выхода преобразователя, обеспечивают быстрое подключение или отключение приводов двигателей значительной мощности. На входе преобразователя - сетевое трехфазное синусоидальное напряжение, а на выходе - постоянное напряжение. Однако быстрая коммутация силовой цепи является источником высокочастотных помех. В результате проникновения помехи на вход, напряжение между фазами сети искажается (возникает помеха симметричного типа). Уровень асимметричной помехи также может быть значительным из-за протяженного кабеля от преобразователя напряжения до внешней сети. Фильтр8 ЭМП Epcos, установленный на входе преобразователя, компенсирует практически без остатка обе помехи, «развязывая» преобразователь и внешнюю сеть.

Муниципальный рельсовый транспорт (трамваи). Фильтр ЭМП устанавливается между преобразователем напряжения электродвигателя и питающей (контактной) линией (рис. 9).


Рис. 9

В заключение можно констатировать широкие и разнообразные возможности фильтров ЭМП фирмы Epcos для решения задач ЭМС силовых ТС.

Для предотвращения помех от электро - и радиоприборов необходимо снабдить их фильтром для подавления помех от питающей сети, расположенным внутри аппаратуры, что позволяет бороться с помехами в самом их источнике.

Если не удастся отыскать готовый фильтр, его можно сделать самостоятельно. Схема помехоподавляющего фильтра представлена на рисунке ниже:

Фильтр двухкаскадный. Первый каскад выполнен на основе продольного трансформатора (двухобмоточного дросселя) Т1, второй представляет собой высокочастотные дроссели L1 и L2. Обмотки трансформатора Т1 включены последовательно с линейными проводами питающей сети. По этой причине низкочастотные поля частотой 50 Гц в каждой обмотке имеют противоположные направления и взаимно компенсируют друг друга. При воздействии помехи на провода питания, обмотки трансформатора оказываются включенными последовательно, а их индуктивное сопротивление XL растет с увеличением частоты помех: XL = ωL = 2πfL, f - частота помех, L - индуктивность включенных последовательно обмоток трансформатора.

Сопротивление конденсаторов C1, С2, наоборот, уменьшается с ростом частоты (Хс =1/ωС =1/2πfC), следовательно, помехи и резкие скачки «закорачиваются» на входе и выходе фильтра. Такую же функцию выполняют конденсаторы СЗ и С4.

Дроссели LI, L2 представляют еще одно последовательное дополнительное сопротивление для высокочастотных помех, обеспечивая их дальнейшее ослабление. Резисторы R2, R3 уменьшают добротность L1, L2 для устранения резонансных явлений.

Резистор R1 обеспечивает быстрый разряд конденсаторов C1-С4 при отключении сетевого шнура от питающей сети и необходим для безопасного обращения с устройством.

Детали сетевого фильтра размещены на печатной плате, показанной на рисунке ниже:

Печатная плата рассчитана на установку промышленного продольного трансформатора от блоков персональных компьютеров. Можно изготовить трансформатор самостоятельно, выполнив его на ферритовом кольце проницаемостью 1000НН...3000НН диаметром 20...30 мм. Кромки кольца обрабатывают мелкозернистой шкуркой, после чего кольцо обматывают фторопластовой лентой. Обе обмотки наматывают в одном направлении проводом ПЭВ-2 диаметром 0,7 мм и имеют по 10...20 витков. Обмотки размещены строго симметрично на каждой половине кольца, зазор между выводами должен быть не менее 3...4 мм. Дроссели L2 и L3 также промышленного производства, намотаны на ферритовых сердечниках диаметром 3 мм и длиной 15 мм. Каждый дроссель содержит три слоя провода ПЭВ-2 диаметром 0,6 мм, длина намотки 10 мм. Чтобы витки не сползали, дроссель пропитан эпоксидным клеем. Параметры намоточных изделий выбраны из условия максимальной мощности фильтра до 500 Вт. При большей мощности размеры сердечников фильтра и диаметр проводов необходимо увеличить. Придется изменить и размеры печатной платы, однако всегда следует стремиться к компактному размещению элементов фильтра.

В импульсных источниках питания помехи возникают при переключении ключевых элементов. Эти помехи наводятся на кабель питания, подключенный к сети переменного тока. Поэтому необходимо принимать меры для их подавления.

