Схема регулятора напряжения 220в. Регулятор мощности для паяльника – разнообразие вариантов и схемы изготовления

Симисторные регуляторы мощности работают, используя фазовое управление. Они могут применяться, для изменения мощности различных электрических устройств работающих используя переменное напряжение.

Среди приборов могут быть электрические лампы накалывания, нагревательные приборы, электродвигатели переменного тока, трансформаторные сварочные аппараты, и многие другие. Они имеют большой диапазон регулировки, что дает им большой диапазон применения, в том числе и в быту.


Описание и принцип работы

Работа прибора основана на регулировании задержки включения симистора, когда происходит переход сетевого напряжения через ноль. Симистор в начале полупериода пребывает в положении закрыто. После того как вырастает напряжение положительной полуволны конденсатор заряжается со сдвигом по фазе от напряжения сети.

Этот сдвиг определяют значения сопротивления резисторов P1, R1, R2, и емкости конденсатора C1. При достижении на конденсаторе пороговой величины, включается симистор. Он становится проводящим, пропуская напряжения, этим он шунтирует цепь с резисторами и конденсаторами. Когда полупериод проходит через 0, симистор запирается.

Затем, когда конденсатор зарядится, вновь при отрицательной волне напряжения открывается. Такая работа симистора возможна благодаря его структуре. Он имеет пять слоев полупроводников с управляющим электродом. Что дает ему возможность менять местами анод с катодом. Говоря проще, его можно представить в виде двух тиристоров с встречно-параллельным подключением.


Область применения

Симисторные регуляторы мощности нашли свое применение не только в быту, но и во многих отраслях промышленности. В частности они успешно заменяют громоздкие релейно-контактные схемы управления. Помогают устанавливать оптимальные токи в автоматических сварных линиях, и во многих других отраслях.

Что же касается использования этих приборов в быту, то его использование самое разнообразное. От регулирования напряжение на лампы накалывания, до регулирования скорости вращения вентилятора. В двух словах диапазон насколько разнообразный, что его непросто описать.

Виды симисторных регуляторов мощности

Говоря об этих приборах, следует отметить, что все они работают по одному принципу. Главное их отличие это мощность, на которую они рассчитаны. Вторым отличием будет схема управления. Некоторые виды симистором могут потребовать более тонкой настройки управляющих сигналов. Управление может быть самым разнообразным, от конденсатора и пары резисторов, до современного микроконтроллера.

Схема

В регуляторах мощности может применяться много различных схем. Самой простой схемой считается применение переменного резистора, а самой сложной современного микроконтроллера. Если его использовать в домашних условиях, то можно остановиться на самой простой.

Её будет достаточно для большинства потребностей. Кроме регулировки освещенности, часто регулятор используют для . Те, кто любит заниматься дома электротехникой, имеют необходимость регулировать температуру паяльника.

Делать это с помощью переменных резисторов неудобно, плюс к этому идут большие потери электроэнергии. Лучшим выходом будет использование симисторного регулятора.

Как собрать регулятор

Для сборки возьмем простейшую принципиальную схему. В этой схеме используется симистор VD2 – ВТВ 12-600В (600 – 800 В, 12 А), резисторы: R1 -680 кОм, R2 – 47 кОм, R3 – 1.5 кОм, R4 – 47 кОм. Конденсаторы: С1 – 0,01 мФ, С2 – 0,039 мФ.

Чтобы собрать такую схему своими руками, вам понадобится делать определенные действия в правильном порядке:

