Ток при замыкании и размыкании цепей. Токи при замыкании и размыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. E i , сопротивление R и индуктивность L . Под действием внешней э.д.с. в цепи течет постоянный ток I o =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции E s = –L (dI /dt ), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =E s /R , или

IR =–L (dI /dt ). (18.1)

Разделив переменные, получим dI /I = – R dt /L . Интегрируя это уравнение по I (от I o до I ) и t (от 0 до t ), находим ln(I /I o) = – Rt /L , или

I (t ) =I o exp (– t /τ ), (18.2)

где τ =L /R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции E s = –L (dI /dt ), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + E s или

IR = E –L (dI /dt ). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du /u = – dt /τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR –E) и t (от 0 до t ), находим ln[(IR –E)/(–E)] = –t /τ , или

I (t )=I o , (18.3)

где I o = E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I o = E/R . Скорость нарастания тока определяется тем же временем релаксации τ =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.


Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n 1 и n 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E 1 , то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции .

По закону Ома, ток I 1 , первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I 1 R 1 =, где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 , при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E 1 »n 1 dФ/dt .

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

E 2 = –[(dn 2 Ф)/dt ] = – n 2 (dФ/dt ). (19.1)

Сравнивая выражения для E 1 и E 2 , получим, что э.д.с., возникающая во вторичной обмотке,

E 2 = –(n 2 /n 1) E 1 , (19.2)

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n 1 /n 2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации .

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

E 2 I 2 ≈ E 1 I 1 , (19.3)

откуда, учитывая соотношение (19.2), найдем E 2 /E 1 = I 1 /I 2 = n 2 /n 1 , т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках .

Если n 2 /n 1 >1, то имеем дело с повышающим трансформатором , увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n 2 /n 1 <1, то имеем дело с понижающим трансформатором , уменьшающим э.д.с. и повышающим ток (применяется, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформаторы, используемые в радиотехнике, имеют 4–5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором . В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

По правилу Ленца дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменениям тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь с не зависящей от I индуктивностью L и сопротивлением R включен источник тока э. д. с. е (рис. 10). В цепи будет течь постоянный ток

(сопротивление источника тока считаем пренебрежимо малым). В момент времени t=0 отключим источник тока, замкнув одновременно цепь накоротко переключателем П . Как только сила тока в цепи начнет убывать, возникнет э.д.с. самоиндукции, противодействующая этому убыванию.

Рисунок 8.1 - Электрическая цепь, которую размыкают

Сила тока в цепи будет удовлетворять уравнению

Уравнение (8.2) представляет собой линейное однородное дифференциальное уравнение первого порядка. Разделив переменные, получим

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ln const). Потенцирование этого соотношения дает

Выражение (8.3) является общим решением уравнения (8.2). Значение const найдем из начальных условий. При t=0 сила тока имела значение (8.1). Следовательно, const=I 0 . Подставив это значение в (8.3), придем к выражению

Итак, после отключения источника э. д. с. сила тока в цепи не обращается мгновенно в нуль, а убывает по экспоненциальному закону (8.4). График убывания I дан на рис. 8.2 (кривая 1). Скорость убывания определяется имею щей размерность времени величиной которую называют постоянной времен и цепи. Заменив в (8.4) R/L через 1/ф, получим

Рисунок 8.2 - Зависимость убывания тока при замыкании - размыкании цепи.

В соответствии с этой формулой ф есть время, в течение которого сила тока уменьшается в е раз. Из (8.5) видно, что чем больше индуктивность цепи L и меньше ее сопротивление R, тем больше постоянная времени ф и тем медленнее спадает ток в цепи.

Для упрощения расчетов мы считали, что цепь в момент отключения источника тока замыкается накоротко. Если просто разорвать цепь с большой индуктивностью, возникающее высокое индуцированное напряжение создает искру или дугу в месте разрыва.

Теперь рассмотрим случай замыкания цепи. После подключения источника э. д. с., до тех пор, пока сила тока не достигнет установившегося значения (8.1), в цепи кроме э. д. с. е будет действовать э. д. с. самоиндукции. Следовательно, в соответствии с законом Ома.

Мы пришли к линейному неоднородному дифференциальному уравнению, которое отличается от уравнения (8.2) лишь тем, что в правой части вместо нуля в нем стоит постоянная величина е/L. Из теории дифференциальных уравнений известно, что общее решение линейного неоднородного уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения. Общее решение однородного уравнения имеет вид (8.3). Легко убедиться в том, что I=е/R= I 0 является частным решением уравнения (8.8).

Следовательно, общим решением уравнения (8.8) будет функция

Эта функция описывает нарастание тока в цепи после подключения к ней источника э. д. с. График функции (8.9) дан на рис. 8.2 (кривая 2).

По правилу Ленца дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменениям тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь с не зависящей от индуктивностью L и сопротивлением R включен источник тока э.д.с. (рис. 65.1).