Типовое решение сетевого фильтра электромагнитных помех для импульсного источника питания

Для подавления помех, проникающих через кабель питания в первичную цепь из импульсного источника питания, применяется приведенная на рисунке 9 схема.

Рисунок 9 - Подавления помех, проникающих через кабель

Дифференциальные и синфазные помехи

Помехи бывают двух типов: дифференциальные и синфазные. Ток дифференциальной помехи, наведенный на оба провода линии питания, протекает по ним в противоположных направлениях, как показано на рисунке 10. Ток синфазной помехи протекает по всем линиям в одном направлении, смотреть рисунок 11.

Рисунок 10 - Дифференциальная помеха


Рисунок 11 - Синфазная помеха

Функциональное назначение элементов сетевого фильтра

На рисунках, представленных ниже, приведены примеры использования различных элементов фильтра и графики, иллюстрирующие эффект от их применения. Приведенные графики показывают изменение интенсивности дифференциальных и синфазных помех импульсного источника питания относительно уровня индустриальных помех. На рисунке 12 представлены графики сигналов в отсутствие фильтра на входе импульсного источника питания. Как видно из графика, уровень дифференциальных и синфазных помех достаточно высок. Рисунок 13 иллюстрирует пример использования фильтрующего X-конденсатора. На графике видно заметное снижение уровня дифференциальных помех.

На рисунке 14 представлены результаты совместного использования X-конденсаторов и Y-конденсаторов. График наглядно показывает эффективное подавление как синфазных, таки дифференциальных помех. Применение X-конденсаторов и Y-конденсаторов в комбинации с синфазным дросселем (дросселем для подавления синфазных помех) показано на рисунке 15. График отражает дальнейшее снижение уровня и дифференциальных, и синфазных помех. Это происходит потому, что реальный синфазный дроссель имеет некоторую дифференциальную индуктивность.


Рисунок 12 - Без фильтра


Рисунок 13 - С использованием Х-конденсатора


Рисунок 14 - С использованием Х-конденсатора и Y-конденсатора


Рисунок 15 - С использованием Х-конденсатора, Y-конденсатора и синфазного дросселя

Пример подавления помех в мобильном телефоне

Источники излучаемых помех

Помехи, создаваемые блоком обработки сигналов, проходят в ВЧ блок, что приводит к значительному ухудшению чувствительности. Блок обработки сигналов мобильного телефона, который обычно построен на ИС обработки сигналов в основной полосе частот, управляет различными сигналами, такими как речевой сигнал и сигнал для ЖК-дисплея. ИС обработки сигналов является источником значительных помех, поскольку работает на высокой частоте и к ней подсоединены множество линий передачи данных. При прохождении помех по линиям передачи данных или шинам питания/GND из блока обработки сигналов в ВЧ блок происходит ухудшение его чувствительности, в результате увеличивается частота появления ошибочных битов (Bit Error Rate - BER).

Компоненты для подавления помех в мобильных телефонах

Для улучшения параметра BER (Bit Error Rate), то есть уменьшения процента принятых ошибочных битов, необходимо подавить помехи, проникающие из блока обработки сигналов в ВЧ блок. Для этого следует установить EMI-фильтры на всех шинах, соединяющих данные блоки. Кроме того, важно также экранировать блок обработки сигналов, поскольку излучаемый им уровень помех в последних моделях мобильных телефонов значительно возрос.

Установка фильтров на шине управления дисплеем

Шина управления ЖК-дисплеем содержит множество линий передачи сигналов, переключающихся одновременно, что вызывает значительное увеличение импульсного тока, протекающего в цепях земли (GND) и питания. Поэтому необходимо ограничивать ток, протекающий по сигнальным линиям. Обычно для этого используются матрицы ферритовых чип-бусин серии BLA31 и чип-фильтры EMIFIL® серии NFA31G с резистором. Если по конструктивным причинам применение указанных компонентов невозможно, то для подавления помех, проходящих через гибкий кабель ЖК-дисплея, следует использовать EMC-абсорберы серии EA.

