Батарейка изобретение. Кто изобрел аккумулятор

Батарейки различных типов давно и прочно вошли в повседневную жизнь. Они используются во всевозможных электрических устройствах со слабыми токами, в качестве источника питания. Несмотря на внешние существенные отличия, устройство батарейки любого типа имеет общие черты и принципы. Различия могут быть только в составе химических веществ, с помощью которых выделяется электрическая энергия.

Типовое устройство батарейки

Батарейка, изготовленная в заводских условиях, включает в свой состав несколько специальных химических реагентов, которые, взаимодействуя между собой, выделяют энергию - тепловую и электрическую. Кроме того, в каждой батарейке имеются электроды - катод и анод, создающие соответствующие полюса - положительный и отрицательный.

Все реагенты разделяются при помощи специальной прокладки, которая не позволяет их составным частям перемешиваться. Тем не менее, эта прокладка способна пропускать электролит, находящийся внутри батарейки в жидком виде. Между разными твердыми реагентами и жидким электролитом происходят химические реакции, в результате которых образуются положительный и отрицательный заряды. Полюсность заряда напрямую зависит от химического состава того или иного реагента. Прокладка, расположенная между ними, не позволяет нейтрализовать положительный и отрицательный заряд.

Дополнительные элементы батарейки

Для снятия заряда и вывода его на контакты во внутрь анодного реагента помещается специальный токосниматель в виде штыря. Токосниматель катода расположен под внешней гильзой, являющейся ее оболочкой. И тот и другой токосниматели, оканчиваются электрическими контактами, соответственно анодом и катодом. Работа начинается с химической реакции, затем на реактивах происходит разделение зарядов и их последующий переход на токосниматели. Окончательно заряды поступают на раздельные электроды и, непосредственно, в электронное устройство.

В устройстве щелочных (алкалиновых) батареек применяется цинк в порошкообразной форме. Для того, чтобы замедлить расход цинка, некоторое время назад производились добавки в порошок химических элементов - ртути и кадмия. Поскольку эти добавки оказались вредными, их перестали применять. В современных конструкциях батареек используются более дорогостоящие, но менее вредные вещества, такие как индий, свинец и прочие. В качестве анодного реактива применяется оксид марганца совместно с электролитом, которым в данном случае является щелочь.

Щелочные батарейки могут иногда протекать. Это происходит, когда нарушена герметичность из-за возможных внешних повреждений гильзы, или, когда внутреннее давление становится выше нормы.

Солевые батарейки имеют аналогичную конструкцию и более низкую стоимость. Их основное отличие в том, что катодная масса заменяется цинковым корпусом. Угольный токосниматель расположен по центру. Хлорид, используемый как электролит, не что иное, как соль соляной кислоты. Именно она и послужила названием для данного вида батареек.

Наверное все из нас пользуются батарейками. Они незаменимы и сфера их применения обширна – от простого будильника или фонаря, до магнитофона. Вряд ли кому-то приходило в голову узнать о том, как появилась эта незаменимая помощница. Именно истории её происхождения и будет посвящена эта статья.
В конце XVII века неожиданно был изобретен первый источник тока. Сделал это итальянский учёный Л. Гальвани. Изначально цель опыта заключалась в том, чтобы узнать о реакции животных на местные раздражители. Но когда к мышечной массе лапки лягушки были присоединены две полоски разных металлов, ученый обнаружил протекание тока между ними. Процесс этот Гальвани объяснил неверно, но это послужило основой для дальнейших исследований еще одного итальянца А. Вольта. Он дал чёткое определение изобретению. Толчком появления тока является реактив химического происхождения, с участием двух металлов. Нехитрое изобретение Вольта из цинка и меди, погружённое в раствор соли – это доказало. Данная конструкция и стала прообразом современной батарейки.

В 1859 г. французский ученый Гастон Плантэ провел исследование, где использовались свинцовые пластины в качестве электродов, а разбавленная серная кислота являлась электролитом. После подключения элемента к источнику питания, происходила зарядка батареи. После этого прибор начинал сам вырабатывать электричество, выдавая при этом всю энергию затраченную на зарядку. При этом проделывать это можно было много раз. Вот так и появился первый свинцовый аккумулятор, который еще долгое время будет применяться в автомобилях.

