Метод ветвей и границ. Решение задачи коммивояжера с помощью метода ветвей и границ

5x 1 + 2x 2 ≤ 14
2x 1 + 5x 2 ≤ 16
x 1 , x 2 – целые числа
Z = 3x 1 + 5x 2 → max
Решение находим с помощью калькулятора .:
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Границы области допустимых решений
Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 3x 1 +5x 2 → max.
Построим прямую, отвечающую значению функции F = 0: F = 3x 1 +5x 2 = 0. Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.


Прямая F(x) = const (1) и (2)
5x 1 +2x 2 ≤14
2x 1 +5x 2 ≤16

Решив систему уравнений, получим: x 1 = 1.8095, x 2 = 2.4762
F(X) = 3*1.8095 + 5*2.4762 = 17.8095
Оптимальное значение переменной x 1 =1.81 оказалось нецелочисленным.
В первой из них к условиям задачи 11 добавляется условие х 1 ≥ 2, а к задаче 12 - условие х 1 ≤ 1.
Эта процедура называется ветвлением по переменной х 1 .


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≥2

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)


Прямая F(x) = const пересекает область в точке B. Так как точка B получена в результате пересечения прямых (1) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
5x 1 +2x 2 ≤14
x 1 ≥2


Откуда найдем максимальное значение целевой функции:
F(X) = 3*2 + 5*2 = 16

Решение задачи получилось целочисленным.
Новое значение текущего рекорда будет равно F(X) = 16.
Так как найденная точка является первым целочисленным решением, то ее и соответствующее ей значение ЦФ следует запомнить. Сама точка называется текущим целочисленным рекордом или просто рекордом, а оптимальное значение целочисленной задачи - текущим значением рекорда . Это значение является нижней границей оптимального значения исходной задачи Z*.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const (2) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 ≤1

Решив систему уравнений, получим: x 1 = 1, x 2 = 2.8
Откуда найдем максимальное значение целевой функции:
F(X) = 3*1 + 5*2.8 = 17

Оптимальное значение переменной x 2 =2.8 оказалось нецелочисленным.
Разбиваем задачу 12 на две подзадачи 121 и 122.
В первой из них к условиям задачи 121 добавляется условие х 2 ≥ 3, а к задаче 122 - условие х 2 ≤ 2.
Решим графически задачу 121 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≥3

(4)

x 1 ≥0

(5)

x 2 ≥0

(6)

Область допустимых решений представляет собой треугольник.
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (2) и (4) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 2 ≥3


Откуда найдем максимальное значение целевой функции:
F(X) = 3*0.5 + 5*3 = 16.5

Решим графически задачу 122 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≤2

(4)

x 1 ≥0

(5)

x 2 ≥0

(6)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (3) и (4) , то ее координаты удовлетворяют уравнениям этих прямых:
x 1 ≤1
x 2 ≤2

Решив систему уравнений, получим: x 1 = 1, x 2 = 2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*1 + 5*2 = 13

Текущий рекорд Z=16≥13, поэтому прекращаем ветвление из этой вершины

Разбиваем задачу 121 на две подзадачи 1211 и 1212.
В первой из них к условиям задачи 1211 добавляется условие х 1 ≥ 1, а к задаче 1212 - условие х 1 = 0.
Решим графически задачу 1211 как задачу ЛП.

Задача не имеет допустимых решений. ОДР представляет собой пустое множество.

Задача 1211 не имеет решения, поэтому для нее процесс ветвления прерываем.
Решим графически задачу 1212 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≥3

(4)

x 1 =0

(5)

x 1 ≥0

(6)

x 2 ≥0

(7)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (2) и (7) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 =0


Откуда найдем максимальное значение целевой функции:
F(X) = 3*0 + 5*3.2 = 16


Оптимальное значение переменной x 2 =2.48 оказалось нецелочисленным.
Разбиваем задачу 1 на две подзадачи 11 и 12.
В первой из них к условиям задачи 11 добавляется условие х 2 ≥ 3, а к задаче 12 - условие х 2 ≤ 2.
Эта процедура называется ветвлением по переменной х 2 .
Решим графически задачу 11 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 2 ≥3

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой треугольник.
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (2) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 2 ≥3

Решив систему уравнений, получим: x 1 = 0.5, x 2 = 3
Откуда найдем максимальное значение целевой функции:
F(X) = 3*0.5 + 5*3 = 16.5