Улучшение экранирования

Обычно на внутреннюю поверхность пластикового корпуса мобильного телефона наносят токопроводящее покрытие. При расширении функциональности мобильного телефона уровень помех от блока обработки сигналов также увеличивается. Поэтому необходимо экранировать блок обработки сигналов с такой же тщательностью, как и ВЧ блок. При разработке корпуса мобильного телефона, для снижения импеданса на высокой частоте нужно стараться обеспечить как можно большую площадь контакта между частями корпуса. Для улучшения экранирования, в блоке обработки сигналов, где это, возможно, следует применять металлические экранирующие элементы или EMC-абсорберы.

Жесткая функциональная зависимость между коэффициентами , импульсной помехи открывает возможности такого построения решающей схемы приемного устройства, при котором наличие импульсных помех не увеличивает или почти не увеличивает вероятность ошибочного приема сигнала. В идеализированном случае, когда импульсы представляются дельта-функциями, возможно полное подавление импульсной помехи. При реальных импульсах конечной длительности помеха может быть подавлена почти полностью при условии, что и что за время приема одного элемента сигнала число мешающих импульсов достаточно мало.

Рис. 8.4. Схема, иллюстрирующая принципиальную возможность компенсации импульсных помех.

Пусть на вход приемного устройства (рис. 8.4) поступают сигнал, занимающий условную полосу частот , и импульсная помеха. Воздействие на прием неизбежно существующей флюктуационной помехи сначала не будем учитывать. Подадим принимаемый сигнал с помехами на два перемножителя, на которые поступают опорные напряжения и , где - целое число, такое, что частота лежит вне полосы частот сигнала. Например, можно выбрать или, как сделано на рис. 8.4, . Выходное напряжение перемножителей интегрируется в интервале , в результате чего получаются напряжения, пропорциональные и , которые подаются на специальную схему, вычисляющую значения и . Эти данные позволяют восстановить мешающий импульс, если он достаточно точно аппроксимируется дельта-функцией. Поскольку на интегрирование затрачивается время , восстановленный импульс оказывается задержанным на это время по сравнению с импульсом, поступившим на вход приемного устройства. Если принимаемый сигнал пропустить через линию задержки на время и вычесть из него восстановленный мешающий импульс, можно, в принципе, получить сигнал, освобожденный от импульсной помехи.

Приведенная схема, конечно, очень сложна для практического осуществления и рассматривается здесь лишь как доказательство принципиальной возможности полного подавления импульсной помехи в случае идеальных дельта-импульсов.

Ниже будут рассмотрены практически осуществимые методы полного или почти полного подавления импульсных помех. Однако прежде чем приступать к их описанию, полезно на примере идеализированной схемы рис. 8.4 уяснить некоторые общие закономерности, характерные для всех таких методов. Начнем с учета недостатков этой схемы и принципиальных возможностей их устранения.

Прежде всего, заметим, что схема рис. 8.4 позволяет скомпенсировать мешающий импульс только в том случае, если на протяжении длительности элемента сигнала он является единственным. Этот недостаток можно в значительной степени устранить путем усложнения схемы. Одна из возможностей заключается в том, что вместо разложения сигнала с помехой в ряд Фурье в интервале длительностью применяется разложение в интервале , где - некоторое целое число. При этом в отличие от схемы рис. 8.4, опорное напряжение должно иметь частоту, кратную не , а и по-прежнему лежащую вне полосы частот сигнала; интегрирование должно производиться за время , и на такое же время должна рассчитываться линия задержки. При этом могут быть скомпенсированы все мешающие импульсы, если в каждом из интервалов имеется не более одного импульса.

Другая возможность подавления мешающих импульсов, расположенных произвольно на протяжении элемента сигнала, заключается в использовании пар опорных напряжений и при различных с частотами, лежащими вне полосы частот сигнала. Это позволяет определить значений , которые могут быть подставлены в уравнении (8.34) для вычисления неизвестных и . Вычисление в принципе может быть произведено электронной схемой, и компенсация осуществляется так же, как на рис. 8.4.

Оба эти варианта позволяют скомпенсировать не более чем некоторое число мешающих импульсов, на которое рассчитана схема. Очевидно, создать схему, способную скомпенсировать любое сколь угодно большое число импульсов, принципиально невозможно, так как с увеличением импульсная помеха приближается к нормальному белому шуму.