Усовершенствованный источник питания вовсе не похож на изобретение Вольта, но принцип работы остался тот же. В состав батарейки входит катод с анодом и электролит, который расположен между ними. Выработка электричества происходит в ходе окислительно-восстановительной реакции, которая идёт между электролитами. Выход тока и остальных свойств находится в зависимом состоянии от выбираемых материалов взамен анода и катода, электролита, и от самой конструкции. Элементы питания делятся на первичные и вторичные группы. Для первичных процессов характерны необратимые химические действия, а для вторичных присущи обратимые свойства. Несложно догадаться, что к вторичным процессам относится всем известный аккумулятор, который можно подзарядить и заново использовать. К первичным процессам относится батарейка. После того, как она сядет, её можно будет только выбросить.

Химический источник питания, который в 1866 г. изобрёл француз Жорж Лекланше стал прообразом современных «сухих батареек». За альтернативу электродов были взяты марганец и цинк. Электролитом послужил соляной раствор.

Максимальная удельная ёмкость служит главным свойством в создании батареи. Физические параметры и ёмкость определяются, идущими внутри, химическими реакциями. В основе истории батарейки лежит поиск нанотехнологии для улучшения её функций и удобного использования, а также поиск разработки малых размеров.

В настоящий момент есть производство любых составляющих батарейки, вплоть до тех, которые использовались повсеместно в XIX веке.

Типы и виды батарей.

  • Сухие батарейки. Состав электролита – хлорид цинка, нашатырь и диоксид марганца. Вместо катода служит уголь электролита и диоксид марганца. Цинк применяют вместо анода.
  • Никель-кадмиевые батареи. В состав их входит никелевый анод и кадмиевый катод. Такие аккумуляторы популярны во всём мире. Они выдерживают от пятисот до тысячи зарядок.
  • Свинцовые батареи. Большая часть аккумуляторов, которые сделаны из свинца. Широко используются в автомобильной промышленности.
  • Литий-ионные батареи. Литий является быстродействующим химическим металлом. Его используют в мобильной технике. Выходное напряжение составляет от полутора вольт почти до трёх с половиной (без одной десятой).
  • Литий полимерные зарядные устройства. Подобные элементы используются в компьютерах. Они способны хранить на 22% больше заряда, чем предыдущий вариант.
  • Литий-железодисульфидные батареи. Выходное напряжение в два раза меньше 3 вольт. Минусом является то, что их нельзя перезарядить.

Гальванический элемент или батарейка - это простейший источник электричества, который работает на принципах химического взаимодействия определенных веществ друг с другом. Она была изобретена ученым Алессандро Вольта, но последние данные из раскопок древних фараонов дают основания полагать, что гальванические элементы были известны человеку уже не одну тысячу лет. И так давайте попытаемся понять, как все же работает гальванический элемент и разберем устройство батарейки.


Устройство батарейки. Самый простой вариант


Предположим, у нас имеется стеклянный сосуд, а в него налит раствор серной кислота и опущен цинковый стержень. Так как на поверхности пластины имеются положительно заряженные ионы цинка, то в растворе кислоты вокруг стержня концентрируются отрицательные ионы раствора. Силы притяжения раствора отрывают ионы цинка. В итоге цинковый стержень приобретает отрицательный потенциал, а раствор положительный. А как мы уже знаем разность потенциалов - это . Итак, при контакте металла и кислотного раствора на границе появляется . В момент образования его и происходит превращение химической энергии в электрическую.

Элемент Александро Вольта состоит из двух различных пластин меди и цинка, помещенных в слабый раствор серной кислоты. Медная пластина которого плюс, а цинковая соответственно минус, с некоторой разность потенциала. Нужно сказать, что это вырабатываемое ЭДС гальванического источника, полностью зависит от материала и от происходящих химических процессов.

Изобретатель Александро Вольта поместил в банку с кислотой медную и цинковую пластинки, а затем соединил их проволокой. После этого цинковая пластина начала растворяться в растворе, а на медной появились пузырьки газа - водорода. "Вольтов столб " - представляет из себя слоеный пирог из соединенных между собой пластинок цинка, меди и сукна, пропитанных серной кислотой и сложенных друг на друга в определенной последовательности.

Подсоединив гальванический элемент к нагрузке, мы косвенно видим как электроны с цинкового электрода перетекают на медный, тем самым нарушая равновесие. В итоге на медной пластине начнет, выделятся водород. Это образование водорода весьма отрицательно влияет на работу гальванического элемента, т.к они создают барьер между границей меди и раствора. И это явление в физике называется поляризация.