В цепи будет течь постоянный ток

(сопротивление источника тока считаем пренебрежимо малым). В момент времени отключим источник тока, замкнув одновременно цепь накоротко переключателем П. Как только сила тока в цепи начнет убывать, возникнет э. д. с. самоиндукции, противодействующая этому убыванию. Сила тока в цепи будет удовлетворять уравнению

Уравнение (65.2) представляет собой линейное однородное дифференциальное уравнение первого порядка. Разделив переменные, получим

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ). Потенцирование этого соотношения дает

(65.3)

Выражение (65.3) является общим решением уравнения (65.2). Значение найдем из начальных условий. При сила тока имела значение (65.1). Следовательно,

Подставив это значение в (65.3), придем к выражению

Итак, после отключения источника э. д. с. сила тока в цепи не обращается мгновенно в нуль, а убывает по экспоненциальному закону (65.4). График убывания дан на рис. 65.2 (кривая ).

Скорость убывания определяется имеющей размерность времени величиной

которую называют постоянной времени цепи. Заменив в (65.4) через получим

В соответствии с этой формулой есть время, в течение которого сила тока уменьшается в раз. Из (65.5) видно, что чем больше индуктивность цепи L и меньше ее сопротивление R, тем больше постоянная времени и тем медленнее спадает ток в цепи.

Для упрощения расчетов мы считали, что цепь в момент отключения источника тока замыкается накоротко. Если просто разорвать цепь с большой индуктивностью, возникающее высокое индуцированное напряжение создает искру или дугу в месте разрыва.

Теперь рассмотрим случай замыкания цепи. После подключения источника э. д. с., до тех пор пока сила тока не достигнет установившегося значения (65.1), в цепи кроме э. д. с. будет действовать э. д. с. самоиндукции. Следовательно, в соответствии с законом Ома

Мы пришли к линейному неоднородному дифференциальному уравнению, которое отличается от уравнения (65.2) лишь тем, что в правой части вместо нуля в нем стоит постоянная величина Из теории дифференциальных уравнений известно, что общее решение линейного неоднородного уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения (см. § 52 1-го тома). Общее решение однородного уравнения имеет вид (65.3). Легко убедиться в том, что является частным решением уравнения (65.7).

Следовательно, общим решением уравнения (65.7) будет функция

В начальный момент сила тока I равна нулю. Отсюда Таким образом,

Эта функция описывает нарастание тока в цепи после подключения к ней источника э. д. с. График функции (65.8) дан на рис. 65.2 (кривая 2).

Токи при размыкании и замыкании цепи


Экстратоки размыкания

Токи при размыкании и замыкании цепи

Экстратоками самоиндукции

При любом изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, после чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, по правилу Ленца, всегда имеют такое направление, чтобы оказывать сопротивление изменениям тока в цепи, т. е. имеет направление, противоположное току, создаваемому источником. При выключении источника тока экстратоки так же направлены, как и ослабевающий ток. Значит, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Исследуем процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ , катушку индуктивностью L и резистор сопротивлением R . Под действием внешней э. д. с. в цепи течет постоянный ток

(пренебрегаем внутренним сопротивлением источника тока).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет убывать, что приведет к возникновению э.д.с. самоиндукции ξs = -L(dI/dt) оказывающей препятствие, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи задается законом Ома I= ξs/R, или

Разделив в формуле (1) переменные, получим (dI/I) = -(R/L)dt . Интегрируя эту формулу по I (от I0 до I) и t (от 0 до t), найдем ln (I/I0) = –Rt/L, или

Где τ = L/R - постоянная, которая называется временем релаксации. Из (2) видно, что τ есть время, в течение которого сила тока уменьшается в е раз.

Значит, в процессе отключения источника тока сила тока уменьшается по экспоненциальному закону (2) и задается кривой 1 на рис. 1. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, значит, тем медленнее убывает ток в цепи при ее размыкании.


Рис.1

При замыкании цепи помимо внешней э. д. с. ξ возникает э. д. с. самоиндукции ξs = -L(dI/dt) оказывающая препятствие, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = ξ+ξs или

Зададим переменную u = (IR - ξ) преобразуем эту формулу как


где τ - время релаксации.

В момент замыкания (t=0) сила тока I = 0 и u = –ξ . Значит, интегрируя по u и (от –ξ до IR–ξ) и t (от 0 до t), найдем ln[(IR–ξ)]/(–ξ) = -t/τ, или

Где I0=ξ/R - установившийся ток (при t→∞).

Значит, в процессе включения источника тока увеличение силы тока в цепи определяется функцией (3) и кривой 2 на рис. 1. Сила тока увеличивается от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R . При этом, скорость нарастания тока задается тем же временем релаксации τ = L/R, что и убывание тока. Установление тока осуществляется тем быстрее, чем меньше индуктивность цепи и чем больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ξs , которая возникает при мгновенном нарастании сопротивления цепи постоянного тока от R0 до R. Допустим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R . При размыкании цепи ток будет менеться по формуле (2). Подставив в нее формулу для I0 и τ, найдем

Э.д.с. самоиндукции

Т. е. при значительном возрастании сопротивления цепи (R/R0>>1), которая обладает большой индуктивностью, э.д.с. самоиндукции может во много раз быть больше э.д.с. источника тока, включенного в цепь. Значит, необходимо учитывать, что контур, который содержит индуктивность, нельзя резко размыкать, так как при этом (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и поломке измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции больших значений не достигнет.