Вернемся к схеме рис. 8.4, предназначенной для компенсации одиночных мешающих импульсов, и учтем влияние неизбежно присутствующей флюктуационной помехи. Её действие, как легко видеть, сказывается в том, что на схему вычисления параметров и поступают не коэффициенты и мешающего импульса, а суммы и , где и - коэффициенты при частоте разложения в ряд Фурье флюктуационной помехи на интервале . В результате этого параметры и будут вычислены неточно и полной компенсации мешающего импульса не произойдет. Более того, если на протяжении данного элемента сигнала мешающий импульс на вход приемника не поступает, компенсирующий импульс все равно будет сформирован под воздействием соответствующей составляющей флюктуационной помехи и прибавится с обратным знаком к сигналу. Поскольку коэффициенты ряда Фурье белого шума взаимно независимы, это не приведет к компенсации шума, а, наоборот, увеличит его спектральную плотность.

Таким образом, можно сказать, что схема рис. 8.4, осуществляя компенсацию импульсной помехи, как бы увеличивает интенсивность флюктуационной помехи. Впрочем, это увеличение спектральной плотности флюктуационной помехи обычно невелико по сравнению с .

Для уменьшения указанного недостатка можно прибегнуть к усложнению схемы, применив некоторое количество устройств для вычисления параметров и использующих различные частоты . Усреднив полученные значения этих параметров, можно повысить точность формирования компенсирующего импульса и свести увеличение интенсивности флюктуационной помехи к ничтожной величине. Если при этом нужно иметь возможность компенсировать импульсов, то потребуется пар опорных напряжений, перемножителей и интеграторов и схем, каждая из которых вычисляет параметры , с последующим усреднением по всем схемам.

Таким образом, компенсация импульсной помехи осуществляется тем более эффективно, чем более широкая полоса частот используется для анализа колебаний на входе приемного устройства. Этот вывод, как мы увидим из последующих примеров, является общим для всех известных методов подавления импульсных помех. Основанием для этого может служить тот факт, что главным отличием ряда (8.23) от аналогичного ряда для флюктуационной помехи является жесткая связь между коэффициентами . Используя наличие этой связи, которая, в частности, проявляется в малой длительности мешающего импульса, можно тем или иным методом обнаружить, проанализировать и устранить импульсную помеху. Естественно, что это возможно осуществить тем легче и полнее, чем большее количество коэффициентов ряда Фурье подвергнется анализу, т. е. чем более широкая полоса частот принимается во внимание в процессе приема.

Заметим, что все сказанное является справедливым лишь до тех пор, пока в расширенной полосе частот отсутствуют сосредоточенные помехи. В противном случае к коэффициентам , используемым для вычисления параметров и прибавятся составляющие сосредоточенной помехи и компенсирующий импульс окажется резко искаженным. В результате вместо компенсации импульсной помехи произойдет увеличение вероятности ошибки под действием сосредоточенной помехи, лежащей вне полосы частот, занимаемой сигналом.

Отсюда следует, что мероприятия по подавлению импульсных помех могут увеличить воздействие сосредоточенных помех, лежащих вне полосы частот сигнала. Этот недостаток проявляется в той или иной мере при всех методах подавления импульсных помех. Он обычно не может быть устранен полностью, и поэтому при построении схемы приемного устройства приходится принимать компромиссные решения, при которых импульсные помехи подавляются не полностью, но в значительной степени, а сосредоточенные помехи влияют на прием лишь не намного более чем в схеме, построенной без учета импульсных помех.

Обратим внимание на еще одну важную особенность схемы рис. 8.4, заключающуюся в использовании нелинейного устройства для вычисления параметров и . Это устройство должно быть нелинейным, что вытекает из нелинейного характера уравнений (8.25) или (8.34) относительно указанных параметров. Необходимость нелинейного устройства следует также из того, что коэффициенты ряда Фурье импульсной помехи взаимно не коррелированы и, следовательно, не связаны друг с другом какими-либо линейными зависимостями.