Для борьбы с эффектом поляризации был открыт другой принцип устройство батарейки. Его назвали в честь первооткрывателя - элемент Лекланше . В сосуд с раствором нашатыря, слегка разбавленного водой помещены два стержня цинковый и графитовый, последний имеет вокруг себя слой двуокиси марганца, задача которого как раз поглощения нежелательного водорода.

В результате эффективность гальванический элемент существенно возрастает. Именно по этому принципу и изготавливаются большинство имеющихся батареек. Отличия заключаются лишь в применяемых веществах и материалах. Так как именно это отличие и закладывает специфические параметры и характеристики гальванических элементов. Например, одни растрачивать свой заряд постепенно и при этом их ЭДС, так же будет, снижаться, а другие наоборот более равномерно отдают энергию и лишь в самый последний момент резко теряют заряд.

Сегодня существует огромное количество различных типов гальванических элементов: Марганцево - цинковый, Марганцево - оловянный, Марганцево - магниевый, Свинцово - цинковый, Свинцово - кадмиевый, Свинцово - хлорный, Хром - цинковый, Окисно - ртутно-оловянный, Ртутно - цинковый, Ртутно - кадмиевый и т.п. Кроме химического состава, гальванические элементы также отличаются размерами и емкостью заряда.

Каждый современный человек периодически сталкивался с вопросами замены батарейки и раз уж вы попали на эту страницу, значит у вас возникли сомнения в правильности выбора того или иного выбора элемента питания. В рамках данной статьи мы разложим все популярные стандарты актуальных батареек по типам и видам.

    Батарейка состоит из положительного и отрицательного полюсов по краям, катода и анода.

    Также в батарейке есть анодный проводник.

    Вот известная марка батареек Duracell в разрезе для наглядности. На схеме четко видно размещение всех составляющих:

    Батарейки бывают разных типов и разных составово. Например, литиевые, солевые, щелочные. Разберем каждый тип:

    • Литиевые . Имеют большой срок хранения, большую плотность емкости, а так же могут работать в большом диапазоне температур. В состав входит: литиевый катод, органический электролит и анод из различных материалов. Все это способствует большому номиналу напряжения.
    • Солевые . Содержат в себе пассивный уголь и двуокись марганца, электролит из хлорида аммония и катод из цинка. В случае не использования имеет свойство восстановления - это продлевает срок жизни батарейки.
    • Щелочные . Имеет почти такой же состав что и солевые, только в качестве электролита выступает щелочной электролит.
  • Поскольку сейчас практически во всех мобильных устройствах стоят ион-литиевые батареи, давайте их и рассмотрим при ответе на впорос, из чего состоит батарейка .

    Потому что их кнструкция разительно отличается от привычных круглых батареек и аккумуляторов.

    Ион-литиевые батарейки, как правило, плоские, чтобы их можно было поместить в корпус мобильного устройства. Такие батарейки состоят из слоев алюминиевой и медной фольги, разделеннных пористым полипропиленом, пропитанным электролитом. Алюминивая фольга служит катодом, медная - анодом. Носителем заряда является ион лития.

    Вся эта конструкция строго герметично запаяна и снабжена защитой от перегрева и перегрузки.

    Сейчас я вам в деталях объясню все составляющие батарейки:

    1. Положительный полюс
    2. Отрицательный полюс
    3. Прокладка с клапаном - предохранителем
    4. Анодный проводник
    5. Катод
    6. Металлический корпус
    7. Изоляция

    Для любителей практики, а не теории предоставляю видео - Что внутри пальчиковой батарейки:

    Так же вопрос по теме батарейки: Чем заменить батарейку?

    Смотря какую батарейку вы имеете ввиду. Но практически все батарейки состоят из Анода , Катода и Электролита . В зависимости от цены батарейки завит из чего сделаны эти элементы.

    К самым дешевым можно отнести цинк-углеродные батарейки (цинковый цилиндрический контейнер).

    Также есть алкалиновые батарейки (никель-кадмиевые), цилиндр сделан из сплава никеля. Эти батарейки стоят дороже.

    Для начала батарейка должна вмещать специальные элементы в изоляции, которые как скрывают их, так и делают их безопасными для нас. Изначально идет изоляция, затем положительный и отрицательный полюс, также внутри есть катоды и аноды, анодный проводник

    Любые батарейки состоят из одинаковых элементов.

    Часто под словом батарейка подразумевают гальванический элемент.

    Любой гальванический элемент состоит из анода, катода и электролита твердого, жидкого или гелеобразного.

