Системы транкинговой связи. Перспективы развития транкинговых решений в РФ

Практически в каждом салоне сотовой связи, витрины которого ломятся от мобильных телефонов, находится охранник с обязательной громоздкой рацией. Тут невольно задаешься вопросом: «Почему этот человек не использует для службы простой мобильный телефон?»

Сегодня наряду с привычной сотовой связью существуют так называемые системы профессиональной мобильной радиосвязи (ПМР ) (Professional Mobile Radio - PMR ), или транкинговой подвижной радиосвязи . Они занимают свой сектор рынка оборудования мобильной связи для корпоративных пользователей, различных ведомств и социальных служб, выполняя функции, необходимые именно этим пользователям.

Транкинговая подвижная радиосвязь (от англ. trunking - предоставление свободных каналов, trunk - магистральная линия связи) - система двусторонней подвижной радиосвязи, которая использует диапазон ультракоротких волн. На практике система ПМР устроена аналогично сотовой: пользовательские терминалы и базовые станции (БС), оборудование для увеличения дальности связи - ретрансляторы и контроллер, который управляет работой станции, обрабатывает каналы ретрансляторов (коммутирует их) и обеспечивает выход на городскую телефонную сеть. Сети транкинга могут быть однозоновыми (содержать одну БС) или многозоновыми (несколько БС). Существуют аналоговые и цифровые системы транкинговой связи.

Лучше чем сотовый?

Чем же транкинговая связь отличается от сотовой, если, не считая разницы между пользовательским терминалом (рацией/телефоном), все устроено одинаково?

Сотовая связь позиционируется как «телефон в кармане», а транкинговая предназначена для решения узкого круга профессиональных задач. Сотовая связь, к примеру, предоставляет разнообразные мультимедийные услуги, однако нефтяник, дежурящий на буровой платформе в Балтийском море, или спасатель МЧС навряд ли уповают на возможность загрузить новый альбом Мадонны. Транкинговую связь выбирают такие организации, как МЧС, охранные агентства, таксомоторные компании и др. Для рядовых же офисных работников вполне подойдет вариант «сотовый телефон + корпоративный тарифный план».

Система связи, которой пользуются профессионалы, должна поддерживать такие функции, как:

Осуществление моментальной связи (0,2-0,5 сек) внутри группы абонентов, которая может быть задана заранее;

Возможность перераспределения участников групп во время сеанса связи;

Система приоритетов вызовов (мобильный оператор не делает различий между абонентами);

Сохранение связи даже при выходе из строя базовой станции;

Передача широковещательного сигнала абонентам сети;

Возможность быстро переконфигурировать сеть.

Эти требования невыполнимы в системах сотовой связи, зато в полной мере поддерживаются транкинговыми системами. Стоит отметить, что участники рынка мобильной связи сложа руки не сидят и предлагают услугу Push-To-Talk с возможностью установления группового вызова и быстрым установлением соединения. Однако новация в любом случае не отвечает требованиям профессионалов. Подробнее о Push-To-Talk можно прочесть здесь.

Мы предлагаем сравнительную таблицу на примере двух версий TETRA - популярного стандарта цифровой транкинговой радиосвязи, и GSM-сетей.

Режимы и функциональные возможности, стандарты связи TETRA (Rl) TETRA (R2) GSM Групповой вызов + + +/- Широковещательный вызов + + - Аварийный вызов + + +/- Приоритетный вызов + + +/- Приоритетный доступ + + - Дуплексная связь + + + Задержанный вызов + + - Задержанное вхождение в связь + + - Режим прямой связи (без базовой станции) + + - Режим - «только прием» - + - Возможность расширения зоны связи - + - Выбор зоны + + - Статусные сообщения + + - Передача коротких текстовых сообщений + + + Вызов диспетчера + + - Предоставление по запросу абонента широкой полосы + + - Возможности шифрования сигнала и радиоинтерфейса + + +/- Одновременная передача речи и данных + + + Высокоскоростная передача данных - + + Избирательное прослушивание абонентов диспетчером + + - Дистанционное прослушивание акустической обстановки + + - Динамическая перегруппировка + + - От стимпанка к киберпанку

Профессиональная аналоговая связь существовала чуть ли не с начала XX века и за это время успела немало измениться, придя к цифровым технологиям с внушительным багажом.

Каждому известно, что радиосвязь началась в 1895 году, когда А.Попов (и только годом позже Г. Маркони) создал первый приемник. С 1897 по 1915 гг. Г. Маркони организует первые связные компании и разворачивает производство оборудования; появляются регламенты радиосвязи, в том числе по распределению частот между различными службами. Зародилась профессиональная радиосвязь в пероид с 1915 по 1950-х гг.

В первой половине 20-века исследовались возможности осуществления связи на разных длинах волн. До 1920 г. связь осуществляли с использованием волн длиной от сотен метров до десятков километров. В 1922 г. стало известно свойство коротких волн распространяться на любые расстояния, преломляясь в верхних слоях атмосферы и отражаясь от них, - идеальное средство для осуществления дальней связи. 1930-е годы стали временем метровых волн; а 1940-е - дециметровых и сантиметровых, распространяющихся прямолинейно на 40-50 км в пределах прямой видимости. Популяризация радиосвязи напрямую зависела от достижений техники. До появления миниатюрных полупроводников приёмники оставались громоздкими и в лучшем случае умещались в чемодан, что накладывало определённые ограничения.

Историю сетей профессиональной радиосвязи обычно делят на ступени. Первым этапом считаются сети конвенционального типа (от англ. conventional - обычный, традиционный). Их небогатые возможности следующие: симплексный режим работы (нажал на кнопку - задал вопрос - отпустил кнопку - получил ответ - нажал на кнопку - ...), совершение индивидуальных и групповых вызовов (до нескольких десятков абонентов) В конвенциональных системах канал связи (частота) жестко закрепляется за определенной группой абонентов. При этом гарантируется высокая оперативность связи (необходимо только настроить частоту), но служит причиной малой пропускной способности сети (частот мало).

Второй этап - транкинговые сети. Подобные сети сделали возможным обслуживание до нескольких сотен абонентов и позволили более эффективно использовать радиочастотный ресурс. Подобные системы связи стали системами с общим доступом абонентов к частотному диапазону, в отличие от конвенциональных систем. Это обеспечивает повышенную пропускную способность и большую зону охвата.

Многозоновые транкинговые сети стали третьим этапом . Зона обслуживания в них увеличилась еще больше за счет нескольких базовых станций. Количество обслуживаемых абонентов стало практически неограниченным, появилась система приоритетов вызовов, возможность дуплексного режима вызова (кнопку жать не требуется, связь аналогична телефонной с поправкой на куда большую скорость совершения вызова), выход на телефонные сети общего пользования, передача данных.

Симплекс, полудуплекс и дуплекс

Нет, это не названия сиквелов к комедии "Дуплекс", в которой снялись голливудские звёзды Бен Стиллер и Дрю Берримор. В заголовок вынесены имена трёх базисных режимов беспроводной радиосвязи.

1. Симплексная связь использует одну частоту - для приёма и передачи. Возможен только обмен репликами. По причине ограничений, которые накладывает физика, пользоваться этим, самым экономичным видом беспроводных радиокоммуникаций, получится на дистанции не более 5 км. Для устойчивого сигнала крайне желательна открытая местность. Связь осуществляется посредством пользовательских терминалов.

2. Полудуплексная связь также задействует две частоты, однако общаться придётся, как и в симплексном режиме. Базовая станция (БС) на одной частоте постоянно принимает сигналы абонентов, а затем на другой частоте транслирует то, что приняла. Рация использует для приёма частоту, на которой вещает БС, и должна содержать радиочастотный переключатель. Принцип полудуплекса лежит в основе недорогих сетей, которые связывают десятки абонентов в различных точках города и открытой местности.

3. Дуплексная связь задействует две частоты - одну на приём, другую- на передачу и предназначена, чтобы вести привычный диалог. Естественно, задействованы базовые станции для ретрансляции сигналов. Аналоговые системы дуплекса требуют два канала (4 радиочастоты) для соединения абонентов. Терминал оснащают габаритным дуплексным фильтром, чья роль дать приёмнику и передатчику одновременный доступ к антенне. Цифровой дуплекс реализован иначе и не требует громоздкого фильтра - в каждый момент времени аппарат абонента принимает либо передаёт. К примеру, в стандарте TETRA переключение происходит 18 раз в секунду.

Современные цифровые транкинговые сети (ЦТС ) являются вершиной эволюционной цепочки профессиональной связи. Помимо возможностей, доступных пользователям аналоговых систем, добавляются надёжная защита от несанкционированного доступа (к тому же прослушивание переговоров с помощью аналоговых устройств становится невозможным) и пакетная передача данных (доступ в Интернет). Аппарат абонента опознается с помощью различных идентификационных механизмов или SIM-карт. По сути, цифровые транкинговые системы являются универсальными сетями связи, обеспечивающими конфиденциальность контактов абонентов, и способны к одновременной передаче больших потоков данных по каналам связи, будь то данные телеметрии или видеоинформация (в последних редакциях стандартов подобные возможности предусматриваются).

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи, различающихся по многим признакам. В нашей стране, как и во всем мире, до сих пор распространены аналоговые системы различных версий и стандартов. Однако в силу своей моральной устарелости они не столь интересны к рассмотрению, сколько их цифровые собратья. Пятерку самых популярных и признанных во многих странах мира стоит рассмотреть подробней.

EDACS (Enhanced Digital Access Communication System)

Фирма Ericsson (Швеция) раньше других (пока ее не купила Sony в 1980-х годах) озаботилась проблемой устаревания аналоговых технологий и недостаточной степенью защищенности переговоров в подобных системах и занялась разработкой корпоративного закрытого стандарта EDACS (Enhanced Digital Access Communication System). Изначально стандарт предусматривал передачу речи по аналоговым протоколам, позднее стандарт модифицировали и появилась цифровая версия системы под названием EDACS Aegis . Системы EDACS работают на частотах 138-174 МГц, 403-423 МГц, 450-470 МГц и 806-870 МГц; сеть может быть раскинута на более чем 16000 абонентов. В России в этом стандарт не слишком популярен в силу его закрытости и скорого устаревания (фактически это цифровой стандарт для передачи аналоговых сигналов). Все права принадлежат разработчику, и просто так выпускать оборудование вам не позволят. Вдобавок Ericsson прекратила поставки оборудования для развертывания новых сетей этого стандарта и занимается только поддержкой существующих.