В реальных условиях мешающие импульсы не являются дельта-функциями. Обычно их можно рассматривать как результат прохождения дельта-функции через некоторую линейную цепь . В общем случае негауссовская помеха может быть описана, если для любого заданы -мерные функции распределения. Однако при сохранении импульсного характера помехи задача может быть упрощена. Пусть существует некоторое число , такое, что длительность мешающего импульса практически не превышает , где - по-прежнему длительность элемента сигнала. Если достаточно велико, то анализ элемента приходящего сигнала можно в первом приближении заменить анализом его значений отсчетов в дискретные моменты времени через интервалы . Значения помехи в этих точках можно считать независимыми, и поэтому для нахождения функции правдоподобия и построения правила решения достаточно знать одномерное распределение вероятностей помехи. Это сделано в работе , содержание которой вкратце заключается в следующем.

Пусть одномерная плотность распределения вероятностей помехи равна . Ограничиваясь значениями принимаемого сигнала в моменты времени , где , - целое число, можно представить функцию правдоподобия для сигнала в виде

, (8.35)

Для простоты ограничимся рассмотрением двоичной системы, тогда оптимальное правило приема по критерию максимального правдоподобия заключается в выборе решения о том, что передавался , если

. (8.36)

Обозначим и разложим каждое слагаемое (8.36) в ряд Тейлора вокруг . Это всегда возможно, если функция непрерывна, ограничена и всюду отлична от нуля, что мы будем предполагать. Тогда правило решения можно представить в виде

, (8.37)

. (8.38)

Функция может быть получена в результате прохождения принимаемого сигнала через безынерционный нелинейный четырехполюсник с характеристикой.

Таким образом, решающую схему можно представить в виде бесконечного числа ветвей, каждая из которых содержит нелинейный четырехполюсник (8.39) и пару фильтров, согласованных соответственно с и (рис. 8.5).

Ограничиваясь конечным числом ветвей в схеме рис. 8.5, получим субоптимальную решающую схему. В частности, если мощность сигнала мала по сравнению с мощностью помехи в анализируемой полосе частот (что, как правило, выполняется в широкополосном тракте приемника), можно ограничиться одной ветвью и получить субоптимальную схему, изображенную на рис. 8.6.

Плотность распределения вероятностей импульсных помех во многих случаях хорошо аппроксимируется функцией

, (8.40)

.

Рис. 8.6. Субоптимальная решающая схема для приема двоичных сигналов в канале с импульсными помехами.

В частном случае, когда , распределение (8.40) становится нормальным. Это имеет место, когда импульсы проходят через узкополосный фильтр и следуют друг за другом столь часто, что вызываемые ими реакции полностью прекрываются. При этом, как и следовало ожидать, нелинейный четырехполюсник в схеме рис. 8.6 вырождается в линейный. Более того, в схеме рис. 8.5 все остальные четырехполюсники, кроме первого, оказываются разорванными, так как из (8.39) при имеем . Таким образом, оптимальная решающая схема вырождается в котельниковскую.

В другом крайнем случае, полностью непрерывающихся импульсов, и характеристикой четырехполюсника в схеме рис. 8.6 будет . При получим четырехполюсник с характеристикой , т. е. идеальный ограничитель.

Как показано в , субоптимальная схема рис. 8.6 позволяет существенно подавить импульсную помеху. Это подавление тем значительнее, чем меньше . При происходит полное подавление импульсной помехи.


Импульсные блоки питания в большинстве случаев создают основную электромагнитную "пелену" помех в полосе частот 1...100 МГц, т. е. во всех КВ-диапазонах и в начале УКВ. Дело осложняется и тем, что число таких блоков исчисляется сегодня десятками в одном жилище (компьютеры, мониторы, освещение, различные зарядные устройства и т. п.) и сотнями в одном доме - в ближней зоне КВ-антенны любительской радиостанции.

На рис. 1 приведена упрощённая схема импульсного блока питания. Точнее, узел преобразования напряжения показан предельно упрощённо, а вот цепи подавления помех, наоборот, полностью. И общий случай питания - от трёхпроводной (с отдельным проводом электротехнического заземления) розетки.

Рис. 1. Схема импульсного блока питания

Дроссели L1 и L2 подавляют синфазные помехи, идущие от блока питания и подключённого к нему устройства (например, трансивера с антенной) в сетевой провод и далее в линии электропитания. Обмотки дросселя L1 обычно имеют индуктивность около 30 мГн. Это основные элементы подавления помех в питающей сети. Поэтому они должны быть качественными и обладать высоким импедансом во всей подавляемой полосе, начиная от частоты переключения транзистора блока питания (десятки-сотни килогерц) до нескольких мегагерц.