  1. Необходимо приобрести все детали с перечня представленного выше.
  2. Вторым этапом будет разработка печатной платы. При разработке следует учесть, что часть деталей будет выполнена навесным монтажом. А часть деталей установится непосредственно в плату.
  3. Создание платы начинается с прорисовки рисунка с расположением деталей и контактных дорожек между деталями. Затем рисунок переносят на заготовку платы. Когда рисунок перенесен на плату, то далее все идет по известной методике. Травление платы, сверление отверстий под детали, лужение дорожек на плате. Многие используют для получения рисунка платы современными компьютерными программами, такими как Sprint Layout, но если у вас их нет ничего страшного. В данном случае мы имеем небольшую схему. Её можно сделать вручную.
  4. Когда плата готова, вставляем в подготовленные отверстия необходимые радиодетали детали, укорачиваем кусачками длину контактов до необходимой и начинаем пайку. Для этого прогреваем паяльником место контакта на плате, подносим к нему припой, когда припой расплывётся по поверхности в точке контакта, убираем паяльник, даем охладиться припою. При этом все детали должны оставаться на местах, не двигаться. При пайке следует соблюдать меры безопасности. В первую очередь надо беречься от ожогов, их может причинить контакт с паяльником, или брызги раскаленного припоя или флюса. Следует иметь одежду, максимально защищающую все участки тела. А для защиты глаз, необходимо надеть защитные очки. Место пайки должно быть в проветриваемом помещении, поскольку в процессе работы могут появляться едкие газы.
  5. Заключительным этапом сборки будет размещения полученной платы в коробку. Какую выбрать коробку, это будет напрямую зависеть от типа вашего регулятора. В случае с нашей схемой будет достаточно коробки размером с пластмассовую розетку. Небольшое количество деталей, самая большая из них переменный резистор, занимают мало места, и помещаются в маленькое пространство.
  6. Последним шагом будет проверка и настройка прибора. Для этого понадобится измерительный прибор для контроля напряжения, и устройство для нагрузки, в нашем случае паяльник. Вращая ручку регулятора, надо исследовать, насколько плавно меняется напряжения на выходе. При необходимости можно нанести метки возле резистора регулировки.


Цена

Рынок изобилует большим количеством предложений, с различным уровнем цен. На цену симисторных регуляторов мощности в первую очередь влияют несколько параметров:

  1. Мощность изделия, чем мощнее мощность, тем будет дороже ваш прибор.
  2. Сложность схемы управления, в самых простых схемах, основную стоимость ложится симисторы. В сложных схемах управления, где применены микроконтроллеры цена может вырасти из-за них. Они дают дополнительные возможности, соответственно за большую цену. Так регулятор на резисторе с показателями напряжения 220 В, мощность 2500 Вт. стоит 1200 рублей, а на микроконтроллере с такими же параметрами 2450 руб.
  3. Бренд изготовителя. Иногда за раскрученный бренд можно отдать на 50 % больше.

Сейчас можно встретить регуляторы мощности собранные по различным схемам. У каждой из них будут свои положительные стороны и недостатки. Современные регуляторы делятся на два типа, микропроцессорные и аналоговые. Аналоговые регуляторы можно отнести к системам экономного класса. Они известны со времен СССР, просты в исполнении и дешевые. Самым главным их недостатком есть постоянный контроль хозяина, или оператора.

Приведем простой пример, вам надо на выходе иметь напряжения 170 В., Когда вы выставляли это напряжения, подающее напряжение было 225 В, а теперь представим, что входящее напряжение изменилось на 10 В, соответственно измениться напряжение на выходе.

Если величина выходного напряжения влияет на процесс, то могут возникнуть проблемы. Кроме перепада подающего напряжения, на выходное могут влиять параметры самого регулятора. Так как со временем меняться емкость конденсатора, на переменный резистор может влиять влажность окружающей среды, добиться стабильной его работы невозможно.

В регуляторах на микропроцессорах такой проблемы нет. В них реализована обратная связь, позволяющая оперативно регулировать управляющий сигнал.

Одним из важных моментов длительной эксплуатации будет ремонт и сервис. Микропроцессорные регуляторы представляют собой сложное изделия, для его ремонта потребуются специализированные сервисные центры. Аналоговые регуляторы легче поддаются ремонту. Его может сделать любой радиолюбитель в домашних условиях.

Делать окончательный выбор по симисторному регулятору мощности можно после изучений условий для его работы. Когда вам не нужна большая точность на выходе, то резонно отдать предпочтения аналоговому прибору, экономя при этом деньги. Когда на выходе необходима точность, не экономьте, покупайте микропроцессорный прибор.


Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Эти регуляторы напряжения сети широко известны и успешно применяются для регулировки яркости свечения ламп, температуры нагревателей, кипятильников, жала паяльника, регулировки тока заряда аккумулятора и так далее. В этой статье рассмотрены самые простые схемы таких регуляторов, показаны испытания в работе.

В основном наиболее распространены три схемы:

  1. Тиристорный регулятор на двух тиристорах, четырех диодах и двух конденсаторах.
  1. Тиристорный регулятор на двух тиристорах, двух динисторах и двух конденсаторах.