Технология iDEN (integrated Digital Enhanced Network ) - закрытый корпоративный стандарт, разработка которого была начата компанией Motorola в начале 1990-х годов. В 1994 г. в США компанией NEXTEL на базе этой технологии развернута первая сеть коммерческого применения. Сегодня подобные сети развернуты во многих странах Северной и севера Южной Америки, Азии. Сегодня подписчиками iDEN являются более 3 000 000 человек (90% из них приходится на США). Такую популярность iDEN обрела благодаря тому, что является неким компромиссом между транкинговыми и сотовыми системами (предоставляет возможности отправки сообщений, факсимильной связи, передачи данных по протоколу TCP/IP со скоростью до 36 кбит/с, невысокая стоимость). Каждой организацией, использующей стандарт iDEN, может быть создано до 10 000 виртуальных сетей, в каждой из которых может быть до 65 500 абонентов. iDEN использует частотный диапазон 805-821/855-866 МГц. В России систем iDEN нет - вероятнее всего, из-за неудобства использования подобного диапазона частот при решении задач, на которые рассчитаны системы профессиональной связи. Примечательно, что компанией Motorola выпускаются различные iDEN-аппараты с функциями современных мобильных телефонов. К примеру, Motorola ic502 - CDMA/iDEN-телефон с GPS и Motorola i290 с MP3-плеером.

Tetrapol PAS (Tetrapol)

Разработан французской фирмой Matra Communication . Создание этого закрытого стандарта было начато в 1987 г. фирмой Matra Communications по заказу французской жандармерии. Сеть связи стандарта Tetrapol функционирует на половине территории Франции с 1994 г. и обслуживает более 15 000 абонентов. Системы связи стандарта Tetrapol работают начиная с частоты 70 МГц и имеют потолок функционирования в 520 МГц, что не способствует популяризации в других странах, где подобным системам традиционно могут отводиться другие диапазоны частот. В России созданы опытные зоны функционирования сети Tetrapol.

TETRA (Terrestrial Trunked Radio)

TETRA - открытый стандарт профессиональной радиосвязи, разрабатываемый с 1994 года ETSI (European Telecommunications Standards Institute - Европейский институт телекоммуникационных стандартов). TETRA означает Terrestrial Trunked Radio - «наземное транкинговое радио». Изначально, пока стандарт не обрел популярность за пределами Европы, TETRA расшифровывалось как Trans-European Trunked RAdio - «трансъевропейское транкинговое радио». В Европе ПМР стандарта TETRA работает в диапазонах частот 380-385/390-395 МГц, 410-430/450-470 МГц. В Азии - 806-870 МГц.

В спецификациях TETRA значится как открытый стандарт, а значит каждый, кто пожелает производить аппаратуру для связи, может не задумываться о проблемах совместимости с оборудованием других компаний и о дележе авторских прав. Чтобы выпускать продукцию, поддерживающую этот стандарт, необходимо вступить в организацию MoU TETRA - Меморандум о содействии стандарту TETRA. Nokia , Motorola , RohdeSchwarz и другие крупные компании, занимающиеся производством оборудования для связи, поддерживают этот стандарт. Сети TETRA развернуты практически по всей Европе, в странах Азии, Африки и Южной Америки. TETRA Release 2 - новая версия стандарта, которая позволяет осуществить плотную интеграцию с мобильными сетями третьего поколения и значительно повысить скорость передачи данных. Проект по развертыванию сетей данного стандарта в России называется «Тетрарус». О многом говорит хотя бы тот факт, что «в рамках Федеральной целевой программы «Развитие г. Сочи как горноклиматического курорта до 2014 г.» в местах проведения спортивных соревнований и по всему Краснодарскому краю будет функционировать радиосвязь стандарта TETRA».

APCO Project 25 (APCO 25)

Открытый стандарт APCO 25 создан организацией Association of Public S afety Communications Officials- international -Ассоциацией представителей служб связи органов общественной безопасности. Стандарт создавался и совершенствовался (построение радиоинтерфейса, протоколы шифрования, методы речевого кодирования) в период с 1989 по 1995 гг. Одним из основных преимуществ APCO 25 является то, что он позволяет работать в любом из диапазонов частот, доступных для систем подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц. В одну сеть могут быть объединены до двух миллионов человек и до 65 тысяч групп. С 2003 г. в Санкт-Петербурге функционирует подобная сеть на несколько сотен абонентов в целях МВД России.

Транкинг может использовать не только для связи:

Новейшая система транкинга JRC Trunked Radio System с функцией автоматического определения местонахождения автомобиля на основе GPS и стандартов MPT 1327/1343. Кроме, собственно, обеспечения коммуникаций между абонентами, стандарт обеспечивает автоматическую передачу данных о местонахождении и статусе каждой машины на терминал в центре управления.

Пример двух способов организации сети транкинга:

Более полно характеристики стандартов отражены в таблице:

Функциональные возможности, стандарты цифрового транкинга APCO 25 EDACS IDEN TETRA Tetrapol Индивидуальный, групповой, широковещательный вызовы + + + + + Выход на ТфОП + + + + + Полнодуплексные абонентские терминалы - + + + - Передача данных и доступ к базам данных + + + + + Режим прямой связи + + ? + + Автоматическая регистрация мобильных абонентов + + + + + Персональный вызов + - + + + Доступ к IP-сетям + + + + + Передача статусных сообщений + + + + + Передача коротких сообщений + - + + + Передача данных о местоположении абонента от приемника GPS ? + ? + + Факсимильная связь + - + + + Возможность установки открытого канала? - - + + Множественный доступ с использованием списка абонентов + - + + + Режим ретрансляции сигналов + ? ? + + Режим «двойного наблюдения» ? - ? + + Приоритет доступа/вызова + + - + + Динамическая перегруппировка + + - + + Избирательное прослушивание + + - + + Дистанционное прослушивание? - - + + Идентификация вызывающей стороны + + - + + Вызов, санкционированный диспетчером + + - + + Передача ключей по радиоканалу (OTAR) + - - + + Имитация активности абонентов - - - - + Дистанционное отключение абонента + ? - + + Аутентификация абонентов + ? - + +

В России, одновременно с внедрением, успешным использованием и развитием цифровых сетей различных транкинговых стандартов, широко распространены аналоговые системы на базе старого МРТ1327 . И это отнюдь не плохо. Цифровой транкинг удобен там, где нужна не только оперативная связь, но и передача данных и телефония. Часто заказчикам оказывается вполне достаточно симплексной голосовой связи и функции отправки сообщений. Использование аналоговых систем экономит время и деньги.

В целом же ситуация с профессиональной мобильной радиосвязью напоминает переход от использования сотовых сетей второго поколения стандарта GSM к стандартам 3G . Сотовые сети, несмотря на темпы их роста, в ближайшем будущем не смогут полностью заменить сетей профессиональной радиосвязи по причине того, что выполняют другие функции.

Итак, при выборе коммерческого оператора транкинговой связи пользователям следует обращать внимание не только на наличие лицензии Минсвязи, но и на некоторые «паспортные» данные сети. В первую очередь к ним относятся поддерживаемые протоколы связи, которые условно можно разделить на открытые и «фирменные». Открытые протоколы позволяют любой компании организовывать выпуск базового и абонентского оборудования, а вот разработчик «фирменного» протокола является единственным производителем соответствующих устройств.

Открытость протокола обусловливает возникновение конкуренции изготовителей, благодаря чему повышается производительность инфраструктурного оборудования, а на рынке появляются системы, различающиеся по функциональности и стоимости. При наличии множества предложений абонентских устройств потребитель получает возможность выбора парка радиостанций в зависимости от требуемого соотношения цена/качество. Но главное — не происходит его пожизненной привязки к аппаратуре конкретной фирмы. Например, для применения в сети, организованной на базе открытого протокола типа MPT-1327 (существует множество его разновидностей), допускается задействовать технику большинства производителей радиооборудования. Напротив, с «фирменным» протоколом EDACS способны работать только устройства компании Ericsson, а стандарт ACTIONET «понимает» лишь техника Nokia.

Зона обслуживания

По принципам организации транкинговая связь аналогична сотовой. Каждая базовая станция «покрывает» определенную площадь. Зону покрытия (читай — зону компетенции) называют сайтом (в сотовой связи — сотом). Для обеспечения устойчивой связи во всех точках зоны обслуживания необходимо ее сплошное покрытие. Одна базовая станция физически не в состоянии выполнить это условие: в зоне обязательно найдутся «дыры», где радиостанция не сможет принимать сигнал. Например, не удастся организовать устойчивую связь вблизи некоторых железобетонных зданий, и, чтобы выйти из участка «радиотени», пользователю придется обогнуть строение или перекочевать на открытое пространство. Поэтому для сплошного покрытия необходимы как минимум три базовые станции.

Качество и надежность связи определяются не только количеством передатчиков, но и местами их размещения, высотой подвеса антенн, а также техническими параметрами базовых станций. Самый простой способ проверки качества связи, обеспечиваемой конкретным оператором, — взять у него на некоторое время абонентское оборудование для опробования в рабочих условиях.

Частота

В России для коммерческих систем транкинговой связи выделено несколько диапазонов частот: 136 — 174, 403 — 470, 470 — 520 и 800 МГц. Пользователю нужно помнить, что чем ниже частота, на которой работает оператор, тем больше дальность связи. С другой стороны, чем выше частота, тем меньше расстояние между базовыми станциями и лучше качество связи. Оптимальным вариантом может оказаться диапазон 478 — 486 МГц. Раньше этот участок частотного спектра был зарезервирован для 22-го ТВ-канала, но несколько лет назад его выставили на тендер, и теперь он распределен между пятью московскими операторами радиосвязи. Данный диапазон свободен от воздействия передатчиков пейджинговых компаний и других источников помех.

Сервисное и техническое обслуживание

Кто будет устанавливать и подключать абонентское оборудование? Если оператор предлагает пользователю самостоятельно смонтировать радиостанцию в автомобиле или направляет его с этой целью в другую компанию, то, скорее всего, он попросту решил сэкономить на оплате труда технического персонала. Тогда остается открытым вопрос о гарантиях сервисного обслуживания. Кроме того, кто знает, какими еще способами он пытается минимизировать свои расходы.

Цены у всех операторов примерно одинаковы. Они состоят из двух компонентов — разового платежа в момент подключения и ежемесячной абонентской платы. Разовый платеж складывается из цены радиостанции и необходимых аксессуаров (85-90% общей суммы), стоимости оформления разрешительных документов (2-3%), подключения к сети (4-6%) и монтажа радиостанции (4-6%).

