Схема работы бытового холодильника. Принцип работы холодильника

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Как устроен холодильник

Любой современный холодильник состоит из следующих основных агрегатов:

  1. Двигатель.
  2. Конденсатор.
  3. Испаритель.
  4. Капиллярная трубка.
  5. Осушительный фильтр.
  6. Докипатель.

Схема работы холодильника

Электродвигатель

Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.

Двигатель состоит из двух агрегатов:

  • электромотор;
  • компрессор.

Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.

Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.

При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.

А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.

При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.

Положение двигателя холодильника

В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.

Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.

Конденсатор

Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.

Испаритель

Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.

Устройство компрессора

Капиллярная трубка

Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.

Фильтр-осушитель

Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.

Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.

Внутри трубки находится цеолит – минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.

Фильтр-осушитель

Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.

Докипатель

Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.

Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.

Как работает холодильник

Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:

  1. Вывод тепловой энергии из устройства в окружающее пространство.
  2. Концентрация холода внутри корпуса прибора.

Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.

Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.

Принципиальная схема работы холодильника

Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.

На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.

Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.

А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.

В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.

Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.

Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.

Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.

После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.

Основные типы охлаждающих систем

По принципу действия различают следующие типы холодильников:

  • компрессионные;
  • адсорбционные;
  • термоэлектрические;
  • пароэжекторные.

В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.

В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.

А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.

Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.

В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.

Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.

Принцип работы абсорбционных холодильников

Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.

Схема работы абсорбционного устройства

В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.

А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.

При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.

Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.

Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.

Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.

В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.

Достоинством абсорбционных приборов является бесшумность работы агрегатов.

Принцип работы саморазмораживающегося холодильника

Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.

Существуют два типа саморазмораживающихся систем:

  1. Капельная.
  2. Ветреная (No frost).

В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.

В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.

Промышленные холодильники

Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.

А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.

Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.

Принцип работы инверторного холодильника

Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.

Устройство инверторного двигателя

При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.

Устройство термостата холодильника

Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.

Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.

Устройство терморегулятора

Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.

А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.

Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.

Холодильник без электричества – правда или вымысел?

Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».

Холодильник без электричества

Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.

Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.

Пока техника исправно функционирует, пользователя не интересует, как она устроена. Знания о том, как работает холодильник, понадобятся, когда возникла поломка: помогут избежать серьезной неисправности или быстро определить место. Правильная эксплуатация также во многом зависит от осведомленности пользователя. В статье рассмотрим устройство бытового холодильника и его работу.

«Атлант», «Стинол», «Индезит» и другие модели оснащаются компрессорами, которые запускают процесс охлаждения в камере.

Основные составляющие части:

  • Компрессор (мотор). Бывает инверторным и линейным. Благодаря запуску мотора фреон передвигается по трубкам системы, обеспечивая охлаждение в камерах.
  • Конденсатор - это трубки на задней стенке корпуса (в последних моделях может размещаться сбоку). Тепло, которое вырабатывает компрессор во время работы, конденсатор отдает окружающей среде. Так холодильник не перегревается.

Вот почему производители запрещают устанавливать технику возле батарей, радиаторов и печей. Тогда перегрева не избежать, и мотор быстро выйдет из строя .

  • Испаритель. Здесь фреон закипает и переходит в газообразное состояние. При этом забирается большое количество тепла, трубки в камере охлаждаются вместе с воздухом в отделении.
  • Вентиль для терморегуляции. Поддерживает заданное давление для движения хладагента.
  • Хладагент - это газ-фреон или изобутан. Он циркулирует по системе, способствуя охлаждению в камерах.

Важно правильно понимать, как работает техника: она не вырабатывает холод. Воздух охлаждается благодаря отбору тепла и его отдаче окружающему пространству. Фреон проходит в испаритель, поглощает тепло и переходит в парообразное состояние. Двигатель приводит в действие поршень мотора. Последний сжимает фреон и создает давление для его перегонки по системе. Попадая в конденсатор, хладагент остывает (тепло выходит наружу), превращаясь в жидкость.

Чтобы установить нужный температурный режим в камерах, устанавливается терморегулятор. В моделях с электронным управлением (LG, «Самсунг», «Бош») достаточно выставить значения на панели.

Переходя в фильтр-осушитель, хладагент избавляется от влаги и проходит по трубкам капилляра. После чего снова попадает в испаритель. Мотор перегоняет фреон и повторяет цикл, пока в отделении не установится оптимальная температура. Как только это случится, плата управления посылает сигнал пускозащитному реле, которое отключает двигатель.

Однокамерный и двухкамерный холодильник

Несмотря на одинаковое строение, различия в принципе работы все-таки есть. Старые двухкамерные модели оснащены одним испарителем для обеих камер. Поэтому, если при разморозке механически убирать наледь и задеть испаритель, из строя выйдет весь холодильник.

Новый двухкамерный шкаф имеет два отделения, каждый из которых оснащен испарителем. Обе камеры изолированы друг от друга. Обычно в таких случаях морозилка находится снизу, а холодильный отсек - сверху.

Поскольку в холодильнике есть зоны с нулевой температурой (читайте, что такое зона свежести в холодильнике), фреон охлаждается в морозилке до определенного уровня, а затем перемещается в верхнее отделение. Как только показатели достигают нормы, срабатывает терморегулятор, и пусковое реле отключает мотор.

Наиболее востребованы приборы с одим мотором, хотя с двумя компрессорами также набирают популярность. Последние функционируют так же, просто за каждую камеру отвечает отдельный компрессор.

Но не только в двухкамерной технике можно отдельно устанавливать температуру. Есть такие приборы («Минск» 126, 128 и 130), где установлены электромагнитные клапаны. Они перекрывают подачу фреона в отделение холодильника. Исходя из показаний регулятора температуры выполняется охлаждение.

Более сложная конструкция предусматривает размещение специальных датчиков, которые измеряют температуру снаружи и регулируют ее внутри камеры.

Как долго работает компрессор

Точные показания не указаны в инструкции. Главное, чтобы мощности мотора хватало на нормальную заморозку продукции. Существует общий коэффициент работы: если прибор функционирует 15 минут и 25 минут отдыхает, тогда 15/(15+25) = 0,37.