А в ответственных случаях (чувствительные приёмники и их антенны рядом) - до десятков-сотен мегагерц. Один дроссель это сделать не может. Поэтому в таких случаях последовательно с L1 и L2 включают такие же дроссели, но с индуктивностью в 50...500 раз меньшей, чем указано на рис. 1. Эти дополнительные дроссели должны иметь высокую собственную резонансную частоту, чтобы эффективно подавлять верхние частоты требуемой полосы.

Конденсатор С1 подавляет низкочастотные дифференциальные помехи, идущие от блока питания в сеть. Высокочастотные синфазные помехи подавляют керамические конденсаторы малой ёмкости С2 и С3, включённые параллельно С1.

Но это не единственная функция С2 и С3. Они также замыкают синфазную составляющую импульсов переключения на корпус устройства.

Разберёмся с этим подробнее. На стоке силового транзистора присутствуют прямоугольные импульсы с размахом около 300 В (выпрямленное и отфильтрованное напряжение сети) с частотой несколько десятков-сотен килогерц. Фронты этих импульсов короткие (меньше микросекунды). Во время этих фронтов ключевой транзистор находится в активном режиме и греется, поэтому фронты стараются сделать короче. Но это расширяет полосу создаваемых помех. И всё равно в мощных блоках питания транзистор нагревается. Для охлаждения его закрепляют на теплоотводе, в качестве которого в некоторых случаях используют металлический корпус блока питания (про экранирование не забываем). Транзистор изолируют от корпуса прокладкой. Ёмкость стока на корпус может достигать нескольких десятков пикофарад.

А теперь посмотрим, что у нас получилось: транзисторный генератор прямоугольных импульсов с размахом 300 В через конденсатор в несколько десятков пикофарад (конструктивный между стоком охлаждаемого транзистора и корпусом устройства на рис. 1 показан штриховыми линиями) подключён к корпусам и блока питания, и питаемого им устройства. Мы считаем, что это корпус с нулевым потенциалом, а на самом деле там протекает большой ВЧ-ток через конструктивную ёмкость теплоотвода. Это приведёт к появлению большого синфазного тока (а значит, и помех) на корпусах всех устройств, подключённых к нашему источнику питания.

Чтобы такого не было, установлены конденсаторы C2 и С3. Фронты импульсов со стока транзистора, просочившиеся через конструктивную ёмкость теплоотвода, через эти конденсаторы и диоды моста (точнее, через диод, открытый в данный момент) замыкаются на исток транзистора. Этот путь для них оказывается проще, чем синфазно растекаться по корпусам.

Конденсаторы С2-С4 оказываются включёнными между безопасными для человека цепями (выходами и корпусом источника) и силовой сетью 230 В. Для обеспечения безопасности людей номинальное напряжение этих конденсаторов делают очень высоким (несколько киловольт), а их конструкцию такой, чтобы в случае аварии они обрывались, а не замыкались. Конденсаторы, устанавливаемые на месте С2-С4, выпускаются как отдельный тип и называются Y-конденсаторами. Конденсаторы с маркировкой Y1 рассчитаны на импульсы напряжения до 8 кВ, Y2 - до 5 кВ.

С точки зрения подавления помех, ёмкость конденсаторов С2-С4 желательно иметь побольше. Но надо иметь в виду, что при двухпроводной сети (или обрыве провода заземления в трёхпроводной) выходы и корпус источника через конденсаторы С2-С4 оказываются соединёнными с сетевым фазным проводом. Поэтому их суммарная ёмкость должна выбираться так, чтобы ток частотой 50 Гц на корпус не превышал 0,5 мА (неприятно, но не смертельно). С учётом возможного максимального напряжения в сети, разброса, температурных уходов и старения получается не более 5000 пФ.

Рассмотрим теперь ошибки, допускаемые в фильтрации помех импульсных источников.

Иногда, для экономии, ставят только один из двух конденсаторов С2 или С3. Идея, на первый взгляд, кажется разумной: всё равно ведь они соединены параллельно через большую ёмкость конденсатора С1. Но на высоких частотах конденсаторы большой ёмкости совсем не являются коротким замыканием, а имеют заметный индуктивный импеданс. Поэтому такая экономия может привести к тому, что на десятках мегагерц (выше резонансной частоты С1, которая окажется невелика, поскольку это конденсатор большой ёмкости) заметно снизится подавление синфазного тока, протекающего на корпус.