Абонентское оборудование можно купить, взять в аренду, оформить в лизинг (с возможностью выкупа через год). Кроме того, некоторые компании выкупают старое оборудование по остаточной стоимости. Его цена идет в зачет разового платежа за новое подключение.

В Москве услуги транкинговой связи оказывают более 15 операторов. Немало компаний поставляют оборудование и занимаются монтажом локальных (ведомственных) сетей. Так что заказчик всегда может выбрать фирму, которая способна полностью удовлетворить его насущные потребности.

АМТ . Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай») . Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел» . Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» — единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк»
. Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг» . Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

Локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);
псевдотранкинговая сеть SmarTrunk II (с 1992 года);
многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк» . Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье — для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко» . Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных — в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

Операторы однозоновых транкинговых сетей

БТТ . В сети БТТ работает оборудование EF Johnson. Ее особенность заключается в том, что наряду с ретранслятором в ней используется сеть выносных приемников, связанных с базовой станцией выделенными проводными линиями. Абонентские терминалы характеризуются высокой надежностью.

«Софтнет» . Система «Софтнет» создавалась для обеспечения оперативно-диспетчерской связи. Именно этим был обусловлен выбор в качестве транкингового протокола LTR. Основными пользователями являются службы, нуждающиеся в едином управлении, такие как такси, доставка грузов, инкассация, службы безопасности и т. д. Достоинство данной сети — наличие оперативного канала связи с Московской городской службой спасения, предоставляемого абонентам бесплатно.

Псевдотранкинговые сети

MCS («Мобильные системы связи») . MCS является одной из первых транкинговых сетей, основанных на протоколе SmarTrunk-II, — она была развернута еще в 1994 году. Базовое оборудование DX-RADIO (США) размещено на 269-й и 325-й отметках Останкинской телебашни, что обеспечивает зону покрытия в радиусе 80-90 км. Вместе с «Центром-Телко» MCS входит в Городскую интегрированную систему радиотелефонной связи (ГИСРС), созданную по постановлению правительства Москвы.

В настоящее время компания «Мобильные системы связи» обеспечивает всех перевозчиков опасных грузов (топливо, масло, кислоты и т. п.) голосовой связью, датчиками контроля состояния и GPS. Единый диспетчерский пункт находится в ГУ ГОЧС. Предоставляются услуги полудуплексной и дуплексной связи, выхода в телефонную сеть, передачи данных и GPS. Имеется возможность локальной работы (без ретранслятора) на симплексных частотах по всей территории Москвы и Подмосковья. Не исключено бесплатное предоставление оборудования потенциальному заказчику для опробования в реальных условиях.

«Ланском» . Система подвижной радиотелефонной связи SmarTrunk-R эксплуатируется в Москве c 1995 года. Московский сегмент сети состоит из двух базовых станций общей емкостью 11 радиоканалов, работающих в диапазоне 430-450 МГц. За счет разноса базовых станций (БС №1 находится в районе м. «Алексеевская», а БС №2 — недалеко от м. «Беляево») обеспечивается бесперебойная связь в пределах МКАД и частично в ближнем Подмосковье.

С 1999 года компанией эксплуатируются системы подвижной радиотелефонной связи в Орле, Курске, Белгороде и Тамбове. Работа абонентов московской транкинговой сети в вышеперечисленных городах возможна при замене их терминалов в офисе фирмы «Ланском» на оборудование, совместимое с региональными транкинговыми системами. Аналогичная возможность предоставляется и абонентам региональных сетей.

«Эверлинк» . Однозоновая пятиканальная система псевдотранкинговой связи, базирующаяся на протоколе E-trunk, обеспечивает устойчивый прием на портативные радиостанции в пределах Москвы и на мобильные — в радиусе до 30 км от МКАД. Услуги телефонии не предоставляются. Лицензия распространяется на Москву и Московскую область, что позволяет предлагать потребителям услуги прямого канала (связь с портативных радиостанций до 2 км в условиях любой застройки).


Павел Дмитриев, Сети, №10/2002

Под термином «транкинг» (trunk, пучок, канал связи, ствол) понимают метод автоматического распределения ограниченного числа свободных каналов среди большого числа подвижных абонентов. Этот метод позволяет эффективно использовать частотный ресурс в системах подвижной радиосвязи благодаря режиму случайного доступа к свободному каналу. Так в системе подвижной радиосвязи «Алтай» отечественного производства 8 радиоканалов одного ствола обслуживало примерно 200 подвижных абонентов. Этот метод в настоящее время применяется в сетях производственно-технического назначения (ведомственные сети) и современных радиосетях общего пользования (сотовые сети).

Системы подвижной радиосвязи, обслуживающие большое число абонентов на большой территории, обычно строятся по принципу повторного использования радиочастот в территориальных зонах (сотах, сайтах) обслуживания. Транкинговые сети обычно обслуживают одну зону (сайт), поскольку не реализуют принцип эстафетной передачи абонента из зоны в зону, известный в сетях сотовой связи как роуминга. Основная идея транкинга, подобная организации транковых каналов в проводных системах связи, лежит в выделении одного, из ограниченного числа каналов системы, каждому абоненту на время соединения. Это, кроме повышения эффективности использования частотного ресурса системы, приводит к повышению конфиденциальности разговора и качества предоставляемых услуг. В транкинговой системе радиоканал не закрепляется за конкретным абонентом, а ему выделяется любой свободный в данный момент канал. Поэтому число одновременно обслуживаемых абонентов в транкинговой сети равно числу каналов.

Очевидно, что динамическое выделение каналов требует включения в систему устройство управления распределением каналов, а каждая подвижная станция обладать технической возможностью переключаться на любую выделенную канальную частоту. Если в часы наибольшей нагрузки (ЧНН) все каналы оказываются занятыми, то сеть не отвергает вызовы, а ставит их в очередь на обслуживание. Даже в ЧНН канал, выделенный паре пользователей, не доступен другой станции, требующей соединения, что обеспечивает защиту разговора о прослушивания. Динамическое выделение каналов также повышает надежность работы сети и повышает конфиденциальность разговора. Неисправность одного из каналов не приводит к прерыванию доступа группы абонентов к ресурсам сети, а несколько снижает емкость сети. Повышение емкости сети можно обеспечить ограничение техническими средствами времени подключения к каналу (продолжительность разговора).

В аналоговых транкинговых системах обеспечивается передача речевых сообщений с использованием частотной модуляции и многостанционого доступа с частотным разделением каналов (FDMA) при ширине полосы 25 или 12,5 кГц на один канал. При цифровой обработке речевого сигнала в кодеках с линейным предсказанием обеспечивается передача речи со скоростями 2,4 .. .9.6 кГц в той же полосе частот.

Передача данных (сообщение о состояние ресурсов, статус абонента, короткие телеграммы и др.) в аналоговых системах передаются обычно по каналу управления, а длинные - по рабочему каналу с использование модема.

Среди способов размещения станций на обслуживаемой территории можно выделить две конфигурации сети: однозоновая и многозоновая. При однозоновой сети все ретрансляторы расположены на одной базовой станции. При многозоновом варианте существует несколько базовых станций, размещенных на обслуживаемой территории, а связь с удаленными ретрансляторами осуществляется по выделенным каналам связи (проводным, радиорелейным)

Распределение частотных каналов между подвижными абонентами выделяет две схемы: централизованное и децентрализованное управление. В первом случае транкинговые сети содержат несколько ретрансляторов, связанных между собой единой сетью управления. Назначение каналов осуществляется на базовой станции. В системах с децентрализованным управлением абонентские станции непрерывно сканируют рабочие каналы в поисках вызывного сигнала или свободного канала.

Существуют несколько стандартов транкинговых сетей. Для аналоговых сетей наиболее важным является стандарт, введенный Министерством почты и телекоммуникаций Великобритании, описывающий протокол обмена данными между базовой станцией (ретранслятор) и подвижными станциями: МРТ 1327 (Ministry Post and Telecommunications). Транкинговые сети на базе протокола МРТ 1327 характеризуются простотой технологий и обслуживания и доступностью оборудования. Свойственные им недостатки: низкая спектральная эффективность, сравнительно низкая защищенность от прослушивания разговора, невысокий коэффициент переиспользования частот, низкие скорости передачи.

Закрытая цифровая система EDACS (Enhanced Digital Communication System), разработанная для специальных целей компанией Ericsson, обладающей правами на оборудование и структуру сети. Преимущества такой системы: малое время доступа в сеть, возможность передавать данные и речь по всем каналам.

Система EDACS существует в двух версиях: широкополосной (разнесение каналов составляет 25 кГц) и узкополосной (разнесение каналов составляет 12,5 кГц), обеспечивая:

  • - аналоговую передачу сигналов;
  • - цифровую передачу зашифрованной речи (в широкополосной системе со скоростью 9600 бит/с);
  • - передача данных (со скоростью 9600 бит/с или 4800 бит/с, в зависимости от ширины тполосы);
  • - соединение с сетью ТфОП.

Система может функционировать в различных конфигурациях в зависимости от размера зоны покрытия. Широкополосная версия системы EDACS может работать в диапазонах частот: 136... 174, 404...515 и 806...870 МГц. Узкополосная версия - в диапазоне 894.. .941 МГц. Система EDACS явилась первым шагом компании Ericsson в процессе перехода к транкинговой системе второго поколения TETRA.

Транкинговая система TETRA (Terrestrial Trunked Radio, наземная система транкинговой радиосвязи), разработанная в рамках Европейского союза, является открытой цифровой системой, устранившей недостатки аналоговых систем и приблизивших перечень предоставляемых услуг к системам сотовой связи. Разработанные два семейства стандартов регламентируют параметры системы при передаче речи и цифровых данных, а также пакетную передачу данных. При передаче речи обеспечиваются различные варианты соединений:

индивидуальное соединение; групповое соединение; прямое соединение; групповое соединение с подтверждением; широковещательное соединение.

Передача данных и речи в цифровой форме обеспечивается, в соответствие с принятыми стандартами, со скоростью 7,2 ...28,8 кбит/с (при отсутствии кодовой защиты). Цифровая передача речи и данных с коммутацией каналов возможна со скоростью 4,8... 19,2 кбит/с (с минимальной кодовой защитой). Стандартом предусматриваются различные варианты пакетной передачи данных в режиме «точка-точка» с установлением соединений или без установления соединений (в стандартном формате). Архитектура системы TETRA для различных типов подключаемого оборудования и типов интерфейсов и соединений приведена на рис. 1.17

Подвижная станция представляет собой оконечное оборудование радиоканала (Mobile Termination, радиотелефон) и терминальное оборудование (Terminal Equipment), позволяющее пользователю передавать данные.