  1. Симисторный регулятор . Эта схема имеет минимальное количество деталей, так как симистор, это в принципе два тиристора в одном корпусе и он один работает на две полуволны, отрицательную и положительную, в то время как тиристор только на одну полуволну, и мы вынуждены были включать их встречно-параллельно, как и видно из предыдущих схем. Динистор DB3, также двунаправленный, в отличие от КН102.

Все схемы рабочие, выбрать можно ту, детали которой для вас доступнее. В свое время, очень давно, я выбрал схему 1, она по описанию регулирует напряжение от 40 В до 220В. Когда собрал, попробовал расширить пределы регулировки. Удалось добиться регулировки от 2 В до 215 В при напряжении сети 220 В. Изменены всего несколько номиналов резисторов и емкость одного конденсатора. Для удобства добавлен выключатель, предохранитель и вольтметр. Получилась вот такая схема, своего рода маленький ЛАТР (лабораторный автотрансформатор).

Недостатком является то, что при включении напряжение скачет до максимума, а затем устанавливается в соответствии с выставленным переменным резистором значением. Но это не слишком мешает если вы регулируете нагреватель, паяльник или лампу. Большим достоинством является плавная регулировка напряжения на нагрузке от 2-3 вольт до максимального значения, которое, как уже говорилось, всего на несколько вольт ниже напряжения сети. Если планируете регулировать напряжение на нагрузке с большими токами (5-7) А, тиристоры нужно установить на радиаторы. Их максимальный ток 10 А, но на пределе использовать не желательно.

Конструктивно тиристорный регулятор выполнен в алюминиевом корпусе, без печатной платы, навесным монтажом, на куске гетинакса.

Расположение основных деталей:

Минимальное напряжение на нагрузке несколько вольт, около 0 В.

Максимальное напряжение на нагрузке, на несколько вольт ниже напряжения сети.

Достоинство этой схемы – простота и надежность. Собрана в свое время из подручных деталей. Отработала без отказов много лет. В основном подключал нагрузки до 300 Вт, хотя иногда и больше.

Материал статьи продублирован на видео:

Пролог

Я уже описывал конструкцию Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных двигателей, но всё же не так хорошо, как бы этого хотелось.


В связи с ремонтом подобных регуляторов, я испытал одну из схем, которая оказалось более помехоустойчивой и простой в настройке, чем описанная ранее.


Но, расскажу обо всём по порядку.

Так вот, пришлось мне ремонтировать электропроводку вдали от родного дома. А именно, нужно было поменять выключатели с регуляторами мощности, или, как их там называют, диммеры (Dimmer).



В магазине новые выключатели с индикацией и регулировкой мощности стоили слишком дорого (45$ до налога). Так что, было решено временно заменить их более дешёвыми и менее функциональными выключателями, а неисправные диммеры отремонтировать. Ну, а так как на месте не было ни радиодеталей, ни необходимого инструмента, пришлось привести их домой. Вот в связи с этими мытарствами и родилась статья.


Приехав домой, я первым делом купил на местном радиорынке симисторы подходящей мощности BT139-800 всего по 0,65$ за штуку и вычертил электрическую схему диммера.


Ремонт симисторного регулятора – Dimmer-а

На чертеже изображена оригинальная электрическая схема промышленного диммера фирмы Leviton, предназначенного для работы в сети, напряжением 120 Вольт.

Проверка неисправных диммеров показала, что кроме самого симистора в них ничего не пострадало. Некоторые симисторы были пробиты, а некоторые оборваны. Один из диммером вышел из строя прямо у меня на глазах, когда внутри одной из ламп накаливания, вкрученной в люстру, произошло короткое замыкание.

И я бы не стал описывать процедуру замены симистора в этом регуляторе, если бы не «подводные камни», встретившиеся на этом пути.



Дело в том, что в ремонтируемых мною диммерах были установлены какие-то диковинные симисторы с надписью «68169». Мне не удалось найти на них даже даташита.

Кроме всего, у этих симисторов, размещённых в корпусе TO-220, контактная площадка оказалась изолированной от электродов симистора (триака). Хотя, как видите, контактная площадка у этих симисторов выполнена из меди и вовсе не покрыта пластиком, как это бывает у корпусов транзисторов. Доселе, я даже не знал, что существуют симисторы в таком удобном исполнении. Могу только предположить, что компания, выпускающая диммеры, получает данные компоненты по индивидуальному заказу, дабы усложнить ремонт своих неоправданно дорогих изделий.