Решим графически задачу 12 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 2 ≤2

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (1) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
5x 1 +2x 2 ≤14
x 2 ≤2

Решив систему уравнений, получим: x 1 = 2, x 2 = 2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*2 + 5*2 = 16


Текущий рекорд Z=16≥16, поэтому прекращаем ветвление из этой вершины
Оптимальное значение переменной x 1 =0.5 оказалось нецелочисленным.
Разбиваем задачу 11 на две подзадачи 111 и 112.
В первой из них к условиям задачи 111 добавляется условие х 1 ≥ 1, а к задаче 112 - условие х 1 = 0.
Решим графически задачу 111 как задачу ЛП. Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (2) и (6) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 =0

Решив систему уравнений, получим: x 1 = 0, x 2 = 3.2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*0 + 5*3.2 = 16


Текущий рекорд Z=16≥16, поэтому прекращаем ветвление из этой вершины
F(X) = 16
x 1 = 2
x 2 = 2

Дерево решения задачи

Здравствуй, Хабр! Реализовывая различные алгоритмы для нахождения гамильтонова цикла с наименьшей стоимостью, я наткнулся на публикацию , предлагающую свой вариант. Попробовав в деле, я получил неправильный ответ:

Дальнейшие поиски в Интернете не принесли ожидаемого результата: либо сложное для не-математиков теоретическое описание, либо понятное, но с ошибками.

Под катом вас будет ждать исправленный алгоритм и онлайн-калькулятор.

Сам метод, опубликованный Литтлом, Мерти, Суини, Кэрелом в 1963 г. применим ко многим NP-полным задачам, и представляет собой очень теоритеризованный материал, который без хороших знаний английского языка и математики сразу не применишь к нашей задаче коммивояжера.

Кратко о методе - это полный перебор всех возможных вариантов с отсеиванием явно неоптимальных решений.

Исправленный алгоритм, для нахождения действительно минимального маршрута

Алгоритм состоит из двух этапов:

Первый этап
Приведение матрицы затрат и вычисление нижней оценки стоимости маршрута r.
1. Вычисляем наименьший элемент в каждой строке (константа приведения для строки)
2. Переходим к новой матрице затрат, вычитая из каждой строки ее константу приведения
3. Вычисляем наименьший элемент в каждом столбце (константа приведения для столбца)
4. Переходим к новой матрице затрат, вычитая из каждого столбца его константу приведения.
Как результат имеем матрицу затрат, в которой в каждой строчке и в каждом столбце имеется хотя бы один нулевой элемент.
5. Вычисляем границу на данном этапе как сумму констант приведения для столбцов и строк (данная граница будет являться стоимостью, меньше которой невозможно построить искомый маршрут)
Второй (основной) этап
1.Вычисление штрафа за неиспользование для каждого нулевого элемента приведенной матрицы затрат.
Штраф за неиспользование элемента с индексом (h,k) в матрице, означает, что это ребро не включается в наш маршрут, а значит минимальная стоимость «неиспользования» этого ребра равна сумме минимальных элементов в строке h и столбце k.

А) Ищем все нулевые элементы в приведенной матрице
б) Для каждого из них считаем его штраф за неиспользование.
в) Выбираем элемент, которому соответствует максимальный штраф (любой, если их несколько)

2. Теперь наше множество S разбиваем на множества - содержащие ребро с максимальным штрафом(S w) и не содержащие это ребро(S w/o).
3. Вычисление оценок затрат для маршрутов, входящих в каждое из этих множеств.
а) Для множества S w/o все просто: раз мы не берем соответствующее ребро c максимальным штрафом(h,k), то для него оценка затрат равна оценки затрат множества S + штраф за неиспользование ребра (h,k)
б) При вычислении затрат для множества S w примем во внимание, что раз ребро (h,k) входит в маршрут, то значит ребро (k,h) в маршрут входить не может, поэтому в матрице затрат пишем c(k,h)=infinity, а так как из пункта h мы «уже ушли», а в пункт k мы «уже пришли», то ни одно ребро, выходящее из h, и ни одно ребро, приходящее в k, уже использоваться не могут, поэтому вычеркиваем из матрицы затрат строку h и столбец k. После этого приводим матрицу, и тогда оценка затрат для S w равна сумме оценки затрат для S и r(h,k), где r(h,k) - сумма констант приведения для измененной матрицы затрат.
4. Из всех неразбитых множеств выбирается то, которое имеет наименьшую оценку.