Фиксированная станция (Line Station), включающая аналогичное по назначению оборудование, но подключается к подсистеме управления и коммутации при помощи канала

ISDN. Линейная станция может быть использована в корпоративной сети в качестве диспетчерской станции.

Подсистема управления и коммутации (SwMI, Switching and Management Infrastructure) включает базовые станции (BTS), главного центра коммутации MSC (Main Switching Center), локальных коммутаторов LSC (Local Switching Center) с регистрами местоположения LR (Local Registers) и центром коммутации и эксплуатации технического оборудования ОМС (Operation Maintenance Center).

Как видно (рис. 1.17) архитектура транкинговой системы TETRA позволяет организовывать соединения непосредственно между подвижным станциями DMO (Direct Mode Operation) без использования межсетевой структуры.

Используя шлюзы подсистемы управления и коммутации транкинговой сети TETRA можно подключаться к сети передачи данных общего пользования PDN (Public Data Network), телефонной сети общего пользования PTN (Public Telephone Network), а так же к телефонной коммутируемой сети общего пользования PSTN (Public Switched Telephone Network). Технология TETRA позволяет подключаться к цифровой сети связи с комплексными услугами iSDN (integrated Services Digital Network) и обеспечивать высокоскоростную передачу различных типов данных: текстовых, голосовых, видео и др.

На физическом уровне система TETRA обладает следующими показателями:

  • - ширина полосы радиоканала 25 кГц;
  • - временная система радиодоступа (TDMA) совместно с FDMA (четыре канала передачи

При использовании более чем одного временного слота в частотном канале шириной 25

кГц обеспечивать передачу данных со скоростью 28,8 кбит/с;

Применяется диффренциальная квадратурная фазовая манипуляции со сдвигом ± л/4 либо ± Зл/4 (л/4-DQPSK);

Информация в стандарте TETRA передается пакетами, как и в стандарте GSM. Пакет представляет собой физическое содержимое одного временного слота или субслота. Существует разновидность из шести пакетов различного назначения, содержащие в середине обучающие последовательности. Благодаря меньшему количеству временных слотов в кадре, чем в GSM, пакеты данных имеют большую длину и переносят большее количество битов.

Цифровая транкинговая система iDEN (integrated Digital Enhanced Network) это уникальная платформа доступа, поскольку совмещает несколько различных мобильных технологий вместе, которые базируются на усовершенствованной GSM. Услуги, которые интегрированы в iDEN включают систему распределения, дуплексную телефонную связь, передачу данных и услуги коротких сообщений (SMS). Система распределения обладает функцией конференц - связи, когда группа абонентов одновременно может участвовать в разговоре. Список участников может программироваться для двустороннего подключения или создавать специализированную систему подвижной радиосвязи SMR (Specialized Mobile Radio), обеспечивающей соединение на частотах, доступных группе каналов, физически принадлежащих абонентам, локализованным в некотором районе.

Применение технологии многостанционного доступа TDMA обеспечивает совместимость системы iDEN с системами сотовой связи, действующей на основе протокола D- AMPS. Система iDEN в режиме FDD разделяет каналы приема и передачи полосой в 45 МГц, при занимаемой полосе частот в 15 МГц. При ширине полосы, отводимой под один абонентский канал в 25 кГц, можно организовать в рабочей полосе 600 частотных каналов, что обеспечивает емкость такой системы в 8 раз большую по сравнению с системой GSM.

Система iDEN обладает многими показателями, свойственными сотовым системам: коррекция ошибок, пакетный режим передачи данных, возможность устанавливать соединение между абонентским терминалом и ТфОП, а так же принимать и посылать факсы, обеспечивать выход в Интернет.

Раздел 4 Мобильные системы транкинговой связи

Лекция № 23

Что же такое «транк»? Давайте попробуем разобраться, что скрывается за этим «модным» словом? Вот какой перевод дает «Англо-русский словарь по радиоэлектронике» 1987 года издания:

Trunk (транк) – соединительная линия; магистральная линия связи; канал связи

Trunking (транкинг) – группообразование

Электронный словарь «PROMT» 1999 года более «образован»:

Trunking – предоставление свободных каналов

Trunked radio system – радиосистема с автоматическим перераспределением каналов

Как видно из перевода ничего особенного за словом «транк» не кроется. Всего-навсего «автоматическое предоставление канала».

Транковые принципы используются уже свыше 70 лет в телефонии. Любая автоматическая телефонная станция, мини АТС, сотовая связь использует в основе своей работы транкинг. Все мы практически ежедневно используем транкинг. Хотя не многие из нас догадываются о том, что когда мы поднимаем трубку телефона и набираем номер... мы используем транкинг. Ведь было бы непозволительной роскошью выделять каждому телефонному абоненту отдельную линию, особенно междугороднюю. Всем нам для проведения беседы выделяется линия только на время сеанса связи. В остальное время (свободное от наших бесед) по ней обслуживаются другие пользователи.

Представьте себе ситуацию, когда жители, предположим, одного из районов Ташкента одновременно решили бы позвонить своим друзьям. Что бы произошло в этом случае? А ничего. Они просто не смогли бы это сделать, так как количество телефонных линий (между АТС) ограничено и одновременно может проводить сеансы связи вполне определенное количество абонентов (сколько конкретно – это тема отдельного разговора).

А теперь представьте себе, что все телефонные аппараты заменены на радиостанции, а проводные линии на радиочастотные каналы. Как Вы уже наверняка догадались, мы получили транк – систему радиосвязи с автоматическим предоставлением свободного канала.

НЕСКОЛЬКО ПОЯСНЕНИЙ

Транковые системы НЕ регламентируют:

выход в телефонную сеть;

использование дуплекса («говорю и слушаю» одновременно, как в телефонии);

громадную дальность;

высочайший сервис;

бесплатный доступ;

и много чего еще...

Они просто позволяют Вам общаться друг с другом, не задумываясь о технических тонкостях и физических проблемах. Вы разговариваете – оборудование работает. Работает для того, чтобы Вы могли разговаривать.

Более научно – суть транковой связи состоит в том, что абонент не закрепляется за определенным каналом, а имеет равный доступ ко всем каналам в системе. А какой использовать для сеанса связи, решает специальное управляющее оборудование. При запросе абонента система автоматически предоставляет абоненту свободный канал.


О ТЕРМИНОЛОГИИ

В российских изданиях устоялись слова «транкинг» и «транкинговые системы». Оставим эти обороты на совести переводчиков и лингвистов. На наш взгляд слова «транк» и «транковые системы» более благозвучны в произношении и проще в написании. Как правило, их использование не вызывает неоднозначного понимания. Поэтому в дальнейшем мы, в основном, будем пользоваться «нашими» формулировками.

МИФЫ И РЕАЛЬНОСТЬ

Десять соображений для охлаждения пыла оптимистов и поднятия духа пессимистов относительно «чудес» транковой связи:

Транк не чудо, а процесс развития средств радиосвязи.

Транк не заменяет сотовый телефон, не заменяет пейджер... транк вообще ничего не заменяет, а дополняет.

Транковая, значит: удобная, гибкая, расширяемая, универсальная, надежная, сложная, дорогая...

Транковые системы служат для связи между радиостанциями и еще раз радиостанциями, а не между радиостанциями и телефонными линиями.

Транковые системы могут много, но далеко не все.

Транковых систем много, а какую выбрать – зависит от задач.

Если транковая система не решает поставленную задачу, значит это неверная задача.

Если Вы не смогли выбрать подходящую транковую систему, значит транковая система Вам не нужна.

Поставщиков много, а денег мало – не платите дважды.

Не льстите себе! Доверьте выбор специалистам.

А если серьезно, то в чем же достоинства транковых систем по сравнению с традиционными, так называемыми, «обычными» сетями связи, с сотовой телефонией, с системами персонального радиовызова (пейджинг)?

Однозначно ответить на этот вопрос довольно сложно. Как и у любых систем здесь имеются как достоинства, так и недостатки.

Пожалуй, главным достоинством транковых систем является возможность интеграции разных служб с различными потребностями в рамках одной сети с минимальными (по сравнению с другими радиосистемами) материальными затратами.

ПРЕИМУЩЕСТВА ТРАНКОВЫХ СЕТЕЙ

По сравнению с сотовыми системами:

возможность связи одновременно с несколькими абонентами (групповые вызовы);

высокая оперативность установления соединения (0,2–1 сек);

организация очередей к ресурсам системы при занятости и автоматическое соединение после появления возможности доступа;

доступ к системе исходя из установленных приоритетов и экстренное предоставление канала связи абоненту с более высоким приоритетом;

меньшие затраты на развертывание и эксплуатацию систем.

По сравнению с «обычными» системами радиосвязи:

экономия частотных ресурсов;

более высокий уровень сервиса – индивидуальные вызовы, приоритеты, интеграция с другими сетями;

возможность передачи цифровых данных;

покрытие связью больших площадей благодаря многозоновой конфигурации.

По сравнению с сетями персонального радиовызова (пейджинг):

двухсторонняя связь;

возможность передачи коротких сообщений (аналогичных пейджинговым) по транковым каналам, с использованием имеющегося оборудования.

Это далеко не полный перечень имеющихся достоинств. И все же транк не является панацеей от всех бед. Наряду с транковыми системами имеется ряд пользователей, которым по разным причинам необходим сотовый телефон, кому-то достаточно пейджера, а ряд пользователей обходится (и будет обходиться) «обычными» системами связи.

Надо четко представлять, что транк не является универсальным решением всего множества задач радиосвязи. В любом, даже самом «транковом» государстве все равно остается ряд проблем, которые решаются другими системами связи, не имеющими ничего общего с транковыми.

К недостаткам транковых систем следует отнести:

низкую рентабельность при малом количестве абонентов;

относительно высокую стоимость оборудования (по сравнению с «обычными» системами радиосвязи);

потребность в линиях межзоновой связи (проводных, радиочастотных, радиорелейных, оптоволоконных) и, как следствие, усложнение и удорожание развертывания*;

потребность в профессиональном сервисном обслуживании.

* Нелишне заметить, что для охвата больших территорий большинство систем радиосвязи требуют многозоновой реализации и, естественно, линий межзоновой связи.