Если подсчитанные показатели оказались менее 0,2, значит нужно отрегулировать показания термореле. Более 0,6 указывает на нарушение герметичности камеры.

Абсорбционный холодильник

В данной конструкции рабочая жидкость (аммиак) испаряется. Хладагент циркулирует по системе благодаря растворению аммиака в воде. Затем жидкость переходит в десорбер, а потом в дефлегматор, где снова разделяется на воду и аммиак.

Холодильники данного типа редко используются в быту, поскольку в основе ядовитые компоненты.

Модели с No Frost и «плачущей» стенкой

Техника с системой Ноу Фрост сегодня на пике популярности. Потому что технология позволяет размораживать холодильник раз в год, только чтобы помыть. Особенности функционирования обеспечивают вывод влаги из системы, поэтому в камере не образуется лед и снег.

В морозильном отделении располагается испаритель. Холод, который он вырабатывает, распространяется по холодильному отделению с помощью вентилятора. В камере на уровне полок есть отверстия, куда выходит холодный поток и равномерно распределяется по отсеку.

После цикла работы запускается оттайка. Таймер запускает ТЭН испарителя. Наледь тает, и влага выводится наружу, где испаряется.

«Плачущий испаритель». Название основано на принципе, при котором во время работы компрессора на испарителе образуется наледь. Как только мотор отключается, лед тает, и конденсат стекает в сливное отверстие. Способ оттайки называется капельный.

Суперзаморозка

Функцию также называют «Быстрая заморозка». Она реализована во многих двухкамерных моделях «Хаер», «Бирюса», «Аристон». В электромеханических моделях режим запускается нажатием кнопки или поворотом регулятора. Компрессор начинает безостановочную работу до тех пор, пока продукты полностью не промерзнут как внутри, так и снаружи. После чего функцию нужно отключить.

Электронное управление автоматически отключает суперзаморозку, согласно сигналам термоэлектрических датчиков.

Электрическая схема

Чтобы самостоятельно отыскать причину неполадки, понадобится знание электрической схемы.

Ток, подающийся на схему, проходит такой путь:

  • идет через контакты термореле (1);
  • кнопки оттайки (2);
  • теплового реле (3);
  • пускозащитного реле (5);
  • подается на рабочую обмотку двигателя мотора (4.1).

Нерабочая обмотка двигателя пропускает напряжение больше заданного значения. При этом срабатывает пусковое реле, замыкает контакты и запускает обмотку. После достижения нужной температуры, контакты термореле размыкаются, и двигатель останавливает работу мотора.

Теперь вы понимаете устройство холодильника и как он должен работать. Это поможет правильно эксплуатировать прибор и продлить срок его использования.

В однокамерных устройствах охлаждение камеры осуществляется от главного испарителя, который находится в верху холодильного шкафа. Охлажденный воздух с испарителя поступает вниз и понижает температуру в холодильной камеры. Для того, что бы не было резкого понижения температуры, под главным испарителем расположен поддон с маленькими отверстиями, через которые охлажденный воздух от испарителя попадает в холодильную камеру. Открытием и закрытием этих отверстий мы можем изменять температуру в холодильной камере. Из курса физики мы знаем, что холодный воздух всегда поступает вниз, и поэтому в однокамерных холодильниках морозильная камера находится всегда сверху.


Упрощенная электрическая схема холодильника

Холодильный агрегат в однокамерном устройстве работает по следующей схеме: компрессор откачивает пары холодильного агента из испарителя и нагнетает их в конденсатор, где они и охлаждаются, конденсируются и в конечном итоге переходят в жидкую фазу. Далее эта жидкость через фильтр-осушитель и капиллярные трубки поступает в испаритель где вскипает и начинает забирать тепловую энергию от поверхности испарителя, то есть охлаждая содержимое холодильника. Холодильный агент выкипает и превращается в пар во время прохождения через испаритель, который по той же самой схеме откачивается компрессором. Алгоритм циклично повторяется до момента времени, пока температура на поверхности испарителя не станет заданной, после чего термореле отключит компрессор.


Схема холодильника принцип работы

Под действием внешнего климатического воздействия температура в морозильной камере увеличивается, и термореле опять подключает компрессор. Работая по такой схеме, внутри холодильника держится постоянная температура. Для профилактики образования конденсата на поверхности трубопроводной системы по всей его длине устанавливается капиллярная трубка. Во время работы капиллярная трубка нагревается, тем самым нагревая трубопровод всасывания. В современных моделях капиллярная трубка располагается внутри трубопровода всасывания.

Двухкамерный аппарат в отличии от однокамерного брата имеет два отдельных испарителя для холодильной и морозильной камеры, разделенных теплоизолирующей перегородкой.


Упрощенная электрическая схема холодильника (двухкамерный)

Принцип работы двухкамерного следующий: холодильный агент закачиваемый компрессором, через капиллярною трубку, поступает на испаритель морозильной камеры, где вскипая и испаряясь, начинается процесс охлаждения поверхность испарителя. До-тех пор пока испаритель морозилки не обмёрзнет до минусовых значений, в другой испаритель находящийся в холодильной камере холодильный агент поступать не будет.

Как только испаритель в морозилке обмерзнет жидкий холодильный агент начнет поступать в испаритель холодильной камеры, понижая его температуру до минус 14°С, после чего термореле, отключит компрессор.А включение компрессора произойдет, также автоматически после нагрева испарителя до определённой температуры.

Компрессор – это сердце любого холодильника или морозильника. Если с ним возникли проблемы, то и холодильник работать точно не будет. У рядового потребителя возникает вопрос. Можно ли в домашних условиях проверить его? Оказывается, не только можно, но и нужно. Главное, чтоб для этого у вас были нужные знания и прямые руки.


Рассмотрен и описан схемотехнический принцип работы термостата, а также варианты замены сгоревшего регулятора температуры на его простые самодельные аналоги.