Встречается отсутствие конденсатора С4 - или производитель решает, что можно С4 не устанавливать, так как в его трансформаторе ёмкость мала, или пытливый потребитель выкусывает, чтобы от источника не пощипывало током утечки 50 Гц через этот конденсатор. Внешними цепями эта проблема не лечится (хотя хороший внешний развязывающий дроссель по выходным цепям снижает остроту проблемы), надо ставить С4 на его законное место.

Отсутствие С2, С3 может быть допустимо, но только если выполняются все три следующих условия сразу: сеть двухпроводная, корпус блока питания не имеет контакта с корпусами питаемых устройств (пластмассовый, например), силовой транзистор установлен не на теплоотводе-корпусе. Если хотя бы одно из условий нарушено, С2 и С3 должны быть.

Установка перемычек вместо основного развязывающего дросселя L1 редко, но всё же встречается в дешёвых источниках плохих производителей. Экономят, видимо. Лечится это установкой нормального дросселя. В крайнем случае такой дроссель можно сделать, намотав сетевой шнур на большом ферритовом магнитопроводе.

Перемычка вместо L2 встречается, увы, часто, даже у приличных производителей. Видимо, полагают, что раз в двухпроводной сети этот дроссель не нужен (а там он действительно не требуется, току некуда течь), то без него можно обойтись и в трёхпроводной. Увы, нет, поскольку это открывает прямую дорогу в сеть для синфазных помех (и помех из сети на корпус). Исправляется установкой L2 в разрыв провода между разъёмом сети и платой. На худой конец допустим внешний дроссель на сетевом шнуре.

В завершение рассмотрим частую ошибку, которая относится не только к импульсным, но и ко всем блокам питания. Нередко слева (по рис. 1) от L1 устанавливают дополнительные конденсаторы, как показано на рис. 2. Они должны блокировать чужие помехи, идущие из сети в источник питания. Конденсатор С1 блокирует дифференциальные помехи и нам не мешает. А вот конденсаторы С2 и С3, замыкающие синфазные помехи в сетевых проводах на земляной провод, могут стать причиной соединения по ВЧ корпуса устройства и силовых (фазы и нуля) проводов сети. Это произойдёт, если среднюю точку С2 и С3 соединить с корпусом устройства, как показано штриховой линией красного цвета на рис. 2. Делать так нельзя (хотя печально, часто именно так и подключают). ВЧ синфазные помехи из сети пойдут через С2 и С3 на корпус устройства. И назад: синфазные токи устройства (например, трансивера с антенной) потекут в сеть. Правильное подключение средней точки С2 и С3 должно быть только к выводу заземления трёхпроводной розетки, но не к корпусу устройства, т. е. к левому выводу дросселя L2, как показано линией зелёного цвета на рис. 2.

Рис. 2. Схема блока питания

Если используется двухпроводная питающая сеть, то проверьте, нет ли в вашем блоке питания конденсаторов с проводов сети на корпус устройства. И если есть, удалите их, так как это прямая дорога для ВЧ синфазных токов из сети в ваше устройство и назад.

А если сеть трёхпроводная, то установите дроссель L2 между корпусом своего устройства и землёй сети (он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С2, С3 по рис. 2) переместите на землю сети.

Сетевой фильтр, показанный на рис. 2 с конденсаторами С1-С3, является общим случаем для питания любых устройств, генерирующих радиочастотные помехи, например КВ-передатчиков.


Дата публикации: 16.07.2017

Мнения читателей
  • Перець / 16.03.2019 - 10:57
    Нічого не запутано.На мал.1 С2 і С3 знаходяться після дросселя L1. А на мал.2 C2 і C3 знаходяться до дросселя L1. Тому і точка заземлення різна. P.S. Прізвище автора статті - Гончаренко, а не Гочарко.
  • Андрей / 15.05.2018 - 02:55
    Запутанно как-то, на рис.1 С2,С3 идут на корпус прибора, а на рис.2 они идут землю. Как правильно?