КЛАССИФИКАЦИЯ ТРАНКОВЫХ СИСТЕМ

Транкинговые системы можно классифицировать по многим признакам, например, по формату передаваемых данных (аналоговые, цифровые), по типам протоколов (LTR, MPT 1327, SmarTrunk II), по количеству обслуживаемых зон (одно- или многозоновые), по методам представления радиоканала («транкинг передач» или «транкинг сообщений»), по способам управления базовыми станциями (централизованное или распределенное), по типам каналов управления (выделенный или распределенный), и т.д.

Мы не будем останавливаться на подробной классификации транковых систем, тем более что в этой области не существует единой и общепринятой методики. Мы попытаемся охарактеризовать современные транковые системы, описать их возможности, отметить наиболее важные моменты, на которые стоит обратить внимание при выборе.

Архитектура транкинговых систем

Транкинговыми системами называются радиально-зоновые системы наземной подвижной радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами. Это достаточно общее определение, но оно содержит совокупность признаков, объединяющих все транкинговые системы, от простейших SmarTrunk до современных TETRA. Термин "транкинг" происходит от английского Trunking, что можно перевести как "объединение в пучок".

Однозоновые системы

Рисунок 67 Структурная схема однозоновой транкинговой системы

Основные архитектурные принципы транкинговых систем легко просматриваются на обобщенной структурной схеме однозоновой транкинговой системы, представленной на рис. 67. Инфраструктура транкинговой системы представлена базовой станцией (БС), в состав которой, помимо радиочастотного оборудования (ретрансляторы, устройство объединения радиосигналов, антенны), входят также коммутатор, устройство управления и интерфейсы различных внешних сетей.

Ретранслятор. Ретранслятор (РТ) - набор приемопередающего оборудования, обслуживающего одну пару несущих частот. До последнего времени в подавляющем большинстве ТСС одна пара несущих означала один канал трафика (КТ). В настоящее время, с появлением систем стандарта TETRA и системы EDACS ProtoCALL, предусматривающих временное уплотнение, один РТ может обеспечить два или четыре КТ.

Антенны. Важнейший принцип построения транкинговых систем заключается в том, чтобы создавать зоны радиопокрытия настолько большими, насколько это возможно. Поэтому антенны базовой станции, как правило, размещаются на высоких мачтах или сооружениях и имеют круговую диаграмму направленности. Разумеется, при расположении базовой станции на краю зоны применяются направленные антенны. Базовая станция может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте могут размещаться несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антенное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах. Ретрансляторы транкинговых систем работают только в дуплексном режиме, причем разнос частот приема и передачи (дуплексный разнос) в зависимости от рабочего диапазона составляет от 3 МГц до 45 МГц.

Коммутатор в однозоновой транкинговой системе обслуживает весь ее трафик, включая соединение подвижных абонентов с телефонной сетью общего пользования (ТФОП) и все вызовы, связанные с передачей данных.

Устройство управления обеспечивает взаимодействие всех узлов базовой станции. Оно также обрабатывает вызовы, осуществляет аутентификацию вызывающих абонентов (проверку "свой-чужой"), ведение очередей вызовов и внесение записей в базы данных повременной оплаты. В некоторых системах управляющее устройство регулирует максимально допустимую продолжительность соединения с телефонной сетью. Как правило, используются два варианта регулирования: уменьшение продолжительности соединений в заранее заданные часы наибольшей нагрузки, или адаптивное изменение продолжительности соединения в зависимости от текущей нагрузки.

Интерфейс ТФОП реализуется в транкинговых системах различными способами. В недорогих системах (например, SmarTrunk) подключение может производиться по двухпроводным коммутируемым линиям. Более современные ТСС имеют в составе интерфейса к ТфОП аппаратуру прямого набора номера DID (Direct Inward Dialing), обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС. Ряд систем использует цифровое ИКМ-соединение с аппаратурой АТС.

Одной из основных проблем при регистрации и использовании транкинговых систем в России является проблема их сопряжения с ТфОП. При исходящих вызовах транкинговых абонентов в телефонную сеть сложность заключается в том, что некоторые транкинговые системы не могут набирать номер в декадном режиме по абонентским линиям в электромеханических АТС. Таким образом, необходимо использовать дополнительное устройство преобразования тонального набора в декадный.

Входящая связь от абонентов ТфОП к радиоабонентам оказывается также проблематичной но ряду причин. Большинство транкинговых сетей сопрягаются с телефонной сетью по двухпроводным абонентским линиям или линиям типа Е&М. В этом случае после набора номера ТфОП требуется донабор номера радиоабонента. Однако после полного набора номера абонентской липни и замыкания шлейфа управляющим устройством транкинговой системы телефонное соединение считается установленным, и дальнейший набор номера в импульсном режиме затруднен, а в некоторых случаях невозможен. Применяемый в системе SmarTrunk II детектор "щелчков" не гарантирует правильности импульсного донабора, так как качество приходящих из абонентской линии "импульсов-щелчков" зависит от ее электрических характеристик, длины и т.д.

Для выхода из сложившейся ситуации в лаборатории фирмы ИВП вместе со специалистами компании ELTA-R был разработан телефонный интерфейс (ТИ) ELTA 200 для сопряжения транкинговых систем связи разных типов с ТфОП. Такой интерфейс позволяет сопрягать транкинговые системы связи и ТфОП по цифровым каналам (2,048 Мбит с), трехпроводным соединительным линиям с декадным набором номера, а также по четырехпроводным каналам ТЧ с системами сигнализации различных типов при сопряжении с ведомственными телефонными сетями.

Соединение с ТфОП является традиционным для ТСС, но в последнее время все более возрастает число приложений, предполагающих ПД, в связи с чем наличие интерфейса к СКП также становится обязательным.

Терминал технического обслуживания и эксплуатации (терминал ТОЭ) располагается, как правило, на базовой станции однозоновой сети. Терминал предназначен для контроля за состоянием системы, проведения диагностики неисправностей, учета тарификационной информации, внесения изменений в базу данных абонентов. Подавляющее большинство выпускаемых и разрабатываемых транкинговых систем имеют возможность удаленного подключения терминала ТОЭ через ТФОП или СКП.

Диспетчерский пульт. Необязательными, но очень характерными элементами инфраструктуры транкинговой системы являются диспетчерские пульты. Дело в том, что транкинговые системы используются в первую очередь теми потребителями, чья работа не обходится без диспетчера. Это службы охраны правопорядка, скорая медицинская помощь, пожарная охрана, транспортные компании, муниципальные службы.

Диспетчерские пульты могут включаться в систему по абонентским радиоканалам, или подключаться по выделенным линиям непосредственно к коммутатору базовой станции. Следует отметить, что в рамках одной транкинговой системы может быть организовано несколько независимых сетей связи, каждая из которых может иметь свой диспетчерский пульт. Пользователи каждой из таких сетей не будут замечать работы соседей, и что не менее важно, не смогут вмешиваться в работу других сетей.

Абонентское оборудование транкинговых систем включает в себя широкий набор устройств. Как правило, наиболее многочисленными являются полудуплексные радиостанции, т.к. именно они в наибольшей степени подходят для работы в замкнутых группах. В большинстве своем это радиостанции с ограниченным числом функций, не имеющие цифровой клавиатуры. Их пользователи, как правило, имеют возможность связываться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Впрочем, этого вполне достаточно для большинства потребителей услуг связи транкинговых систем. Выпускаются и полудуплексные радиостанции с широким набором функций и цифровой клавиатурой, но они, будучи несколько дороже, предназначены для более узкого привилегированного круга абонентов.

В транкинговых системах, особенно рассчитанных на коммерческое использование, применяются также дуплексные радиостанции, скорее напоминающие сотовые телефоны, но обладающие значительно большей функциональностью по сравнению с последними. Дуплексные радиостанции транкинговых систем обеспечивают пользователям полноценное соединение с ТФОП. Что же касается групповой работы в радиосети, то она производится в полудуплексном режиме. В корпоративных транкинговых сетях дуплексные радиостанции применяются в первую очередь для персонала высшего звена управления.

Как полудуплексные, так и дуплексные транкинговые радиостанции выпускаются не только в портативном, но и в автомобильном исполнении. Как правило, выходная мощность передатчиков автомобильных радиостанций в 3-5 раз выше, чем у портативных радиостанций.

Относительно новым классом устройств для транкинговых систем являются терминалы передачи данных. В аналоговых транкинговых системах терминалы передачи данных - это специализированные радиомодемы, поддерживающие соответствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса передачи данных в абонентские радиостанции различных классов. В состав автомобильного терминала передачи данных иногда включают и спутниковый навигационный приемник системы GPS (Global Positioning System), предназначенный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В транкинговых системах используются также стационарные радиостанции, преимущественно для подключения диспетчерских пультов. Выходная мощность передатчиков стационарных радиостанций приблизительно такая же, как у автомобильных радиостанций.

Многозоновые системы

Ранние стандарты транкинговых систем не предусматривали каких-либо механизмов взаимодействия различных зон обслуживания. Между тем, требования потребителей значительно возросли, и хотя оборудование для однозоновых систем до сих пор производится и успешно продается, все вновь разрабатываемые транкинговые системы и стандарты являются многозоновыми.

Архитектура многозоновых транкинговых систем может строиться по двум различным принципам. В том случае, если определяющим фактором является стоимость оборудования, используется распределенная межзональная коммутация. Структура такой системы показана на рис. 2. Каждая базовая станция в такой системе имеет свое собственное подключение к ТФОП. Этого уже вполне достаточно для организации многозоновой системы - при необходимости вызова из одной зоны в другую он производится через интерфейс ТФОП, включая процедуру набора телефонного номера. Кроме того, базовые станции могут быть непосредственно соединены с помощью физических выделенных линий связи (чаще всего используются малоканальные радиорелейные линии).

Каждая БС в такой системе имеет свое собственное подключение к ТфОП. При необходимости вызова из одной зоны в другую он производится через интерфейс ТфОП, включая процедуру набора телефонного номера. Кроме того, БС могут быть непосредственно соединены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутации целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзональных вызовов (особенно в случае соединения через коммутируемые каналы ТфОП). В системах с высоким качеством обслуживания используется архитектура с ЦК. Структура многозоновой ТСС с ЦК изображена на рис. 68.

Основной элемент этой схемы - межзональный коммутатор. Он обрабатывает все виды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонентов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТфОП и СКП, что позволяет при необходимости полностью контролировать как речевой трафик ТС, так и трафик всех приложений ПД, связанный с внешними СКП, например Интернет. Таким образом, система с ЦК обладает более высокой управляемостью.

Рисунок 68 Структурная схема транкинговой сети с распределенной межзональной коммутацией

Рисунок 69 Структурная схема транкинговой сети с централизованной межзональной коммутацией

Итак, можно выделить несколько важнейших архитектурных признаков, присущих транкинговым системам.