В рассмотренных выше принципах работы компрессора есть один существенный недостаток - компрессор работает на полную мощность, и даже несмотря на то, что он периодически отключается термореле общее энергопотребление значительно выше, чем у инверторных компрессоров

Принцип работы компрессора инверторного типа следующий: При подаче электропитания холодильник быстро набирает заданную температура охлаждения, а затем с помощью плавного изменения мощности компрессора держится требуемая температура, при этом инверторный компрессор не выключается, а уменьшает лишь количество циклов работы компрессора в единицу времени, а температура внутри холодильной камеры поддерживается постоянной.

Устранение неисправности дело серьезное, но любой радиолюбитель способен произвести несложный ремонт своими руками, и даже заменить некоторые вышедшие из строя узлы альтернативными радиолюбительскими конструкциями.


Иногда так случается, что подойдя к холодильнику рано утром, вы понимаете, что забыли плотно закрыть его дверь вечеро. Холодильник за ночь разморозился, и некоторые продукты для профилактики отравлений лучше отправить в мусорный бак. Чтобы этого избежать предлагаю собрать звуковой сигнализатор, и спустя какое-то время устройство само напомнит вам, чтобы дверь открыта. Конечно, в некоторые новые модели холодильников эта функция уже встроена, но старые прекрасно работающие бюджетные модели необходимо модернизировать, установив, как вариант, данную схему детектора.

Во многих моделях современных холодильников двери открываются с правой стороны. Но периодически появляются ситуации, в которых требуется изменить этот принцип и выполнить перевешивание дверей холодильника на противоположную сторону.

Отсутствие подсветки в холодильнике – приносит кучу неудобств, особенно в темное время суток. В старых холодильных устройствах применялись типовые лампы накаливания малой мощности, единственным их минусом была генерация тепла. В современной кухонной техники вместе с классическими лампами накаливания применяются люминесцентные и светодиодные лампы. Эти виды ламп куда более энергоэффективны и генерируют холодный белый свет, а главное почти не нагреваются. Но даже их приходится периодически заменять на новые, а чтоб правильно это сделать, следует ознакомиться с этой статьей.

Все системы охлаждения современных холодильников можно поделить на три класса: статическое охлаждение, система No Frost и динамическое охлаждение. Именно эти три группы и являются основой любого холодильного устройства.

Статическое охлаждение

Другое название этой систему "Direct Cool". Принцип работы следующий. Когда работает компрессор, температура в камере снижается за счет отбора тепла испарителем, который размещен в задней стенке корпуса. Температура задней стенки низкая и вся влага начинает конденсироваться и замерзать на ней. Когда температура снижается до заданного пользователем уровня, компрессор отключается. Через некоторое время замерзшие капли влаги на стенке начинают таить и стекать через специальное отверстие в контейнер, расположенный снаружи холодильника. Когда температура увеличивается до максимальных значений заданным настройками терморегулятора и компрессор снова срабатывет и все повторяется в той же последовательности. Температура в морозильной камере всегда находится в отрицательном диапазоне за счет конструкционных особенностей и площади испарителя.

Размораживание в холодильных устройствах со статической системой охлаждения называют ручным. Под размораживанием понимают только процесс разморозки морозильной камеры, так как из-за постоянной отрицательной температуры, влага постоянно намерзает на стенках камеры. В холодильной камере разморозка осуществляется автоматически.

Недостатком такой системы охлаждения является отсутствие равномерного охлаждения по всему объему. Интенсивность охлаждения в статических системах самая низкая. Достоинством является максимальное сохранение влаги продуктов.

Охлаждение No Frost

Система может работать без разморозки все время пока не сломается. Принцип ее работы следующий - т.к испаритель в таких холодильниках открыт, то воздух в камере контактирует с ним. В основу охлаждения No Frost лежит принудительная циркуляция воздуха в холодильной камере через испаритель. Во время работы компрессора воздух вентилятором прогоняется через испаритель, который забирает тепло и обладает достаточно низкой температурой. Вся влага, которая находится в воздухе, мгновенно замерзает на самом испарителе. За счет этого и не происходит наледи. Когда компрессор отключается достигая заложеного уровня температуры, влага на испарителе тает сама и выводится по специальному дренажному каналу. Аналогичный процесс идет и в морозильной камере.

Вместе с этой системой используется понятие многопоточной системы охлаждения Air Flow или Multi Air Flow. Отдельно в собственную систему охлаждения ее выделить нельзя, так как это система циркуляции всего лишь повышает эффективность охлаждения. Достоинством систем No Frost является отличная эффективность охлаждения. Так как распределенный воздушный поток образует одинаковую температуру в любой части холодильной камеры.

Из недостатков продукты в таких холодильниках частично теряют свою влагу и их желательно хранить в контейнерах.

Динамическое охлаждение

На самом деле это усовершенствованная статическая система но с определенными усовершенствованиями, в виде вентилятора камере. Принцип работы такой же как и в случае со статическим охлаждением. А вентилятор, обеспечивает принудительную циркуляцию воздуха в камере.

Эта система сочетает в себе плюсы статической и No Frost системы, обеспечивая наиболее лучшие условия для хранения продуктов.

В современных конструкциях холодильников используются комбинации систем охлаждения из-за чего их нельзя рассматривать как с одной конкретной системой. Например, фирма Electrolux выпускает холодильники с системой Frost Free. Но в оригенали это комбинация статической системы в холодильной камере и No Frost в морозилке.

Классический холодильник, без системы No Frost работает следующим образом:

    Мотор - компрессор (1), засасывает газообразный фреон из испарителя, сжимает его, и через фильтр (6) выталкивает в конденсатор (7).

    В конденсаторе, нагретый в результате сжатия фреон остывает до комнатной температуры и окончательно переходит в жидкое состояние.

    Жидкий фреон, находящийся под давлением, через отверстие капиляра (8) попадает во внутреннюю полость испарителя (5), переходит в газообразное состояние, в результате чего, отнимает тепло от стенок испарителя, а испаритель, в свою очередь, охлаждает внутреннее пространство холодильника.

    Этот процесс повторяется до достижения заданной терморегулятором (3) температуры стенок испарителя.

    При достижении необходимой температуры терморегулятор размыкает электрическую цепь и компрессор останавливается.