    Я полагаю, что батарея состоит из нескольких пушек, а батарейка из одной, ну в крайнем случаи из двух пушек. Возможно и другое понимание Вашего вопроса, но я его понял именно так. А если бы и понял по другому, то не ответил бы, потому, что плохо учил химию, а по правде вообще не учил.

    Современная батарейка состоит из пяти основных частей:

    корпуса, анода (минус), катода (плюс), электролита (проводник заряда между плюсом и минусом), сепаратора (барьер между плюсом и минусом).

    Принцип работы батарейки - это превращение химической энергии в электрическую.

    Более подробная схема

    Солевые батарейки - В них используется пассивный уголь и двуокись марганца, электролит из хлорида аммония и катод из цинка.

    Алкалайновые (щелочные) батарейки. Здесь используется щелочной электролит.

    Серебряные батарейки имеют катоды из оксида серебра.

    Литиевые батарейки обладают очень большим сроком хранения, высокой плотностью энергии и сохраняют работоспособность в большом диапазоне температур, поскольку не содержат воды. В их состав входит литиевый катод, органический электролит и анод из различных материалов.

    Солевые (угольно-цинковые, марганцево-цинковые) батарейки. В них используется пассивный уголь и двуокись марганца, электролит из хлорида аммония и катод из цинка. В перерывах между эксплуатацией элементы питания могут восстанавливаться это обусловлено выравниванием локальных неоднородностей в композите электролита, вызванных разрядом. Это немного продлевает срок службы батарейки.

    Алкалайновые (щелочные) батарейки. От марганцево-цинковых их отличает химический состав электролита - здесь используется щелочной электролит. Такие батарейки имеют продолжительный срок хранения, а в процессе эксплуатации напряжение на электродах меняется гораздо меньше, чем у элементов с солевым раствором.

    Серебряные батарейки имеют катоды из оксида серебра. Их напряжение на 0,2 В выше, чем угольно-цинковых в одних и тех же условиях. В остальном серебряные элементы питания похожи на угольно-цинковые.

    Литиевые батарейки обладают очень большим сроком хранения, высокой плотностью энергии и сохраняют работоспособность в большом диапазоне температур, поскольку не содержат воды. В их состав входит литиевый катод, органический электролит и анод из различных материалов. Так как литий имеет наивысший отрицательный потенциал по отношению к остальным металлам, следовательно, он имеет наибольшее номинальное напряжение при минимальных размерах.

    Состав батарейки зависит от того, какая именно батарейка.

    Пальчиковая батарейка является самой распространнной, имеет пластиковый или металлический корпус, который защищает элемент от коррозии и замыкания.

    В связи с тем, что в батарейке содержится множество опасных элементов (ртуть, свинец и другие), она подлежит правильной утилизации, нужно сдавать в пункты прима.

    Выбрасывать в мусорное ведро нельзя, так как всего одна батарейка загрязняет около 20 квадратных метров почвы.

Современная жизнь проходит под знаком электричества, которое повсюду. Страшно даже подумать, что будет, если вдруг все электрические приборы разом исчезнут или выйдут из строя. Электростанции различных типов, разбросанные по всему миру, исправно подают ток в электрические сети, питающие приборы на производстве и в быту. Однако человек устроен так, что никогда не бывает доволен тем, что имеет. Быть привязанным проводом к электрической розетке слишком неудобно. Спасением в этой ситуации являются устройства, питающие током электрические фонарики, мобильные телефоны, фотоаппараты и другие приборы, которые используются в отдалении от источника электричества. Даже маленьким детям известно их название это батарейки.

Строго говоря, обиходное название «батарейка» является не совсем корректным. Оно объединяет сразу несколько видов источников электричества, предназначенных для автономного питания устройства. Это может быть одиночный гальванический элемент, аккумулятор или соединение нескольких таких элементов в батарею для увеличения снимаемого напряжения. Именно это соединение и породило привычное для нашего уха название.

Батарейки и гальванические элементы, и аккумуляторы представляют собой химический источник электрического тока. Первый такой источник был изобретен как это часто бывает в науке случайно итальянским врачом и физиологом Луиджи Гальвани в конце XVIII в.