Во-первых, это ограниченная (а значит, недорогая) инфраструктура. В многозоновых транкинговых системах она более развита, но все равно не идет ни в какое сравнение с мощью инфраструктуры сотовых сетей.

Во-вторых, это большой пространственный охват зон обслуживания базовых станций, который объясняется необходимостью поддержания групповой работы на обширных территориях и требованиями минимизации стоимости системы. В сотовых сетях, где инвестиции в инфраструктуру быстро окупаются, а трафик постоянно растет, базовые станции размещаются все более плотно, а радиус зон покрытия (сот) уменьшается. При развертывании транкинговых систем все обстоит несколько иначе - объем финансирования, как правило, ограничен, и для достижения высокой эффективности капиталовложений нужно обслужить с помощью одного комплекта оборудования базовой станции возможно более обширную территорию.

В-третьих, широкий набор абонентского оборудования позволяет транкинговым системам охватить практически весь спектр потребностей корпоративного потребителя в подвижной связи. Возможность обслуживания разнородных по функциональному назначению устройств в единой системе - это еще один путь к минимизации расходов.

В-четвертых, транкинговые системы позволяют на базе своих каналов организовать независимые выделенные сети связи (или, как принято говорить в последнее время, частные виртуальные сети). Это означает, что несколько организаций могут совместными усилиями развернуть единую систему вместо установки отдельных систем. При этом достигается ощутимая экономия радиочастотного ресурса, а также снижение стоимости инфраструктуры.

Все сказанное выше свидетельствует о прочности позиций транкинговых систем в корпоративном секторе рынка систем и средств подвижной связи.

Классификация транкинговых систем

Для классифицирования транкинговых систем связи можно использовать следующие признаки.

Метод передачи речевой информации

По методу передачи речевой информации транкинговые системы подразделяются на аналоговые и цифровые. Передача речи в радиоканале аналоговых систем осуществляется с использованием частотной модуляции, а шаг сетки частот обычно составляет 12,5 кГц или 25 кГц.

Для передачи речи в цифровых системах используются различные типы вокодеров, преобразующих аналоговый речевой сигнал в цифровой поток со скоростью не более 4,8 Кбит/с.

Количество зон

В зависимости от количества базовых станций и общей архитектуры различают однозоновые и многозоновые системы. Первые располагают лишь одной базовой станцией, вторые - несколькими БС с возможностью роуминга.

Метод объединения базовых станций в многозоновых системах

Базовые станции в транкинговых системах могут объединяться с помощью единого коммутатора (системы с централизованной коммутацией), а также соединяться друг с другом непосредственно или через сети общего пользования (системы с распределенной коммутацией).

Тип многостанционного доступа

В подавляющем большинстве транкинговых систем, включая и цифровые системы, используется многостанционный доступ с частотным разделением (МДЧР). Для систем МДЧР справедливо соотношение "одна несущая - один канал".

В однозоновых системах стандарта TETRA используется многостанционный доступ с временным уплотнением (МДВР). В то же время в многозоновых системах стандарта TETRA используется комбинация МДЧР и МДВР.

Способ поиска и назначения канала

По способу поиска и назначения канала различают системы с децентрализованным и централизованным управлением.

В системах с децентрализованным управлением процедуру поиска свободного канала выполняют абонентские радиостанции. В этих системах ретрансляторы базовой станции обычно не связаны друг с другом и работают независимо. Особенностью систем с децентрализованным управлением является относительно большое время установления соединения между абонентами, растущее с увеличением числа ретрансляторов. Такая зависимость вызвана тем, что абонентские радиостанции вынуждены непрерывно последовательно сканировать каналы в поисках вызывного сигнала (последний может поступить от любого ретранслятора) или свободного канала (если абонент сам посылает вызов). Наиболее характерными представителями данного класса являются системы протокола SmarTrunk.

В системах с централизованным управлением поиск и назначение свободного канала производится на базовой станции. Для обеспечения нормального функционирования таких систем организуются каналы двух типов: рабочие (Traffic Channels) и канал управления (Control Channel). Все запросы на предоставление связи направляются по каналу управления. По этому же каналу базовая станция извещает абонентские устройства о назначении рабочего канала, отклонении запроса, либо о постановке запроса в очередь.

Тип канала управления

Во всех транкинговых системах каналы управления являются цифровыми. Различают системы с выделенным частотным каналом управления и системы с распределенным каналом управления. В системах первого типа передача данных в канале управления производится со скоростью до 9,6 Кбит/с, а для разрешения конфликтов используются протоколы типа ALOHA.

Выделенный канал управления имеют все транкинговые системы протокола МРТ1327, системы фирмы Motorola (Startsite, Smartnet, Smartzone), система EDACS фирмы Ericsson и некоторые другие.

В системах с распределенным каналом управления информация о состоянии системы и поступающих вызовах распределена между низкоскоростными субканалами передачи данных, совмещенными со всеми рабочими каналами. Таким образом, в каждом частотном канале системы передается не только речь, но и данные канала управления. Для организации такого парциального канала в аналоговых системах обычно используется субтональный диапазон частот 0 - 300 Гц. Наиболее характерными представителями данного класса являются системы протокола LTR.

Способ удержания канала

Транкинговые системы позволяют абонентам удерживать канал связи на протяжении всего разговора, или только на время передачи. Первый способ, называемый также транкингом сообщений (Message Trunking), наиболее традиционен для систем связи, и обязательно используется во всех случаях применения дуплексной связи или соединения с ТФОП.

Второй способ, предусматривающий удержание канала только на время передачи, называется транкингом передач (Transmission Trunking). Он может быть реализован только при использовании полудуплексных радиостанций. В последних передатчик включается только на время произнесения абонентом фраз разговора. В паузах между окончанием фраз одного абонента и началом ответных фраз другого передатчики обоих радиостанций выключены. Некоторые транкинговые системы эффективно используют такие паузы, освобождая рабочий канал немедленно после окончания работы передатчика абонентской радиостанции. Для ответной реплики назначение рабочего канала будет произведено заново, при этом реплики одного и того же разговора будут, скорее всего, передаваться по разным каналам.

Платой за некоторое повышение эффективности использования системы в целом при применении транкинга передач служит снижение комфортности переговоров, особенно в часы высокой нагрузки. Рабочие каналы для продолжения начатого разговора в такие периоды будут предоставляться с задержкой, достигающей нескольких секунд, что приведет к фрагментарности и раздробленности разговора.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Федеральное агентство связи Государственное общеобразовательное учреждение Высшего профессионального обучения “Сибирский государственный университет телекоммуникаций и информатики” (филиал)

Хабаровский институт инфокоммуникаций Факультет заочного обучения

Курсовой проект

по дисциплине: Системы радиосвязи с подвижными объектами

на тему: Проектирование транкинговой сети связи

Выполнила: студентка 4 курса ФЗО

специальности МТС (уск.)

Малышева В.В.

Хабаровск 2010

Введение

3.4 Определение числа РЧК при наличии нескольких зон радиопокрытия с выходом на АТС через одну базовую станцию

Литература

транкинговая сеть радиосвязь

Задан тип застройки района обслуживания. Определить рабочий диапазон частот исходя из типа застройки.

1. Определить среднее значение размеров зон обслуживания исходя из типа застройки района, мощности радиопередатчика, высоты подвеса антенн и диапазона рабочих частот.

2. Произвести частотное планирование сети.

3.1 Разработать план размещения базовых станций с учётом топологии местности.

3.2 Определение каналов для каждой БС.

3.3 Расчёт зоны обслуживания и зоны помех для каждой БС.

4. Расчёт дальности радиосвязи.

5. Составить схему организации связи.

6. Составить структурную схему сети исходя из количества БС.

7. Составить структурную схему БС, определив тип базового оборудования.

8. Составить структурную схему однозоновой или многозоновой транкинговой системы.

9. Составить структурную схему управления в транкинговой системе.

Исходные данные для выполнения курсового проекта (вариант № 6):

Тип застройки: среднеэтажная застройка

Вид объекта: мобильные объекты

Мощность передатчика: Рпер = 30 Вт

Чувствительность приёмника: Ес = 0,5 мкВ

Высота подвеса антенны: h = 25м

Количество пользователей: 325

Перепады высот: Hmax = 250м, Hmin = 50м

Коэффициент усиления антенны: G = 7 дБ

Коэффициент тяготения: G = 0,35

Затухание в АФУ: 10 дБ

Среднее число вызовов: С = 4,4

Средняя продолжительность разговора: tср = 28 сек

Плотность транспорта: V = 7 маш/км2

Длина фидера передатчика БС: lперБС = 17 м

Длина фидера передатчика АС: lперАС = 1,1 м

Потери в фидере: ДРф = 2,5 дБ

Потери в комбайнере: ДРк = 4 Дб

Также исходные данные приведены в таблице 1.

Таблица 1

Параметры

№ базовой станции

Введение

В настоящее время существует целый ряд систем сухопутной подвижной радиосвязи:

Системы персонального радиовызова (пейджинг);

Системы диспетчерской (оперативной) радиосвязи;

Транкинговые системы радиосвязи;

Системы сотовой телефонной радиосвязи.

Транкинговые системы радиосвязи стали наиболее успешной реализацией развития систем оперативной мобильной связи, которые обладают высокой эффективностью при интенсивном обмене оперативной информацией для большого количества абонентов, которые могут объединяться в группы по оперативно-функциональным признакам. Предоставляемый транкинговыми системами набор сервисных услуг весьма широк и практически включает в себя все их многообразие: от передачи данных до радиотелефонии и от простого оповещения до автоматического определения местоположения подвижных объектов.

Транкинговые системы радиосвязи - это многоканальные системы, в которых абоненту по его требованию автоматически по заданному алгоритму предоставляется радиоканал и другие ресурсы системы, чем обеспечивается высокая эффективность использования частотного ресурса.

По принципу организации радиоканала все транкинговые системы можно разделить на три условные группы:

Аналоговые - системы радиосвязи с селективным вызовом (DTMF, Select 5 и т.п.);

Аналого-цифровые - системы, в которых передача служебной информации при установлении соединения осуществляется в цифровом, а передача в аналоговом режиме (SmarTrunk II, MPT 1327, LTR, EDACS);

Цифровые - EDACS ProtoCall, TETRA, Astro.

По наличию в системе канала управления:

Системы, имеющие канал управления на момент установления соединения - SmarTrank II, Selekt 5 и др.;

Системы с постоянным каналом управления, формируемым различными способами - TETRA, MPT 1327, LTR и др.