    Через некоторое время, температура в холодильнике (за счет воздействия внешних факторов) начинает повышаться, контакты терморегулятора замыкаются, с помощью защитно-пускового реле (2) запускается электродвигатель мотор - компрессора и весь цикл повторяется сначала (см. пункт 1)

1-Мотор-компрессор; 2-Защитно-пусковое реле; 3-Терморегулятор; 4-Внутренняя лампа освещения холодильника; 5-Испаритель; 6-Фильтр-осушитель; 7-Конденсатор; 8-Капиляр; 9-Включатель лампы

Электрическое оборудование холодильников

К электрическому оборудованию бытовых холодильников относятся следующие приборы:
электрические нагреватели: для обогрева генератора в абсорбционных холодильных агрегатах; для предохранения дверного проема низкотемпературной (морозильной) камеры от выпадения конденсата (запотевания) на стенках; для обогрева испарителя при полуавтоматическом и автоматическом удалении снежного покрова;
электродвигатель компрессора (это относится к компрессионным холодильникам);
проходные герметичные контакты для соединения обмоток электродвигателя с внешней электропроводкой холодильника через стенку кожуха мотор-компрессора;
осветительная аппаратура, предназначенная для освещения холодильной камеры;
вентиляторы: для обдува конденсатора холодильного агрегата воздухом (при использовании в холодильниках конденсаторов с принудительным охлаждением) и для принудительной циркуляции воздуха в камерах холодильников.

К приборам автоматики бытовых холодильников относятся:
датчики-реле температуры (терморегуляторы) для поддержания заданной температуры в холодильной или низкотемпературной камере бытовых холодильников;
пусковое реле для автоматического включения пусковой обмотки электродвигателя при запуске;
защитное реле для предохранения обмоток электродвигателя от токов перегрузки;
приборы автоматики для удаления снежного покрова со стенок испарителя

Электрическая схема холодильника и принцип ее работы.
При подаче напряжения электрический ток проходит через замкнутые контакты терморегулятора (3), кнопки размораживания (10), реле тепловой защиты (11), катушку пускового реле (контакты пускового реле12.2 пока разомкнуты) и рабочую обмотку электродвигателя мотор-компрессора.
Поскольку двигатель пока не вращается, ток протекающий через рабочую обмотку мотор-компрессора в несколько раз превышает номинальный, пусковое реле (12) устроено таким образом, что при превышении номинального значения тока замыкаются контакты (12.2), к цепи подключается пусковая обмотка электродвигателя. Двигатель начинает вращаться, ток в рабочей обмотке снижается, контакты пускового реле размыкаются и двигатель продолжает работать в нормальном режиме.
Когда стенки испарителя охладятся до установленного на терморегуляторе значения, контакты (3) разомкнуться и электродвигатель мотор-компрессора остановиться.
С течением времени температура внутри холодильника повышается, контакты терморегулятора замыкаются и весь цикл повторяется заново.
Реле защиты предназначено для отключения двигателя при опасном повышении силы тока. С одной стороны оно защищает двигатель от перегрева и поломки, а с другой - Вашу квартиру от пожара.
Реле состоит из биметаллической пластины (11.1), которая при повышении температуры изгибается и размыкает контакты (11.2), после остывания биметаллической пластины контакты снова замыкаются.

1 - электродвигатель мотор-компрессора; 1.1 - рабочая обмотка; 1.2 - пусковая обмотка; 3 - контакты терморегулятора; 10 - кнопка размораживания; 11 - реле защиты; 11.1 - биметаллическая пластина; 11.2 - контакты реле; 12 - пусковое реле
12.1 - катушка реле; 12.2 - контакты реле

Из каких материалов изготовлен холодильник

Упрощенно представляя, холодильник состоит из изотермического шкафа и электрического оборудования (холодильного агрегата)

Корпус
Корпус является несущей конструкцией, поэтому должен быть достаточно жестким. Его изготавливают из листовой стали толщиной 0,6-0,1 мм. Герметичность наружного шкафа обеспечивается пастой ПВ-3 на основе хлорвиниловой смолы. Поверхность шкафа фосфатируют, затем грунтуют и дважды покрывают белой эмалью МЛ-12-01, ЭП-148, МЛ-242, МЛ-283 или др. Выполняют это с помощью краскопультов или в электростатическом поле. Поверхность сервировочного столика, если таковой имеется, покрывают полиэфирным лаком.

В последнее время для изготовления корпуса холодильника все чаще применяют ударопрочные пластики. Благодаря этому сокращается расход металла и уменьшается масса холодильного прибора.

Внутренние шкафы холодильников
Металлические внутренние шкафы из стального листа толщиной 0,7- 0,9 мм изготавливают методом штамповки и сварки и эмалируют горячим способом силикатно-титановой эмалью.

Пластмассовые камеры изготавливают из АБС-пластика или из ударопрочного полистирола методом вакуум-формирования. АБС (акрилбутадиеновый стирол) обладает высокими механическими свойствами и стойкостью по отношению к хладону (фреону). Детали из АБС-пластика, покрытые хромом и никелем, широко применяются в декоративных целях. АБС-пластики отечественного производства по физико-механическим свойствам делятся на четыре группы:
АБС-0903 средней ударной вязкости;
АБС-1106Э, АБС-1308, АБС-1530, АБС-2020 повышенной ударной вязкости;
АБС-2501К, АБС-2512Э, АБС-2802Э высокой ударной вязкости;
АБС-0809Т, АБС-0804Т, АБС-1002Т повышенной теплостойкости.
АБС-пластики выпускаются в виде гранул диаметром не более 3 мм и длиной 4-5 мм или в виде порошка и перерабатываются литьем под давлением, выдуванием, термоформованием. Камеры у морозильников и камеры низкотемпературных отделений холодильников металлические - из алюминия или нержавеющей стали. Стальные камеры более долговечны, гигиеничны, но они увеличивают массу холодильника и требуют особых способов крепления к наружному корпусу для наиболее эффективной теплоизоляции от окружающей среды.
К преимуществам пластмассовых камер относятся технологичность изготовления, малый коэффициент теплопроводности, меньшая масса. Однако такие камеры быстрее стареют, со временем теряют товарный вид, менее долговечны и менее прочны по сравнению с металлическими. В холодильниках с пластмассовыми камерами по периметру дверного проема не устанавливают накладки, закрывающие теплоизоляцию, так как роль накладок выполняют отбортованные края камеры.

