Рекурсии - это что? Рекурсия в программировании (примеры)

Что такое рекурсия?

Под этим словом подразумевается процесс, обозначающий повторение одних и тех же элементов «самоподобным образом». Достойный пример такого процесса — русская матрешка, и если бы не предел возможностей, то такая бы игрушка повторяла себя до бесконечности.


Исходя из технических причин, рекурсия все-таки величина конечная.

В программировании под этим термином понимается процесс вызова функцией саму себя, либо вызов таковой изнутри. Естественно, рекурсивные вызовы должны иметь вполне выполнимые условия завершения, иначе программа с другими условиями зависнет и наступит аварийное завершение с наличием переполненного стека.

Примером математической рекурсии может служить уже всем изрядно надоевший пример — вычисление факториала. В действительности рекурсия в веб-программировании применяется довольно таки часто, а все потому, что рекурсия – это единственный вариант обхода любой стандартной структуры, когда точно не знают о ее реальных размерах и глубине вложения. Без нее также не обходится и построение графов. Это классический вариант.

Чтобы убедиться в необходимости этого процесса, стоит попробовать построить карту сайта с разделами по иерархической структуре вложенных списков. Это будет нереально, если вы не ограничитесь заранее ее размерами и глубиной вложения. Но если, все-таки вы соорудите нечто подобное, то поймете, что в какой-то момент вся ваша конструкция зависнет и перестанет работать.

Рекурсия в поисковых системах

Поисковые системы также зависят от рекурсии. Именно с того момента, когда был введен критерий авторитетности сайтов измерять количеством ссылок, поисковые системы также попались в эти сети. Ссылочная «масса» сайта складывается из мелких кусочков «масс» всех тех ресурсов, которые на него ссылаются. Чтобы высчитать этот показатель для одного сайта, необходимо просчитать «массу» всех ссылочных вариантов, которые в свою очередь состоят из других таких же компонентов, и так далее, по всей глубине поисковой сети. Вот вам и рекурсия на практике.

Рекурсивный PageRank oт Google

Такое имя носит алгоритм расчета, созданный и опубликованный Google. Этот алгоритм известен уже давно, но сколько бы раз он не преобразовывался и не дополнялся всевозможными усовершенствованиями, в основе лежит все тот же рекурсивный метод. Суть всегда остается одна и та же: расчеты, перерасчеты и еще раз перерасчеты. В результате получается опять та же функция.

Рекурсивный тИЦ от Яндекса

ТИЦ, созданный Яндексом, имеет точно такое же устройство, как и предыдущий алгоритм. Отличие заключается лишь в том, что он считается для всего сайта в целом, а не для каждой отдельной страницы. Именно поэтому поисковой системе Яндекс живется гораздо вольготнее, чем остальным, так как самих сайтов в разы меньше, чем страниц и пересчитать их намного легче.

Однако этот показатель на выдачу в Яндексе не влияет. Для этих целей у него есть глубоко спрятанный ВИЦ, который является аналогом PageRank. Так что объем подсчетов у Яндекс также немалый.

Рекурсивный алгоритм расчета, основанный на ссылочном весе, показал, что два сайта, имеющие ссылки друг на друга обладают нереально высоким весом. Поэтому сразу же, после публикации алгоритма PageRank, оптимизаторы приступили к раскручиванию рекурсивной линковки. Проведенные эксперименты подтвердили, что применяемый метод имеет эффективный результат.



Прокомментировать эту статью:

Пожалуйста, зарегистрируйтесь для комментирования.

Рекурсии являются интересными событиями сами по себе, но в программировании они представляют особенную важность в отдельных случаях. Впервые сталкиваясь с ними, довольно значительное количество людей имеют проблемы с их пониманием. Это связано с огромным полем потенциального применения самого термина в зависимости от контекста, в котором «рекурсия» используется. Но можно надеяться, что эта статья поможет избежать возможного недоразумения или непонимания.

Что такое "рекурсия" вообще?

Слово "рекурсия" имеет целый спектр значений, которые зависят от области, в которой оно применяется. Универсальное обозначение является таким: рекурсии - это определения, изображения, описания объектов или процессов в самих объектах. Возможны они только в тех случаях, когда объект является частью самого себя. По-своему определяют рекурсию математика, физика, программирование и ряд других научных дисциплин. Практическое применение она нашла в работе информационных систем и физических экспериментах.

Что подразумевают под рекурсией в программировании?

Рекурсивными ситуациями, или рекурсией в программировании, называют моменты, когда процедура или функция программы вызывает саму себя. Как бы странно для тех, кто начал изучать программирование, это ни звучало, здесь нет ничего странного. Следует запомнить, что рекурсии - это не сложно, и в отдельных случаях они заменяют циклы. Если компьютеру правильно задать вызов процедуры или функции, он просто начнёт её выполнять.

Рекурсия может быть конечной или бесконечной. Для того чтобы первая прекратила сама себя вызывать, в ней же должны быть условия прекращения. Это может быть уменьшение значения переменной и при достижении определённого значения остановка вызова и завершение программы/переход к последующему коду, в зависимости от потребностей достичь определённых целей. Под бесконечной рекурсией подразумевают, что она будет вызываться, пока будет работать компьютер или программа, в которой она работает.

Возможна также организация сложной рекурсии с помощью двух функций. Допустим, есть А и Б. Функция А имеет в своем коде вызов Б, а Б, в свою очередь, указывает компьютеру на необходимость выполнить А. Сложные рекурсии - это выход из целого ряда сложных логических ситуаций для компьютерной логики.