Хотя электричество как явление знакомо человечеству с древнейших времен, многие века эти наблюдения не имели никакого практического применения. Лишь в 1600 г. английский физик Уильям Гилберт выпустил в свет научный труд «О магните, магнитных телах и о большом магните Земле», где были обобщены известные на тот момент данные об электричестве и магнетизме, а в 1650 г. Отто фон Герике создал электростатическую машину, представлявшую собой серный шар, насаженный на металлический стержень. Спустя столетие голландцу Питеру ван Мушенбруку впервые удалось накопить с помощью «лейденской банки» первого конденсатора небольшое количество электричества. Однако оно было слишком мало для проведения серьезных экспериментов. Исследованиями «природного» электричества занимались такие ученые, как Бенджамин Франклин, Георг Рихман, Джон Уолш. Именно труд последнего об электрических скатах заинтересовал Гальвани.

Настоящую цель знаменитого эксперимента Гальвани, совершившего революцию в физиологии и навсегда вписавшего свое имя в науку, теперь уже никто и не вспомнит. Гальвани препарировал лягушку и поместил ее на стол, где стояла электростатическая машина. Его помощник случайно дотронулся острием скальпеля до открытого бедренного нерва лягушки и мертвая мышца неожиданно сократилась. Другой помощник заметил, что такое происходит только тогда, когда из машины извлекается искра.

Вдохновленный открытием, Гальвани начал методично исследовать обнаруженное явление способность мертвого препарата демонстрировать жизненные сокращения под влиянием электричества. Проведя целую серию опытов, Гальвани получил особенно интересный результат, использовав медные крючки и серебряную пластинку. Если крючок, державший лапку, прикасался к пластинке, лапка, дотронувшись до пластинки, немедленно сокращалась и поднималась. Потеряв контакт с пластинкой, мышцы лапки немедленно расслаблялись, она вновь опускалась на пластинку, снова сокращалась и поднималась.

Луиджи Гальвани. Журнальная иллюстрация. Франция. 1880 г.

Так в результате серии кропотливых опытов и был открыт новый источник электричества. Сам Гальвани, впрочем, не думал о том, что причина открытого им явления контакт разнородных металлов. По его мнению, источником тока служила сама мышца, которая возбуждалась действием мозга, передаваемым по нервам. Открытие Гальвани произвело сенсацию и повлекло за собой множество экспериментов в различных отраслях науки. Среди последователей итальянского физиолога оказался его соотечественник физик Алессандро Вольта.

В 1800 г. Вольта не только дал правильное объяснение открытому Гальвани явлению, но и сконструировал устройство, ставшее первым в мире искусственным химическим источником электрического тока, прародителем всех современных батареек. Оно состояло из двух электродов анода, содержащего окислитель, и катода, содержащего восстановитель, контактирующих с электролитом (раствором соли, кислоты или щелочи). Разность потенциалов, возникавшая между электродами, соответствовала в этом случае свободной энергии окислительно-восстановительной реакции (электролиза), в ходе которой катионы электролита (положительно заряженные ионы) восстанавливаются, а анионы (отрицательно заряженные ионы) окисляются на соответствующих электродах. Реакция может начаться только в том случае, если электроды соединены внешней цепью (Вольта соединял их обыкновенной проволокой), по которой свободные электроны переходят от катода к аноду, создавая таким образом разрядный ток. И хотя современные батарейки имеют мало общего с устройством Вольты, принцип их работы остается неизменным: это два электрода, погруженные в раствор электролита и соединенные внешней цепью.

Изобретение Вольты дало значительный толчок исследованиям, связанным с электричеством. В том же году ученые Уильям Никольсон и Энтони Карлайл с помощью электролиза разложили воду на водород и кислород, чуть позднее Хэмфри Дэви таким же образом открыл металлический калий.

Эксперименты Гальвани с лягушкой. Гравюра 1793 г.

Но в первую очередь гальванические элементы это, несомненно, важнейший источник электрического тока. С середины XIX в., когда появились первые электроприборы, начался массовый выпуск химических элементов питания.

Все эти элементы можно разделить на два основных типа: первичные, в которых химическая реакция является необратимой, и вторичные, которые можно перезарядить.

То, что мы привыкли называть батарейкой, является первичным химическим источником тока, иными словами неперезаряжаемым элементом. Первыми батарейками, запущенными в массовое производство, стали изобретенные в 1865 г. французом Жоржем Лекланше марганцево-цинковые элементы питания с солевым, а затем с загущенным электролитом. Вплоть до начала 1940-х годов это был практически единственный вид используемых гальванических элементов, который вследствие невысокой стоимости широко распространен до сих пор. Такие батарейки называют сухими или угольно-цинковыми элементами.