Двери
Изготовляют из стального листа толщиной 0,8 мм методом штамповки и сварки. В некоторых моделях холодильников двери изготовлены из древесностружечной плиты или ударопрочного полистирола.

Дверь холодильника состоит из наружной и внутренней панелей, теплоизоляции между ними и уплотнителя. Панели двери изготовляют из ударопрочного полистирола методом вакуум-формования. Толщина листа 2-3 мм. У большинства холодильников двери открываются слева направо. В всех современных холодильниках предусмотрена перенавеска двери, т.е. возможность открывания двери справа налево. У настенных холодильников дверь двухстворчатая.

Дверь холодильника должна плотно прилегать к дверному проему, иначе теплый воздух будет проникать в камеру. Для обеспечения герметичности внутреннюю сторону двери по всему периметру окантовывают магнитным уплотнителем разного профиля. В холодильниках старых конструкций применялись резиновые уплотнители баллонного типа.

Двери в закрытом положении удерживаются с помощью механических (чаще куркового типа) или магнитных затворов. Последние наиболее распространены. При их наличии ручку двери можно расположить на разной высоте, исходя из требований технической эстетики. Замена дверных петель специальными навесками, укрепляемыми сверху и снизу двери, уменьшает общие габариты холодильника при открывании двери, что важно при установке холодильников в углу помещений.

Теплоизоляция
Теплоизоляцию применяют для защиты холодильной камеры от проникновения тепла окружающей среды и прокладывают по стенкам, верху и дну холодильного шкафа и холодильной камеры, а также под внутренней панелью двери. От теплоизоляционных материалов требуется, чтобы они обладали низким коэффициентом теплопроводности, небольшой объемной массой, малой гигроскопичностью, влагостойкостью, были огнестойкими, долговечными, дешевыми, биостойкими, не издавали запаха, а также были механически прочными. Для теплоизоляции шкафа и двери холодильников применяют штапельное стекловолокно МТ-35, МТХ-5, МТХ-8, минеральный войлок, пенополистирол ПСВ и ПСВ-С и пенополиуретан ППУ-309М.

Минеральный войлок изготовляют из минеральной ваты путем обработки ее растворами синтетических смол. Исходным сырьем для получения минеральной ваты служат минеральные породы (доломит, доломитоглинистый мергель), а также металлургические шлаки.

Стеклянный войлок - разновидность искусственного минерального войлока. Он состоит из тонких (толщина 10-12 мк) коротких стеклянных нитей, связанных синтетическими смолами. Теплоизоляция из стеклянного войлока и супертонкого волокна биостойка, не имеет запаха, обладает водоотталкивающим свойством, удобно укладывается и поэтому часто применяется.

Пенополистирол - синтетический теплоизоляционный материал. Он представляет собой легкую твердую пористую газонаполненную пластмассу с равномерно распределенными замкнутыми порами. Теплоизоляцию из пенополистирола получают вспениванием жидкого полистирола непосредственно в простенках холодильной камеры и корпуса шкафа холодильника.

Пенополиуретан - пенопласты мелкопористой жесткой структуры, полученные путем вспучивания полиуретановых смол с применением соответствующих катализаторов и эмульгаторов. Для повышения теплозащитных свойств в качестве вспучивающего газа применяют хладон-11 и др. Процесс пенообразования и затвердевания пены происходит в течение 10-15 мин при температуре до 5 °С.
Пенополиуретан обладает малой объемной массой, низким коэффициентом теплопроводности, влагостоек. Его можно вспенивать непосредственно в холодильном шкафу. При этом он равномерно и без воздушных полостей заполняет все пространство в простенках, хорошо склеивается со стенками, повышая прочность шкафа.

В зависимости от качества теплоизоляционных материалов толщина изоляции в стенках шкафа холодильника может быть от 30 до 70 мм, в двери - от 35 до 50 мм. Замена теплоизоляции из стекловолокна изоляцией из пенополиуретана позволяет при одних и тех же габаритах корпуса увеличить объем холодильника на 25%.

Затворы и уплотнители дверей
Ранее в холодильниках применялись курковые и секторные затворы дверей. В современных холодильниках применяются магнитные запоры.

Магнитные затворы представляют собой эластичную магнитную вставку, помещенную в уплотнительный профиль на внутренней панели двери. При закрывании двери она плотно притягивается к металлическому корпусу. Исходным сырьем для получения магнитных материалов служит феррит бария ВаО в смеси с каучуками или поливиниловыми и другими смолами, придающими ему гибкость. Изготовленные ленты эластичного магнита намагничивают в магнитном поле.

Притягивая уплотнитель к шкафу по всему периметру, магнитный затвор обеспечивает хорошее уплотнение и в то же время не требует усилий для открывания двери, которое необходимо проверять динамометром с погрешностью +1 Н. Динамометр прикрепляют к ручке на расстоянии, наиболее отдаленном от шарниров. Усилие при этом должно быть направлено перпендикулярно плоскости двери.

Для дверных уплотнителей в холодильниках с курковыми и секторными затворами применяют пищевую резину, с магнитными затворами - поливинилхлоридные и полихлорвиниловые уплотнители с магнитной вставкой и магнитные уплотнители с дополнительными удерживателями. В холодильниках с механическим затвором плотное закрывание двери достигается благодаря сжатию профиля резинового уплотнителя.