При любом изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, после чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, по правилу Ленца, всегда имеют такое направление, чтобы оказывать сопротивление изменениям тока в цепи, т. е. имеет направление, противоположное току, создаваемому источником. При выключении источника тока экстратоки так же направлены, как и ослабевающий ток. Значит, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Исследуем процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ , катушку индуктивностью L и резистор сопротивлением R . Под действием внешней э. д. с. в цепи течет постоянный ток I 0 = ξ/R. В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет убывать, что приведет к возникновению э.д.с. самоиндукции ξs = -L(dI/dt) оказывающей препятствие, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи задается законом Ома I= ξs/R, или IR=-LdI/dt(1) Разделив в формуле (1) переменные, получим (dI/I) = -(R/L)dt . Интегрируя эту формулу по I (от I 0 до I) и t (от 0 до t), найдем ln (I/I0) = –Rt/L, или I=I 0 e - t /τ (2) где τ = L/R - постоянная, которая называется временем релаксации. Из (2) видно, что τ есть время, в течение которого сила тока уменьшается в е раз. Значит, в процессе отключения источника тока сила тока уменьшается по экспоненциальному закону (2) и задается кривой 1 на рис. 1. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, значит, тем медленнее убывает ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. ξ возникает э. д. с. самоиндукции ξ s = -L(dI/dt) оказывающая препятствие, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = ξ+ξ s или IR=ξ - LdI/dt

Зададим переменную u = (IR - ξ) преобразуем эту формулу как du/u=-dt/τ где τ - время релаксации. В момент замыкания (t=0) сила тока I = 0 и u = –ξ . Значит, интегрируя по u и (от –ξ до IR–ξ) и t (от 0 до t), найдем ln[(IR–ξ)]/(–ξ) = -t/τ, или I=I 0 (1-e - t /τ)(3) где I 0 =ξ/R - установившийся ток (при t→∞)



Значит, в процессе включения источника тока увеличение силы тока в цепи определяется функцией (3) и кривой 2 на рис. 1. Сила тока увеличивается от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R . При этом, скорость нарастания тока задается тем же временем релаксации τ = L/R, что и убывание тока. Установление тока осуществляется тем быстрее, чем меньше индуктивность цепи и чем больше ее сопротивление. Оценим значение э.д.с. самоиндукции ξs , которая возникает при мгновенном нарастании сопротивления цепи постоянного тока от R0 до R. Допустим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R . При размыкании цепи ток будет менеться по формуле (2). Подставив в нее формулу для I0 и τ, найдем I=ξe - Rt / L /R 0. Э.д.с. самоиндукции ξ=-L(dI/dt)=Re - Rt / L /R 0 т.е. при значительном возрастании сопротивления цепи (R/R0>>1), которая обладает большой индуктивностью, э.д.с. самоиндукции может во много раз быть больше э.д.с. источника тока, включенного в цепь. Значит, необходимо учитывать, что контур, который содержит индуктивность, нельзя резко размыкать, так как при этом (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и поломке измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции больших значений не достигнет.

Энергия и плотность энергии магнитного поля.

Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля. Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна A=∫ 0 I LIdI=LI 2 /2. Значит, энергия магнитного поля, которое связано с контуром, W= LI 2 /2.(1) Энергию магнитного поля можно рассматривать как функцию величин, которые характеризуют это поле в окружающем пространстве. Для этого рассмотрим частный случай - однородное магнитное поле внутри длинного соленоида. Подставив в формулу (1) формулу индуктивности соленоида, найдем W=μ 0 μN 2 I 2 S/2l. Так как I=Bl/(μ 0 μN) и В=μ 0 μH , то W=B 2 V/2μ 0 μ=BHV/2(2), где Sl = V - объем соленоида

Магнитное поле внутри соленоида однородно и сосредоточено внутри него, поэтому энергия (2) заключена в объеме соленоида и имеет с ним однородное распределение с постоянной объемной плотностью ω=W/V=B 2 /2μ 0 μ= μ 0 μH 2 /2=BH/2(3). Формула (3) для объемной плотности энергии магнитного поля имеет вид, аналогичный выражению для объемной плотности энергии электростатического поля, с тем отличием, что электрические величины заменены в нем магнитными. Формула (3) выводилась для однородного поля, но она верна и для неоднородных полей. Формула (3) справедлива только для сред, для которых линейная зависимость В от Н, т.е. оно относится только к пара- и диамагнетикам.

Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла. Ток смещения, второе уравнение Максвелла. Полная система уравнений Максвелла. Относительность электрических и магнитных полей.