Гигантская электрическая батарея, сконструированная У. Уолластоном для экспериментов X. Дэви.

Схема работы искусственного химического источника тока А. Вольты.

В 1803 г. Василий Петров создал самый мощный в мире вольтов столб, использовав 4200 металлических кругов. Ему удалось развить напряжение 2500 вольт, а также открыть такое важное явление, как электрическая дуга, которое позднее стало использоваться в электросварке, а также для электрических запалов взрывчатки.

Но настоящим технологическим прорывом стало появление щелочных батареек. Хотя по химическому составу они не особенно отличаются от элементов Лекланше, а их номинальное напряжение по сравнению с сухими элементами увеличено незначительно, за счет принципиального изменения конструкции щелочные элементы могут прослужить в четыре-пять раз дольше сухих, правда, при соблюдении определенных условий.

Важнейшей задачей при разработке батарей является увеличение удельной емкости элемента при уменьшении его размера и веса. Для этого постоянно ведется поиск новых химических систем. Самыми высокотехнологичными первичными элементами на сегодняшний день являются литиевые. Их емкость в два раза выше емкости сухих элементов, а срок службы существенно дольше. Кроме того, если сухие и щелочные батарейки разряжаются постепенно, литиевые держат напряжение в течение практически всего срока службы и лишь затем резко теряют его. Но даже самая лучшая батарейка не может сравниться по эффективности с перезаряжаемым аккумулятором, принцип действия которого основан на обратимости химической реакции.

О возможности создания такого устройства начали задумываться еще в XIX в. В 1859 г. француз Гастон Планте изобрел свинцово-кислотный аккумулятор. Электрический ток в нем возникает в результате реакций свинца и диоксида свинца в сернокислотной среде. Во время генерации тока разряжаемый аккумулятор расходует серную кислоту, образуя сульфат свинца и воду. Чтобы зарядить его, необходимо ток, получаемый из другого источника, пропустить по цепи в обратную сторону, при этом вода будет использована для образования серной кислоты с высвобождением свинца и диоксида свинца.

Несмотря на то что принцип действия такого аккумулятора был описан довольно давно, его массовое производство началось только в XX в., поскольку для перезарядки устройства требуется ток высокого напряжения, а также соблюдение целого ряда других условий. С развитием электросетей свинцово-кислотные аккумуляторы стали незаменимы и используются по сей день в автомобилях, троллейбусах, трамваях и прочих средствах электротранспорта, а также для аварийного электроснабжения.

Немало небольших бытовых электроприборов также работают на «многоразовых батарейках» перезаряжаемых аккумуляторах, имеющих ту же форму, что и невосстанавливаемые гальванические элементы. Развитие электроники напрямую зависит от достижений в этой области.

Элемент питания Ж. Лекланше.

Сухая аккумуляторная батарея.

Мобильным телефоном, цифровым фотоаппаратом, навигатором, мобильным компьютером и прочими подобными устройствами в XXI в. уже никого не удивишь, однако появление их стало возможным лишь с изобретением качественных компактных аккумуляторов, емкость и срок службы которых с каждым годом стараются увеличить.

Первыми на смену гальваническим элементам пришли никель-кадмиевые и никель-металлгидридные аккумуляторы. Их существенным недостатком был «эффект памяти» снижение емкости, в случае если зарядка производилась при не полностью разряженном аккумуляторе. Кроме того, они постепенно теряли заряд даже при отсутствии нагрузки. Эти проблемы в значительной степени были решены при разработке литий-ионных и литий-полимерных аккумуляторов, которые в настоящее время повсеместно используются в мобильных устройствах. Их емкость значительно выше, они без потерь заряжаются в любой момент и хорошо удерживают заряд в состоянии ожидания.

Несколько лет назад в средства массовой информации просочились слухи о том, что американские ученые близко подошли к изобретению «вечной батарейки» бетавольтаического элемента, источником энергии в котором являются радиоактивные изотопы, излучающие бета-частицы. Предполагается, что такой источник энергии позволит мобильному телефону или ноутбуку работать без подзарядки до 30 лет. Более того, по истечении срока службы нетоксичный и нерадиоактивный элемент питания останется абсолютно безопасным. Появление этого чудо-устройства, которое, без сомнения, произвело бы революцию в промышленности, очень сильно ударило бы по карману производителей традиционных батареек возможно, поэтому его до сих пор нет на прилавках.

Современное устройство для зарядки перезаряжаемых элементов АА.