В холодильниках с магнитным затвором уплотнитель притягивается к шкафу силой притяжения магнита, при этом профиль уплотнителя растягивается. Уплотнитель имеет два баллона. Баллон прямоугольного сечения, в котором находится магнитная вставка, прижимается передней плоскостью к шкафу. Толщина стенки баллона существенно влияет на силу притяжения уплотнителя и не превышает 0,45 мм. Баллон "гармошка" служит для компенсации небольшого свободного хода двери. В свободном состоянии уплотнителя "гармошка" несколько сжата и при отходе двери растягивается, препятствуя отрыву уплотнителя от шкафа. Для эффективной работы профиль баллона "гармошка" имеет небольшое сопротивление растяжению, что обеспечивается тонкими стенками баллона, а также соответствующей конфигурацией его.

Магнитные вставки узлов уплотнения делают прямоугольного сечения. Их изготовляют из эластичных многокомпонентных ферритонаполненных композиций. Улучшить магнитные, физико-химические и термомеханические свойства, а также технико-экономические показатели магнитных эластичных вставок стало возможным благодаря использованию новых полимерных композиций на основе сополимеров ЭВА.

Уплотнение двери следует проверять, не включая холодильник в сеть. Бумажная полоска шириной 50 мм и толщиной 0,08 мм, заложенная между уплотнителем двери и закрываемой поверхностью шкафа, ни в одном месте не должна свободно перемещаться.

1. Однокамерные холодильники

Устройство и принцип действия холодильного агрегата однокамерного холодильника.

В однокамерном холодильнике охлаждение холодильной камеры происходит от основного испарителя, который расположен в верхней части холодильного шкафа. Холодный воздух из испарителя падает вниз и охлаждает продукты холодильной камеры.

Для того, что бы охлаждение было не очень сильным, под основным испарителем устанавливают поддон с небольшими окошками, через которые холодный воздух от испарителя поступает в холодильную камеру. Приоткрывая и закрывая эти окошки можно регулировать температуру в холодильной камере.

Поскольку известно, что холодный воздух опускается вниз, то в однокамерных холодильниках морозильная камера расположена только в верхней части холодильного шкафа.

Холодильный агрегат однокамерного холодильника работает следующим образом: мотор-компрессор откачивает пары холодильного агента из испарителя и нагнетает их в конденсатор. Здесь пары охлаждаются, конденсируются и переходят в жидкую фазу. Далее жидкий холодильный агент через фильтр-осушитель и капиллярную трубку направляется в испаритель.

Выплёскиваясь в каналы испарителя, жидкий холодильный агент вскипает и начинает отбирать тепло от поверхности испарителя, тем самым охлаждая внутренний объём холодильника. Пройдя через испаритель, холодильный агент выкипает и превращается в пар, который опять откачивается мотор-компрессором.

Цикл непрерывно повторяется до тех пор, пока температура на поверхности испарителя не достигнет необходимой величины, после чего терморегулятор выключит мотор-компрессор. Под действием окружающей среды температура в морозильной камере повышается, и терморегулятор снова включает мотор-компрессор.

Таким образом, внутри холодильника поддерживается необходимая температура. Для предотвращения образования конденсата на поверхности трубопровода всасывания на этот трубопровод по всей его длине припаивается капиллярная трубка.

При работе холодильника капиллярная трубка нагревается, соответственно нагревая трубопровод всасывания. На современных моделях холодильников капиллярная трубка находится внутри трубопровода всасывания.

2. Двухкамерные холодильники

Схема агрегата двухкамерного холодильника

Двухкамерный холодильник отличается от однокамерного наличием отдельных испарителей для холодильной и морозильной камер. В однокамерном холодильнике охлаждение холодильной камеры происходит от основного испарителя, который расположен в верхней части холодильного шкафа, холодный воздух от которого падает вниз и охлаждает продукты холодильной камеры.

В двухкамерном холодильнике камеры разделены теплоизолирующей перегородкой. Объем каждой камеры охлаждается своим испарителем.

Принцип действия агрегата двухкамерного холодильника следующий: холодильный агент, накачиваемый мотор-компрессором, проходит по конденсатору и капиллярной трубке, попадет в испаритель морозильной камеры, вскипает, и, испаряясь, начинает охлаждать поверхность испарителя.

При этом испарение жидкого холодильного агента и, соответственно, охлаждение начинается в месте входа капиллярной трубки в испаритель и постепенно продвигается по его каналам к выходу (см. рисунок ниже). Пока испаритель морозильной камеры не обмёрзнет до минусовой температуры, в испаритель холодильной камеры холодильный агент не поступает.

После обмерзания испарителя морозильной камеры жидкий холодильный агент начинает проникать в испаритель холодильной камеры, охлаждает его до температуры -14°С, после чего термостат, установленный на испарителе холодильной камеры, отключит мотор-компрессор.

После отключения мотора воздух в холодильной камере под воздействием окружающей среды постепенно нагревается, от этого нагревается испаритель холодильной камеры, и после нагрева испарителя до определённой температуры терморегулятор снова включает мотор-компрессор.

«Плачущий» испаритель.

Так обычно называют испаритель холодильной камеры в двухкамерных холодильниках. И вот почему: как правило, в относительно большой по объёму холодильной камере устанавливается испаритель небольшого размера (в несколько раз меньше, чем в морозильной камере), который обмерзает до температуры -14°С за довольно короткое время.

После чего чувствительный элемент терморегулятора, закреплённый на поверхности этого испарителя, даёт команду на отключение мотор-компрессора. За время работы мотора испаритель успевает охладить объём холодильной камеры до температуры +4°С.

После отключения мотор-компрессора воздух в холодильной камере начинает разогревать поверхность испарителя, и замерзший на нём слой инея тает и каплями стекает по испарителю в специальный лоток на стенке камеры. На фото ниже модели «плачущих» испарителей.

В двух-компрессорных холодильниках в одном корпусе устроены два самостоятельных холодильных прибора – холодильная камера и морозильная камера. Принцип действия полностью аналогичен выше описанному.

Что лучше, два компрессора или один?

Однозначного ответа на этот вопрос не существует, свои плюсы и минусы есть у обеих систем. Основным достоинством двухкомпрессорных моделей считается их повышенная экономичность — по сравнению с аналогичным по размеру однокомпрессорным аппаратом, двухкомпрессорный будет потреблять немного меньше электроэнергии. Разница в энергопотреблении не так велика, но если ее спроецировать на весь срок службы холодильника, то получится весьма существенная сумма. Это особенно актуально для европейских стран, стоимость электроэнергии в которых довольно высока. Кстати, наверное именно поэтому двухкомпрессорные модели производятся в основном в Европе.