Так продолжаем, пока в матрице затрат не останется одна не вычеркнутая строка и один не вычеркнутый столбец.

Небольшая оптимизация - подключаем эвристику

Да, правда, почему бы нам не ввести эвристику? Ведь в алгоритме ветвей и границ мы фактически строим дерево, в узлах которого решаем брать ребро (h,k) или нет, и вешаем двух детей - Sw(h,k) и Sw/o(h,k). Но лучший вариант для следующей итерации выбираем только по оценке. Так давайте выбирать лучший не только по оценке, но и по глубине в дереве, т.к. чем глубже выбранный элемент, тем ближе он к концу подсчета. Тем самым мы сможем наконец дождаться ответа.

Теперь, собственно, об ошибках в той публикации

Ошибка была одна единственная - следует выбирать для разбиения множество с минимальной границей из всех возможных путей, а не из двух полученных в результате последнего разбиения детей.

Доказательство

Вернемся к картинке в начале поста:


А вот решение с исправленным алгоритмом:

Ответ: путь:3=>4=>2=>1=>5=>3 длина: 41
Как видите, включая ребро 5:2 в решение будет ошибкой. Что и требовалось доказать

График сравнения метода ветвей и границ и потраченного времени для случайной таблицы от 5х5 до 10х10:


График максимального и минимального потраченного времени для матриц от 5х5 до 66х66.


Попробовать с подробным решением можно

Метод ветвей и границ -- один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

Алгоритм решения:

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных. Пусть им является план X 0 . Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и

Если же среди компонент плана X 0 имеются дробные числа, то X 0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X 0) F(X) для всякого последующего плана X.

Предполагая, что найденный оптимальный план X 0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X 0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу. Определяя эти числа, находим симплексным методом решение двух задач линейного программирования:

Найдем решение задач линейного программирования (I) и (II). Очевидно, здесь возможен один из следующих четырех случаев:

  • 1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.
  • 2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (I) и (II).
  • 3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (I) и (II).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (I) и (II).

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х 0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (I) и (II). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:

  • 1. Находят решение задачи линейного программирования (1)-(3).
  • 2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.
  • 3. Находят решение задач (I) и (II), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.
  • 4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (I) и (II), и находят их решение. Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(3) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

целочисленный программирование задача коммивояжер ранец

Определения

называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество (вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества . Если вершины и такие, что , то это вершины смежные.

Маршрутом в графе

называется последовательность вершин не обязательно попарно различных, где для любого смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),

. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0 ÎZ , такой, что l (z 0)= minl (z ), z ÎZ .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество

состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ (

) и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств

или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

A B C D E F
A 26 42 15 29 25
B 7 16 1 30 25
C 20 13 35 5 0
D 21 16 25 18 18
E 12 46 27 48 5
F 23 5 5 9 5

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:


1 2 3 4 5 6
1 11 27 0 14 10
2 6 15 0 29 24
3 20 13 35 5 0
4 5 0 9 2 2
5 7 41 22 43 0
6 18 0 0 4 0

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

1 2 3 4 5 6
1 11 27 0 14 10
2 1 15 0 29 24
3 15 13 35 5 0
4 0 0 9 2 2
5 2 41 22 43 0
6 13 0 0 4 0

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

Ниже приведено условие задачи и текстовая часть решения. Все решение полностью, в формате doc в архиве, вы можете скачать. Некоторые символы могут не отображаться на странице, но документе word все отображается. Еще примеры работ по ЭМММ можно посмотреть

ПОСТАНОВКА ЗАДАЧИ

Издательское предприятие должно выполнить в течении недели (число дней m = 5) работу по набору текста с помощью работников n категорий (высокая, средняя, ниже средней, низкая). Требуются определить оптимальную численность работников по категориям, при которой обеспечивается выполнение работы с минимальным расходом фонда зарплаты при заданных ограничениях. Исходные данные приведены в таблице 1 и 2.

Таблица 1

Таблица 2

Задача должна решаться методом целочисленного линейного программирования в Mathcad 2000/2001.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
РЕШЕНИЯ
ЗАДАЧИ

Для расчета оптимальной численности работников, при которой обеспечивается минимум расхода фонда зарплаты, составляется математическая модель целочисленного линейного программирования, так как численность работников не может быть дробной величиной.