По способу предоставления канала связи:

Постоянный на весь сеанс связи - SmarTrank II, MPT 1327 и др.;

Предоставляемый только для передачи сообщения и меняется в течение сеанса связи - EDACS, TETRA.

По принципу организации управления базовым оборудованием: децентрализованный - SmarTrank II и др.; централизованный - МРТ 1327, EDACS, TETRA и др. Кроме того, все протоколы транкинговых систем можно разделить на 2 класса:

1. Открытые протоколы (MPT 1327, TETRA);

2. "Фирменные" протоколы (LTR, SmartNet, SmartZone, EDACS, ESAS и др.).

Открытые протоколы доступны для любого производителя. Эти протоколы рекомендованы для использования во многих странах. Системы с такими протоколами производятся многими фирмами, оборудование ввиду массовости производства и высокой конкуренции, как правило, дешевле, чем в специализированных системах.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrank II, MPT 1327, LTR, EDACS и SmartZone. Поэтому в курсовом проекте, при выборе типового оборудования, за основу принят протокол МРТ 1327.

Протокол МРТ 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов. Важнейшими достоинствами протокола МРТ 1327 являются:

Возможность построения многозоновых систем национального масштаба с большим количеством базовых станций, что позволяет «покрывать связью» значительные территории;

Широкий выбор абонентского и базового оборудования МРТ 1327: его выпускают многие фирмы - Motorola, Tait Electronics, Fylde Microsystems, Bosch, Philips, Nokia, Rohde & Schwarz и др.;

Протокол не привязан к определённым частотам, что позволяет выбирать их в зависимости от наличия плана частот и соответствующего разрешения ГКРЧ;

Стандартизация компонентов системы позволяет упростить и удешевить эксплуатацию, обслуживание, развитие и объединение сетей в более крупные системы;

Обеспечивается возможность экономичной передачи коротких сообщений;

Протоколы позволяют строить эффективные сети сбора информации от датчиков состояний и аварий;

Гарантированная модернизация и техобслуживание;

Осуществление плавного перехода на сигнальные протоколы нового поколения (от аналоговых систем к цифровым системам стандарта TETRA).

Возможности, предоставляемые абонентам транкинговых систем протокола МРТ 1327:

Индивидуальный вызов мобильной радиостанции;

Вещательный вызов, при котором вызываемые абоненты могут только слушать информацию;

Вызов группы абонентов;

Приоритетный и аварийный вызовы;

Вложенный вызов, позволяющий включать других абонентов в существующий разговор;

Соединение с абонентами городской и ведомственной телефонных сетей;

Переадресация пользователем радиостанции входящих вызовов на другого абонента;

Постановка вызовов на очередь;

Защита от несанкционированного доступа.

Транкинговые системы стандарта МРТ 1327 поддерживают режим обмена данными, который обеспечивает передачу: статусных сообщений; коротких до 25 символов; расширенных до 88 символов; сообщений неограниченной длины.

1. Определение рабочего диапазона частот

В данном курсовом проекте задан тип застройки средне этажный, следовательно, можно предположить, что тип местности городской. Для городских районов оптимальным являются диапазоны 300, 450 и 900 МГц. Примем диапазон равный 300 МГц.

2. Определение среднего значения размеров зон обслуживания

Среднее значение размеров зон обслуживания зависит от мощности радиопередатчика, высоты подвеса антенн, типа застройки, района обслуживания, типа абонентской станции и диапазона рабочих частот.

Для среднеэтажной застройки значение ресурсов зон обслуживания мобильных объектов равно 15-30км.

3. Частотное планирование сети

Частотное планирование сети производится на основании расчета зоны уверенной связи для заданного качества приема. При этом надо использовать принцип неравномерного распределения радиочастотного ресурса по территории пропорциональной концентрации абонентов: применять в локальных сетях транкинговой радиосвязи малоканальное оборудование, обеспечивающего обслуживание от 100-200 до 1500-2000 абонентов.

3.1 Разработка плана размещения базовых станций

При разработке плана размещения БС руководствуются следующим: приблизительный радиус зоны обслуживания БС для 300 МГц - 10-15км. Исходя из этого, производится предварительное размещение БС с учетом полного или частичного покрытия зоны обслуживания и использование одно - или многозоновой систем. Определение числа ретрансляторов для БС производится исходя из распределения абонентской нагрузки в пределах зоны обслуживания из расчета 80-100 абонентов на канал.

3.2 Определение числа радиочастотных каналов при одной зоне обслуживания без выхода на АТС

При расчете числа РЧК предполагается, что весь трафик на сети создается только радио абонентами и полностью распределяется между ними, т.е. тяготение радио абонентов к абонентам АТС. Для определения емкости пучка РЧК требуется знать:

N - число радио абонентов;

Счнн - среднее число вызовов в ЧНН, создаваемых одним радио абонентом;

Tср - средняя продолжительность разговора.

где - нагрузка, поступающая от одного абонента в ЧНН, равная:

Зная, что среднее число вызовов в ЧНН, создаваемых одним радиоабонентом, равно 4,4, а средняя продолжительность разговора:

tср = 28 сек = 0,007778 часа,

определяем нагрузку, поступающую от одного абонента в ЧНН:

При постоянной блокировки вызова:

при заданных N = 325,

по графику (рисунка 1) определяем, что требуемое число радиочастотных каналов:

V = 13 каналов.

А удельная нагрузка, поступающая от 250 абонентов, равна:

3.3 Определение числа РЧК при одной зоне обслуживания с выходом на АТС

В некоторых случаях радио абоненты транкинговой сети могут иметь выход на АТС. В этом случае часть поступающей нагрузки составляет нагрузка между системой и АТС телефонной сети. На рисунке 2 представлена схема обслуживания базовой станции одной зоны с АТС.

По заданию задан коэффициент тяготения:

абонентов сети к АТС. Определим общую нагрузку, создаваемую всеми абонентами, с учетом коэффициента тяготения по следующей формуле:

По графику (рисунок 3) для вычисленного значения:

Ае = 4 Эрл,

найдем емкость пучка каналов V1 для обслуживания нагрузки между системой и АТС.

Емкость пучка каналов V1 = 11 каналов.

3.4 Определение числа РЧК при наличии нескольких зон радио покрытия с выходом на АТС через одну базовую станцию

На рисунке 4 представлена схема при наличии нескольких зон радио покрытия с выходом на одну базовую станцию. Значения, N и G (нагрузка, поступающая от одного абонента в ЧНН, число радио абонентов и коэффициент тяготения) для БС-1, БС-2, БС-3 и БС-4 указаны в таблице 1.

При наличии нескольких базовых станций (БС), одна из них будет главной, которая имеет выход на АТС по кабельным линиям связи. Остальные БС связаны с главной по каналам радиорелейных линий связи. Каждая БСi имеет Ni - количество радио абонентов, причем каждый из них создает нагрузку i. Для каждой БСi задан коэффициент тяготения к АТС - Gi. Трафик каждой БСi поступает к АТС через главную БС. Необходимо рассчитать число радиоканалов:

В каждой зоне VБС;

Между главной БС и АТС - V1;

Радиорелейной системы, связывающей БСi с главной - Vрр.

Рассчитаем необходимые значения по следующему алгоритму:

1. Определим общую поступающую нагрузку для каждой БСi по формуле:

2. По графику (рисунок 1) определяем число РЧК по заданным значениям i и Ni:

3. Рассчитаем поступающую нагрузку Ае между каждой БСi и АТС с учетом коэффициента тяготения:

4. Определим общую поступающую нагрузку от БС к АТС:

5. По графику (рисунок 3) определяем емкость пучка каналов V1 между главной БС и АТС по найденному значению Ае общ.: V1 = 9 каналов.

6. Определим по расчетным нагрузкам Аei для каждой БСi число радиоканалов радиорелейной системы Vрр, связывающей каждую БС с главной. Определение Vpp производиться по графической зависимости, представленной на рисунке 5.

4. Расчет зоны обслуживания базовой станции

Для определения зоны обслуживания БС произведем следующие расчеты:

1. Определим эффективно излучаемую мощность передатчика БС:

где РБС - мощность передатчика БС, равная в данном курсовом проекте:

ДРф - потери в фидере, равные 2,5 дБ;

ДРк - потери в комбайнере, равные 4 дБ;

Gо БС - коэффициент усиления антенны БС, равный 7 дБ.

Подставив значения, получаем:

2. Определим параметр Дh, характеризующий неравномерности рельефа местности. Ориентировочно Дh может быть определено по разности ДH максимальной и минимальной высотных отметок местности:

Зная, что Нmax = 250м, а Hmin = 50м, производим расчет:

3. Определим эффективную высоту передающей антенны БС:

где hБС - высота подвеса антенны БС относительно уровня моря (hБС = 25м);

средний уровень местности относительно уровня моря по высотам hi на удалении 1000+250i метров от БС, равный 1,5м.

4. Определим медианное значение минимальной напряженности поля сигнала для абонентской станции от БС:

где - напряженность поля, соответствующая чувствительности приемника АС, дБмкВ/м;

Uсигн - чувствительность приемника, мкВ.

Действующая длина приемной антенны, м.

GАС - коэффициент усиления антенны АС;

Rвх - входное сопротивление приемника, примем Rвх = 50 Ом;

Ко - коэффициент надежности логарифмического распределения зависящий от требуемой надежности связи по времени и месту (Ко = 1,64);

где и - стандартные отклонения сигнала по времени и месту:

ДЕ и Дh - поправка на неравномерность рельефа местности:

Подставляя полученные значения, получаем:

5. Расчет помех в пункте размещения базовой станции

Расчет среднего эффективного значения напряженности поля помех в пункте приемной антенны БС производится на частоте f МГц при заданной плотности транспорта в зоне приема V.

На рисунке 6 приведены характеристики радиопомех, наблюдаемые в антеннах БС. При оценке помех определялась зона восприятия помех приемной антенной БС размером в 1 км 2 , помехи разделялись на три группы в зависимости от плотности транспорта в пределах зоны для каждого момента времени:

Плотность транспорта в зоне высоких уровней помех (Н) VН = 100 маш./км 2 ;

В зоне средних (М) плотность транспорта VМ = 10 маш./км 2 ;

В зоне низких уровней помех (L) плотность транспорта VL = 1 маш./км 2 .