С технической точки зрения повышенную экономичность двухкомпрессорных холодильников можно объяснить следующим образом. Как известно, двухкомпрессорные модели имеют независимую регулировку температуры в каждой камере, если система управления обнаруживает повышение температуры в одной из камер, то включается соответствующий этой камере маломощный экономичный компрессор, который выключается как только температура в камере достаточно понизится.

Однокомпрессорный холодильник не имеет раздельной регулировки. И если надо понизить температуру в холодильной камере, приходится включать единственный, относительно мощный и энергоемкий компрессор, который одновременно с охлаждением холодильной камеры будет вынужден совершать, возможно, ненужную в данный момент работу по дополнительному промораживанию морозилки, расходуя на это дополнительную электроэнергию.

К другим достоинствам двухкомпрессорной схемы, помимо уже упоминавшейся раздельной регулировки температуры в камерах, стоит отнести наличие полноценного режима суперзаморозки в морозильной камере, а также возможность отключить одну из камер, оставив работать другую (бывает полезно во время длительного отсутствия владельца). Кроме того, в силу определенных особенностей функционирования компрессионного холодильного агрегата, два маломощных компрессора создают меньше шума, чем один мощный. Соответственно, при прочих равных условиях, двухкомпрессорный холодильник будет работать немного тише.

Что касается однокомпрессорных аппаратов, то отсутствие всех вышеперечисленных благ компенсируется более низкой ценой самого холодильника, что в некоторых случаях является решающим фактором. Есть смысл упомянуть еще об одном типе холодильников, тем более, что он приобретает все большую популярность. Речь идет об однокомпрессорном аппарате, в холодильном агрегате которого дополнительно установлен специальный электромагнитный клапан, управляющий потоками хладагента, циркулирующего в агрегате. Благодаря наличию этого клапана, появилась возможность охлаждать камеры независимо друг от друга, не расходуя энергию компрессора на камеру, в данный момент времени не нуждающуюся в понижении температуры. Использование такой схемы позволяет достичь экономичности, сравнимой с экономичностью двухкомпрессорного холодильника.

В подавляющем большинстве случаев холодильники оснащенные системой No Frost и обслуживающие обе камеры, имеют один компрессор. Этот тип холодильников достаточно популярен, например, производственные программы таких фирм как Samsung, LG, Daewoo, Sharp, General Electric состоят, в основном, именно из таких аппаратов. Конструктивно подобные холодильники могут сильно отличаться друг от друга.

3. Холодильники NO FROST

Холодильники системы NO FROST отличаются от холодильников с обычной системой охлаждения тем, что в морозильной камере они не имеют привычного испарителя из металла, на который укладываются замораживаемые продукты.

Испаритель, который правильнее называть воздухоохладителем, в таких моделях скрыт за пластиковыми панелями, а холодильная камера вообще не имеет своего испарителя. Продукты в холодильниках NO FROST охлаждаются циркулирующим по камерам холодным воздухом, охлаждённым при прохождении через воздухоохладитель.

Конструктивно испаритель (воздухоохладитель) в холодильниках NO FROST в большинстве моделей холодильников внешне напоминает автомобильный радиатор

и может располагаться как в верхней, так и в нижней части морозильной камеры или за панелью на задней стенке этой камеры. За испарителем устанавливается вентилятор, который забирает воздух из морозильной и холодильной камер и прогоняет его через испаритель.

При прохождении через испаритель воздух охлаждается и по системе каналов направляется на охлаждаемые продукты. Большая часть охлаждённого воздуха поступает в морозильную камеру, а меньшая — по дополнительному каналу в холодильную. Исключение составляют холодильники FROST FREE , в холодильной камере которых установлен «плачущий» испаритель, и холодный воздух циркулирует только в пределах морозильной камеры.

Вопреки названию системы NO FROST (что у нас переводится как «без инея»), иней всё-таки образуется — просто его не видно, т.к. он образуется на закрытом от глаз испарителе. Периодически, раз в 8-16 часов, этот иней оттаивается нагревательными элементами, расположенными под испарителем или вмонтированы непосредственно в его конструкцию.

Командует оттайкой либо механический, либо электронный таймер. Подробнее о системе оттайки Вы можете узнать ниже на примере холодильника STINOL-104 .

СИСТЕМА УПРАВЛЕНИЯ АВТОМАТИЧЕСКОЙ ОТТАЙКОЙ ХОЛОДИЛЬНИКОВ NO FROST

На данной схеме не изображены пуско-защитное реле, датчик задержки вентилятора и некоторые другие элементы, чтобы не усложнять схему.

Условные обозначения:

  • Пр — плавкий предохранитель;
  • Т-Т — терморегулятор;
  • 1, 2 и 3 — контакты таймера;
  • МТ- моторчик таймера;
  • R1 — нагреватель испарителя;
  • R2 — нагреватель поддона каплепадения;
  • ДП — датчик перегрева;
  • МВ -мотор вентилятора;
  • L 1 — индикаторная лампа.

Принцип работы:

При включении холодильника питание 220В подаётся на плавкий предохранитель ПР через включенные контакты термостата Т-Т, далее через контакты 1 и 2 таймера на мотор вентилятора и на мотор-компрессор.

Датчик перегрева в тёплом состоянии разомкнут, и ток через моторчик таймера не проходит, т.е. таймер в начале работы холодильника не работает. При понижении температуры в морозильной камере датчик перегрева, установленный на испарителе, замыкается, и таймер начинает отсчитывать время работы холодильника в режиме замораживания.

Отсчитав цикл замораживания, таймер размыкает контакты 1 и 2 и замыкает контакты 1 и 3. При этом разрывается цепь питания вентилятора и мотор-компрессора, и включаются нагреватели R1 и R2. Пока датчик перегрева замкнут, ток на моторчик таймера не поступает, и таймер не работает.