Ещё одним «подарком» оказался метод крепления симисторов к радиатору с помощью пустотелых заклёпок. При использовании изолирующих прокладок, такой способ крепления применять нежелательно. Да и в плане ремонтопригодности он никуда не годится.

В общем, ремонт занял немало времени именно из-за проблем с установкой такого типа триаков, на которые диммер рассчитан не был.


Замена симистора (Triac-а) в диммере

Пустотелые заклёпки можно удалить с помощью сверла, заточенного под углом 90°, или с помощью кусачек-бокорезов. Но, чтобы не повредить радиатор, делать это нужно непременно со стороны расположения триака.


Радиаторы, изготовленные из очень мягкого алюминия, при клёпке были немного деформированы. Поэтому, пришлось ошкурить контактные поверхности наждачной бумагой.


  1. Винт М2,5х8.
  2. Шайба пружинная (гровер) М2,5.
  3. Шайба М2,5 – стеклотекстолит.
  4. Корпус симистора.
  5. Прокладка – фторопласт 0,1мм.
  6. Гайка М2,5.
  7. Шайба М2,5.
  8. Трубка (кембрик) Ø2,5х1,5мм.
  9. Шайба М2,5.
  10. Радиатор.

Так как я использовал триак, не имеющий гальванической развязки между электродами и контактной площадкой, то применил старый проверенный способ изоляции. На чертеже видно, как он реализуется.


А это те же детали гальванической развязки триака в натуральном виде.


Для предотвращения продавливания стенки радиатора в месте крепления симистора, под головку винта была подложена шайба. А у самого винта была сточена большая часть шляпки, чтобы последняя не цеплялась за ручку потенциометра, регулятора мощности.


Вот так выглядит симистор, изолированный от радиатора. Для улучшения теплоотвода, использовалась термопроводящая паста КПТ-8.


Что находится под кожухом диммера.


Снова в строю.


Схема регулятора мощности для управления освещением

На основе схемы фабричного регулятора мощности я собрал макет регулятора для напряжения нашей сети.

C1-C4 = 47n R4 = 100k VD1-VD3 = DB3
R1 = 30k R5 = 100k VS1 = BT139-800
R2 = 68k R6 = 1k
R3 = 390k L1 = 30µH

На чертеже изображена схема регулятора, адаптированная для работы в сети, напряжением 220 Вольт.

Собственно, эта схема отличается от оригинальной только параметрами нескольких деталей. В частности, в три раза был увеличен номинал резистора R1, примерно вдвое уменьшены номиналы R4 и R5, а 60-ти Вольтовый динистор был заменён двумя, включёнными последовательно, 30-ти Вольтовыми динисторами VD1, VD2.

Таким образом, если где-нибудь на диком Западе разжиться неисправными диммерами, то можно не только их отремонтировать, но и легко переделать под свои нужды.


Это работающий макет регулятора мощности. Не знаю, понадобится ли он мне в будущем, так как я уже давно перешёл на люминесцентные лампы. Но, если вдруг понадобится, то я буду точно знать, какую схему следует собрать.

Эта схема не требует подбора деталей и работает сразу. Единственная регулировка, которая может потребоваться, осуществляется изменением положения движка подстроечного резистора R4.

Сначала нужно установить движки потенциометров R4 и R5 в крайне-верхнее (по схеме) положение. Затем изменить положение движка R4 так, чтобы лампа загорелась с минимально-возможной яркостью, а потом чуть сдвинуть движок в обратном направлении. На этом настройку можно считать законченной.


Очень часто возникает потребность в регулировании яркости лампы в пределах определенной величины, как правило, от 20 до 100% яркости. Меньше 20 % не имеет смысла делать, поскольку светового потока лампа не даст, а произойдет только слабое свечение, которое может пригодится разве что для декоративных целей. Можно пойти в магазин и купить готовое изделие, но сейчас ценны на данные устройства мягко говоря неадекватные. Так как мы с вами мастера на все руки, то будем делать данные девайсы собственноручно. Сегодня рассмотрим несколько схем, благодаря которым вам станет понятно, как сделать диммер на 12 и 220 В своими руками.

На симисторе

Для начало рассмотрим схему светорегулятора, работающего от сети 220 Вольт. Данный тип устройств работает по принципу фазового смещения открывания силового ключа. Сердцем диммера является RC цепочка определенного номинала. Узел формирования управляющего импульса, симметричный динистор. И собственно сам силовой ключ, симистор.