В данном курсовом проекте помеха в зависимости от плотности транспорта находится в зоне средних уровней, т.к. VM = 7 маш./км 2

Принимаем среднюю частоту повторения импульсов помех:

Fu = 3650 имп/п,

которая слабо зависит от рабочей частоты; среднеквадратичное отклонение пиковых значений помех принимаем равным:

По рисунку 6 для заданного значения V и f находим:

Еи (Еи = 22 дБ).

Затем по следующей формуле найдем среднее эффективное значение напряженности помех:

где Пиз - эффективная ширина полосы пропускания типового измерителя помех, принимаем:

Ппр - эффективная ширина полосы пропускания приемника, принимаем.

С учетом собственных шумов аппаратуры среднее эффективное значение напряженности поля суммарных помех:

где GН - номинальная чувствительность приемника, мкВ;

Затухание в антенном тракте приемника;

Длина фидера;

(S/N)пр.вх - номинальное отношение сигнал/шум, принимаем равным 10-12;

hд.пр - действующая высота антенны:

6. Расчет дальности радиосвязи

Определим напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи по формуле:

где Ес - напряженность поля сигнала, необходимая для получения заданных показателей качества:

где ЕП.ЭФ - среднее эффективное значение напряженности поля суммарных помех, равное 9,43 дБ

R0 = 5-10 дБ - защитное отношение для получения заданного качества приема

С = 8 дБ - значение защитного коэффициента, необходимого для обеспечения требуемого защитного отношения

Вр.н. - поправка, учитывающая отличие номинальной мощности передатчика от мощности 1 кВт:

где Рн - номинальная мощность передатчика, равная 30 Вт. Поэтому:

Вф - затухание в резонаторах, мостовых фильтрах и антеннах разделителях принимаем равным 3 дБ;

Вh2 - поправка, учитывающая высоту приемной антенны АС, дБ:

Для h2 = 3м: ;

Врел - поправка, учитывающая рельеф местности, отличающийся от Дh=50 м, дБ.

Дh определяется по формуле:

где Hmax и Hmin - максимальные и минимальные высотные отметки местности на трассе распространения в выбранном направлении, равные 200 м и 50м.

Следовательно,

По графику (рисунок 7) определяем Врел (Врел = 9 дБ)

Ду - усиление приемной и передающей антенны, равное 7 дБ;

Подставляя полученные значения, определяем напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи:

Определив напряженность поля, по графику (рисунок 8) определяем ожидаемую дальность связи - 40 км.

7. Структурная схема базовой станции

На рисунке 9 представлен общий принцип построения базовой станции.

7.1 Структурная схема однозоновой транкинговой системы

Структура однозоновой транкинговой системы представлена на рисунке 10.

Устройство объединения радиосигналов служит для объединения и разветвления сигналов, поступающих от передатчика и приемника ретранслятора. Ретранслятор - это набор приемопередатчиков, обслуживающих одну пару несущих частот. Один ретранслятор может обеспечить два или четыре канала трафика. Четыре канала для обслуживания 50-100 радиоканалов; 8 каналов - 200-500AC; 16 каналов - до 2000 радио абонентов. Зона действия БС на частоте 160 МГц - 40км; на частоте 300 МГц - 25-30км; на частоте 300 МГц - 20км.

Коммутатор обслуживает весь трафик системы. Устройство управления обеспечивает взаимодействие всех узлов БС. Оно обрабатывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в базы данных повременной оплаты.

Терминал технического обслуживания и эксплуатации предназначен для контроля за состоянием системы, проведение диагностики неисправностей, внесение изменений в базу данных абонентов.

В состав центральной станции зоны обслуживания входит несколько приемопередатчиков, количество которых зависит от количества каналов и количества обслуживаемых абонентов.

Приемопередатчик каждого канала контролируется контроллером. Максимальное количество каналов на центральной станции до 24. Одним каналом можно обслужить до 30-50 абонентов. Для взаимодействия всех контроллеров центральной станции используется блок сопряжения, который по общей шине управления соединен со всеми контроллерами, обеспечивая, таким образом, управление, учет и тарификацию соединений.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrunk II, MPT 1327, LTR и SmartZone. Протокол MPT 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов.

Типовая спецификация оборудования в диапазоне 450 МГц для мобильных объектов:

Базовое оборудование: Количество:

Процессор регионального управления Т1530 1;

Пульт оператора в составе: компьютер и принтер;

Программное обеспечение пульта оператора Т1504 1;

Блок коммутации Т1560 1;

Канальная интерфейсная плата Т1560-02 3;

Интерфейсная плата Т1560-03 на одну 2-х проводную линию 1;

Ретранслятор Т850 (50Вт, 100% реж. работы) 4;

Контроллер транкингового канала Т1510 4;

Системный интерфейс Т1520 1;

Модем Т902-15 2;

Шкаф 3 8RU 2.

Антенно-фидерное оборудование: Количество:

Комбайнер M101-450-TRM 1;

Дуплексный фильтр TMND-4516 1;

Приемная распределительная панель TWR8/16-450 1;

Антенна стационарная ANT 450 D6 - 9 (ус. 6-9 дБ) 2;

Кабель коаксиальный РК 50-7-58 70м;

Разъем для РК 50-7-58 2;

Грозоразрядник 1;

Переходные кабели 8.

Транкинговые радиостанции фирмы TAIT ELECTRONICS LTD:

Носимые Т3035;

Мобильные Т2050.

Небольшие многозоновые системы с централизованным управлением и подключением к АТС наиболее целесообразно строить на базе системы TAITNET фирмы TAIT Electronics.

Система TAITNET состоит из центра регионального управления, терминала управления системой, базовых станций и абонентского оборудования. Типовая функциональная схема четырехзоновой транкинговой системы связи TAITNET представлена на блок-схеме (рисунок 11).

7.2 Структурная схема многозоновой транкинговой системы

Система состоит из центра регионального управления, терминала управления системой, базовых станций, абонентского оборудования. В состав центра регионального управления входят: региональный контроллер, коммутатор и интерфейсные платы.

Региональный контроллер (процессор регионального управления Т1530), который осуществляет объединение всех контроллеров Т1510 базовых станций в единую многоканальную многозоновую систему. Этот контроллер может управлять системой, состоящей из 10 зон по 24 канала в каждой зоне. Он собирает информацию от всех подключенных БС и передает ее на терминал управления системой.

Терминал управления системой представляет собой IBM-совместимый персональный компьютер и работает с использованием специального программного обеспечения Т1504 фирмы TAIT Electronics.

Коммутатор Т1560 состоит из коммутационной матрицы и интерфейсных плат. Он обеспечивает коммутацию аудиоканалов при межзоновых соединениях и аудиоканалов с телефонными линиями.

Интерфейсные платы Т1560-03 обеспечивают стык с двухпроводными телефонными абонентскими линиями. Платы Т1560-02 обеспечивают соединение коммутатора Т1560 с трафиковыми каналами БС по выделенным четырех проводным линиям.

Если оператор системы TAITNET располагает абонентской емкостью на АТС, то возможна организация единой нумерации абонентов телефонной сети и абонентов транкинговой системы. Организацию общей нумерации обеспечивает контроллер соединительных линий.

Оборудование базовой станции состоит из антенно-фидерного оборудования, приемопередатчиков Т850, канальных контроллеров Т1510 и системного интерфейса Т1520.

Контроллеры БС поддерживают сеанс связи и взаимодействуют с системным интерфейсом. Системный интерфейс выполняет проверку и учет соединений, выдает информацию о состоянии системы и осуществляет обмен данными с контроллерами БС. Связь с процессором регионального управления обеспечивается по выделенным двух проводным линиям через модем. Для связи абонентов БС с региональным узлом используются 4-х проводные аудиолинии. Контроль и управление базовыми станциями производится региональным контроллером.

В каждой БЗ также имеется системный контроллер. Связь между системными контроллерами базовых станций осуществляется с помощью модемов. Интерфейсные платы в центре регионального управления осуществляют возможность выхода в телефонную сеть общего пользования.

Литература

1. Методические указания и задание на курсовой проект по предмету "Системы связи с подвижными объектами"

2. Конспект лекций по предмету "Системы связи с подвижными объектами"

3. Каталог "Системы и средства радиосвязи", 1998

4. Каталог оборудования фирмы Радиома, 1999

5. Сводная таблица характеристик транкинговых радиостанций МРТ-1327

Размещено на Allbest.ru

Подобные документы

    Определение параметров сотовой сети для данного города и мощности передатчика базовой станции. Выявление количества частотных каналов, которое используется для обслуживания абонентов в одном секторе одной соты. Расчет допустимой телефонной нагрузки.

    курсовая работа , добавлен 04.04.2014

    Выбор частотных каналов. Расчет числа сот в сети и максимального удаления в соте абонентской станции от базовой станции. Расчет потерь на трассе прохождения сигнала и определение мощности передатчиков. Расчет надежности проектируемой сети сотовой связи.

    курсовая работа , добавлен 20.01.2016

    Выбор трассы прокладки волоконно-оптической линии связи. Расчет необходимого числа каналов. Определение числа оптических волокон в оптическом кабеле, выбор его типа и параметров. Структурная схема организации связи. Составление сметы на строительство.

    курсовая работа , добавлен 16.07.2013

    Проектирование и структурная схема городской телефонной сети, использование унифицированного двухстороннего коммутационного элемента. Расчёт интенсивности нагрузки, числа каналов и терминальных модулей. Определение числа плоскостей главной ступени.

    курсовая работа , добавлен 19.06.2012

    Организация поездной радиосвязи. Расчет дальности действия радиосвязи на перегоне и на станции. Радиоаппаратура и диапазон частот. Выбор и анализ направляющих линий. Организация станционной радиосвязи. Организация громкоговорящей связи на станции.

    курсовая работа , добавлен 28.01.2013

    Определение нагрузки, поступающей на станцию системы массового обслуживания. Определение необходимого числа каналов для полнодоступной системы при требуемом уровне потерь. Моделирование в среде GPSS World СМО с потерями от требуемого числа каналов.

    курсовая работа , добавлен 15.02.2016

    Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа , добавлен 16.12.2012

    Проектирование принципиальных электрических схем канала радиосвязи. Расчёт кривой наземного затухания напряженности поля радиоволны при радиосвязи дежурного по станции с машинистом поезда. Разработка синтезатора частоты, обслуживающего радиоканал.

    курсовая работа , добавлен 12.02.2013

    Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.

    курсовая работа , добавлен 05.03.2011

    Расчет требуемого отношения сигнал-шум на выходе радиолокационной станции. Определение значения множителя Земли и дальности прямой видимости цели. Расчет значения коэффициента подавления мешающих отражений. Действие станции на фоне пассивных помех.