Температура на поверхности испарителя повышается, иней с него оттаивает, и из-за повышения температуры на испарителе размыкаются контакты датчика перегрева. Начинает работать моторчик таймера, и через некоторое время таймер размыкает контакты 1 и 3 и замыкает контакты 1 и 2. Запускается мотор-компрессор, вентилятор, и начинается цикл замораживания.

4. Принудительная заморозка (режим SUPER)

Режим принудительной заморозки продуктов применяется на морозильниках и двухкамерных холодильниках для замораживания большого количества тёплых продуктов.
Суть этого режима заключается в следующем: замораживаемые продукты, помещённые в морозильную камеру, начинают охлаждаться с внешней части и лишь через некоторое время промерзают внутри.

Температура в холодильниках и морозильниках регулируется термостатом, или температурным датчиком, который отслеживает температуру либо самого испарителя, либо воздуха в морозильной камере, но не температуру замораживаемых продуктов.

И может случиться, что температура испарителя или воздуха в морозильной камере достигнет нужной для регулятора величины, и он отключит мотор-компрессор прежде, чем продукты промёрзнут насквозь.

Именно в таких случаях используется режим принудительной заморозки, при котором отключается регулятор температуры, и мотор-компрессор будет работать, без отключения, пока пользователь самостоятельно не отключит этот режим, убедившись в том, что продукты замёрзли.

Поскольку в режиме принудительной заморозки мотор-компрессор работает, без отключения, необходимо помнить, что такая работа мотора-компрессора более двух суток может привести к его поломке.

Включается режим принудительной заморозки (если он предусмотрен на данной модели холодильника или морозильника) специальной клавишей (кнопкой) или поворотом терморегулятора морозильной камеры по часовой стрелке до упора.

5. Обогрев дверного проёма

Обогрев дверного проёма применяется для предотвращения появления сконденсированной влаги на поверхности дверных проёмов. Конденсат на этих поверхностях появляется из-за разницы температуры внутри морозильного шкафа (камеры) и температуры окружающей среды.

К примеру, если в помещении, где установлен холодильник, температура + 30°С, а внутри морозильной камеры -18°С, то образование конденсата на торцах морозильного шкафа в местах прилегания уплотнительной резины практически неизбежно.

Хотя бывает, что на некоторых холодильниках функция электрического обогрева дверного проёма может быть отключена специальной клавишей. Это делается в случаях, когда в помещении, где находится холодильник, достаточно прохладно.

Функция отключения обогрева дверного проёма называется энергосберегающей , так как в таких холодильниках обогрев проёма осуществляется при помощи электрических нагревательных элементов. Однако в большинстве современных холодильников обогрев дверного проёма осуществляется за счёт горячего хладагента, нагнетаемого мотор-компрессором в конденсатор холодильного агрегата.

В таких моделях горячий хладагент, нагнетаемый мотор-компрессором, проходит по трубопроводу, проложенному в стенке холодильного шкафа, затем идёт по трубопроводу, уложенному внутри шкафа по периметру дверного проёма, обогревает этот проём и, уже немного остывший, по трубопроводу в стенке шкафа поступает в конденсатор агрегата.

В холодильниках и морозильниках с такой системой обогрева во время выхода холодильной системы в режим могут довольно сильно нагреваться стенки холодильного шкафа и дверной проём, что не является неисправностью.

6. Нулевая зона

Нулевой зоной называют специальный отсек холодильной камеры, предназначенный для хранения свежего мяса, свежей птицы и рыбы.

Как правило, этот отсек представляет собой выдвижные ящики, которые обычно располагаются между морозильной и холодильной камерами. Производителями декларируется поддержание в таком отделении определенной влажности и температуры около 0°С.

В некоторых моделях этот отсек представляет собой отдельную холодильную камеру, которая обычно располагается между морозильной и холодильной камерами. В таком отделении влажность обычно не превышает 50% при температуре 0°С.

Благодаря таким условиям хранения многие продукты сохраняют свою свежесть в среднем в два-три раза дольше, чем в обычном холодильнике.

7. Зачем в некоторых холодильниках рядом с плачущим испарителем установлен вентилятор?

Этот вентилятор повышает эффективность теплообмена между воздухом холодильной камеры и поверхностью испарителя.

Принудительная циркуляция воздуха, которую обеспечивает вентилятор, позволяет точнее поддерживать заданную пользователем температуру во всем объеме холодильной камеры (особенно актуально для холодильных камер большого объема). Кроме того, значительно сокращается время, необходимое для охлаждения только что загруженных в камеру продуктов до температуры хранения.

8. Электронное управление или механическое, что лучше?

Электронная система управления, по сравнению с механической, имеет целый ряд преимуществ. Среди них более точное поддержание заданной температуры в камерах, возможность некоторой оптимизации процесса производства искусственного холода с целью повышения экономичности холодильника, предоставление пользователю целого перечня дополнительных функций и сервисов (индикация текущей температуры в камерах на электронном табло, звуковое и визуальное информирование о повышении температуры в камерах или неплотно закрытой двери, автоматическое отключение режима суперзаморозки по прошествии определенного времени и многое другое). Безусловно, если ориентироваться на технические характеристики и удобство пользования, то холодильники с электронной системой управления выглядят значительно привлекательнее своих «механических» собратьев.

Главным плюсом «механики» является простота и надежность. Конструкция механических приборов автоматики совершенствовалась на протяжении всей истории развития бытовых холодильников, и к настоящему моменту технология их производства отработана до мелочей. Механические устройства управления несколько дешевле электронных систем, а разработка холодильников на их основе требует меньших капиталовложений и происходит быстрее. В итоге, холодильник с механическим управлением оказывается дешевле аналогичного по размерам «электронного» аппарата.

Кроме того, в отличии от электроники, механические приборы практически нечувствительны к различным нестабильностям сетевого напряжения.

Следует учитывать и тот факт, что ремонт холодильника, оборудованного электроникой, как правило, обходится дороже. А необходимые для ремонта электронные комплектующие иногда приходится предварительно заказывать из-за границы, в то время, как для «механики» обычно все есть в наличии