Решение задачи целочисленного программирования выполняется в два этапа.

На первом этапе выполняется задача линейного программирования без учета целочисленности.

На втором этапе производится пошаговый процесс замены нецелочисленных переменных ближайшими верхними или нижними целыми значениями.

Сначала решается, задача без учета условия целочисленности.

Целевая функция определяется по формуле:

где Q - общий фонд зарплаты на выполнение работы;

x 1 , x 2 , …, x n - численность работников по категориям;

n - число категорий работников;

c 1 , c 2 ,…, c n - дневная тарифная ставка одного работника по категориям;

m - число рабочих дней в неделю, m = 5.

Целевую функцию можно записать в векторной форме:

При решении задачи должны выполняться следующие ограничения. Ограничение сверху

x d (1)

задает максимальную численность работников по категориям, где d —вектор, определяющий численность по категориям.

В ограничении

учтено, что общая численность работников не должна превышать k max .

В ограничении снизу

р × х≥Р (3)

отражается, что все работники вместе должны выполнить заданный объем работ Р .

В качестве последнего ограничения записывается условие неотрицательности вектора переменных

x ≥0 (4)

Математическая модель решения задачи без учета условия целочисленности включает следующие выражения:

x d

р × х≥Р ,

x ≥ 0 .

Модель целочисленного программирования должна включать выражения (5), а также дополнительные ограничения, с помощью которых нецелочисленные переменные х заменяются целочисленными значениями. Конкретные выражения модели с целочисленными переменными рассмотрены в следующем подразделе.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ В MATHCAD

Исходные данные для примера даны в табл. 1 и 2.

Для решения задачи используется пакет Mathcad с функцией Minimize. Данная функция определяет вектор решения задачи:

х := Minimize (Q , x ),

где Q — выражение целевой функции, определяющей минимальный фонд зарплаты, х - вектор переменных.

Сначала задача решается без учета условия целочисленности. Это решение приведено в Приложении 1. В первой строке введены нулевые начальные значения вектора х и целевая функция Q (x ) . После слова Given и перед функцией Minimize указаны ограничения. В результате получена нецелочисленная оптимальная численность по категориям:

х =

с фондом зарплаты Q = 135 у. е.

Из данного решения находится целочисленное решение методом ветвей и границ.

Сначала в полученном решении анализируется дробная величина х 4 =
= 1,143. Для нее можно задать два целочисленных значения: х 4 = 1 и х 4 = 2. Начинается построение дерева решений (Приложение 2). На дереве решений откладывается начальный нулевой узел. Затем он соединяется первым узлом х 4 , и из этого узла проводятся две ветви, соответствующие ограничениям: х 4 = 1 и х 4 = 2.

Для ветви с ограничением х 4 = 1 решается задача линейного программирования, данная в Приложении 1, с учетом этого ограничения.

В результате получено решение этой задачи. Переменная х 1 стала целочисленная, но переменная х 2 стала дробной х 2 = 0,9.

Для продолжения ветви создается узел х 3 и ветвь х 3 = 1. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1. С этими ограничениями задача имеет решение х Т =
= (1,938 1 1 1).

Для продолжения ветви создается узел х 1 и ветвь х 1 = 2. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1, х 1 = 2. С этими ограничениями задача имеет решение х Т = = (2 1 1 1).

Процесс построения дерева решении и выполнение задачи линейного программирования повторяется, пока не будут построены все ветви.

В Приложении 2 приводится полное дерево возможных целочисленных решений, из которого следуют, что в задаче имеется 4 результативных решения.

Из результативных выбирается наилучшее и оно принимается как оптимальное целочисленное решение всей задачи с минимальной величиной Q (x ) . В нашем случае мы имеем два оптимальных целочисленных решения

Q (х) = 140,

x T = (2 1 1 1),

x T = (1 1 2 2).

Следовательно, издательская организация должна привлечь для набора текста двух работников высокой категории, одного работника средней категории, одного работника ниже средней категории и одного работника низкой категории. Возможен так же другой равнозначный вариант привлечения работников: один работник высокой категории, один работник средней категории, два работника категории ниже средней и два работника низкой категории. В обоих вариантах затраты будут минимальными и составят 140 ден. ед.

Скачать решение задачи:


Имя файла: 2.rar
Размер файла: 24.99 Kb

Если закачивание файла не начнется через 10 сек, кликните