Рассмотрим работу схемы. Резисторы R1 и R2 образуют делитель напряжения. Так как R1 является переменным, то с его помощью меняется напряжение в цепочке R2C1. Динистор DB3 включен в точку между ними и при достижении напряжения порога его открывания на конденсаторе C1 он срабатывает и подает импульс на силовой ключ симистор VS1. Он открывается и пропускает через себя ток, тем самым включает сеть. От положения регулятора зависит в какой момент волны фазы откроется силовой ключ. Это может быть и 30 Вольт в конце волны, и 230 Вольт в пике. Тем самым подводя часть напряжения в нагрузку. На графике ниже изображен процесс регулирования освещения диммером на симисторе.

На данных графиках значение (t*), это время за которое конденсатор заряжается до порога открывания, и чем быстрее он набирает напряжение, тем раньше включается ключ, и больше напряжение оказывается на нагрузке. Эта схема диммера проста и легко повторяется на практике. Рекомендуем просмотреть предоставленное ниже видео, в котором наглядно показывается, как сделать светорегулятор на симисторе:

Симисторный регулятор мощности на 1000 Вт

На тиристорах

При наличии кучи старых телевизоров и прочих вещей пылящихся в закромах очумельцев, можно не покупать симистор, а сделать простой светорегулятор на тиристорах. Схема немного отличается от предыдущей, тем что для каждой полуволны стоит свой тиристор, и тем самым свой динистор для каждого ключа.

Кратко опишем процесс регулирования. Во время положительной полуволны емкость C1 заряжается через цепочку R5, R4, R3. При достижении порога открывания динистора V3, ток через него попадает на управляющий электрод V1. Ключ открывается пропуская положительную полуволну через себя. При отрицательной фазе тиристор запирается, а процесс повторяется для другого ключа V2, заряжаясь через цепочку R1, R2, R5.

Фазные регуляторы - димеры можно использовать не только для регулировки яркостью ламп накаливания, а также для регулирования скорости вращения вентилятором вытяжки, сделать приставку для паяльника и регулировать таким образом температуру его жала. Также с помощью самодельного диммера можно регулировать обороты дрели или пылесоса и много других применений.

Видео инструкция по сборке:

Сборка тиристорного диммера

Важно! Данный способ регулирования не подходит для работы с люминесцентными, экономными компактными и светодиодными лампами.

Конденсаторный светорегулятор

На ряду с плавными регуляторами в быту получили распространение конденсаторные устройства. Работа данного девайса основана на зависимости передачи переменного тока от величины емкости. Чем больше емкость конденсатора, тем больше ток он пропускает через свои полюса. Данный вид самодельного диммера может быть довольно компактным, и зависит от требуемых параметров, емкости конденсаторов.

Как видно из схемы, есть три положения 100% мощности, через гасящий конденсатор и выключено. В устройстве используется неполярные бумажные конденсаторы, которые можно раздобыть в старой технике. О том, мы рассказали в соответствующей статье!

Ниже приведена таблица с параметрами емкость-напряжение на лампе.

На основе этой схемы можно самому собрать простой ночник, с помощью тумблера или переключателя управлять яркостью светильника.

На микросхеме

Для регулирования мощностью на нагрузку в цепях постоянного тока 12 Вольт, часто используют интегральные стабилизаторы - КРЕНки. Применение микросхемы упрощает разработку и монтаж устройств. Такой самодельный диммер прост в настройке и обладает функциями защиты.

С помощью переменного резистора R2 создается опорное напряжение на управляющем электроде микросхемы. В зависимости от выставленного параметра регулируется значение на выходе от максимума в 12В до минимума в десятые доли Вольта. Недостаток данных регуляторов в необходимости установки дополнительного радиатора для хорошего охлаждения КРЕН, поскольку часть энергии выделяется на нем в виде тепла.

Данный регулятор освещения был повторен мной и отлично справлялся со светодиодной лентой 12 Вольт, длиною три метра и возможностью регулировки яркости светодиодов от ноля до максимума. Для не очень ленивых мастеров можно предложить сделать диммер дома на интегральном таймере 555, который управляет силовым ключом КТ819Г, короткими ШИМ импульсами.

В таком режиме транзистор пребывает в двух состояниях: полностью открыт или полностью закрыт. Падение напряжения на нем минимальны и позволяют использовать схему с малым радиатором, что по сравнению с предыдущей схемой с регулятором КРЕН, выгодно отличается по габаритам и экономичности.