Если читающий эти строки изучал программные циклы, то он, наверное, уже заметил схожесть между ними и рекурсией. В целом они действительно могут выполнять похожие или идентичные задания. С помощью рекурсии удобно делать имитацию работы цикла. Особенно это полезно там, где сами циклы использовать не очень удобно. Схема программной реализации не сильно различается у разных высокоуровневых языков программирования. Но всё же рекурсия в "Паскале" и рекурсия в С или другом языке имеет свои особенности. Может она быть успешно реализована и в низкоуровневых языках вроде "Ассемблера", но это является более проблематичным и затратным по времени.

Деревья рекурсии

Что такое "дерево" в программировании? Это конечное множество, состоящее как минимум из одного узла, который:

  1. Имеет начальный специальный узел, который называют корнем всего дерева.
  2. Остальные узлы находятся в количестве, отличном от нуля, попарно непересекающихся подмножеств, при этом они тоже являются деревом. Все такие формы организации называют поддеревьями главного дерева.

Другими словами: деревья содержат поддеревья, которые содержат ещё деревья, но в меньшем количестве, чем предыдущее дерево. Так продолжается до тех пор, пока в одном из узлов не останется возможности продвигаться далее, и это будет обозначать конец рекурсии. Есть ещё один нюанс насчет схематического изображения: обычные деревья растут снизу вверх, а в программировании они рисуются наоборот. Узлы, не имеющие продолжения, называются конечными узлами. Для удобства обозначения и для удобства используется генеалогическая терминология (предки, дети).

Зачем она применяется в программировании?

Своё применение рекурсия в программировании нашла в решении целого ряда сложных задач. Если необходимо сделать только один вызов, то более легким является применение интеграционного цикла, но при двух и более повторах, чтобы избежать построения цепочки и сделать их выполнение в виде дерева, и применяются рекурсивные ситуации. Для широкого класса задач организация вычислительного процесса таким способом является наиболее оптимальной с точки зрения потребления ресурсов. Так, рекурсия в "Паскале" или другом любом высокоуровневом языке программирования представляет собой вызов функции или процедуры до выполнения условий, независимо от количества внешних вызовов. Другими словами, в программе может быть только одно обращение к подпрограмме, но происходить оно будет до определённого заранее момента. В некотором роде это аналог цикла со своей спецификой использования.

Отличия рекурсии в различных языках программирования

Несмотря на общую схему реализации и конкретное применение в каждом отдельном случае, рекурсия в программировании имеет свои особенности. Это может привести к сложности во время поиска необходимого материала. Но всегда следует помнить: если язык программирования вызывает функции или процедуры, значит, и вызов рекурсии - дело осуществимое. Но наиболее значимые её отличия проявляются при использовании низких и высоких языков программирования. Особенно это касается возможностей программной реализации. Исполнение в конечном итоге зависит от того, какая задача поставлена, в соответствии с ней и пишется рекурсия. Функции и процедуры используются разные, но их цель всегда одна - заставить вызвать самих себя.

Рекурсия - это легко. Как просто запомнить содержание статьи?

Для начинающих понять её, может быть, поначалу сложно, поэтому нужны примеры рекурсии или хотя бы один. Поэтому следует привести небольшой пример из бытовой жизни, который поможет понять саму суть этого механизма достижения целей в программировании. Возьмите два или больше зеркал, поставьте их так, чтобы в одном отображались все остальные. Можно увидеть, что зеркала отображают себя многократно, создавая эффект бесконечности. Вот рекурсии - это, образно говоря, отражения (их будет множество). Как видите, понять несложно, было бы желание. А изучая материалы по программированию, далее можно понять, что рекурсия - это ещё и очень легко выполнимая задача.

В осточноукраинский национальный университет имени Владимира Даля

Рекурсия

Информатика и компьютерная техника

© Велигура А.В., кафедра экономической кибернетики, 2004

Рекурсия - мощный метод программирования, который позволяет разбить задачу на части все меньшего и меньшего размера до тех пор, пока они не станут настолько малы, что решение этих подзадач сведется к набору простых операций.

После того, как вы приобретете опыт применения рекурсии, вы будете обнаруживать ее повсюду. Многие программисты, недавно овладевшие рекурсией, увлекаются, и начинают применять ее в ситуациях, когда она является ненужной, а иногда и вредной.

Что такое рекурсия?

Рекурсия происходит, если функция или подпрограмма вызывает сама себя. Прямая рекурсия (direct recursion) выглядит примерно так:

Function Factorial(num As Long) As Long

Factorial = num * Factorial(num - 1)

В случае косвенной рекурсии (indirectrecursion) рекурсивная процедура вызывает другую процедуру, которая, в свою очередь, вызывает первую:

Private Sub Ping(num As Integer)

Private Sub Pong(num As Integer)

Рекурсия полезна при решении задач, которые естественным образом разбиваются на несколько подзадач, каждая из которых является более простым случаем исходной задачи. Можно представить дерево в виде «ствола», на котором находятся два дерева меньших размеров. Тогда можно написать рекурсивную процедуру для рисования деревьев:

Private Sub DrawTree()

Нарисовать "ствол"

Нарисовать дерево меньшего размера, повернутое на -45 градусов

Нарисовать дерево меньшего размера, повернутое на 45 градусов

Хотя рекурсия и может упростить понимание некоторых проблем, люди обычно не мыслят рекурсивно. Они обычно стремятся разбить сложные задачи на задачи меньшего объема, которые могут быть выполнены последовательно одна за другой до полного завершения. Например, чтобы покрасить изгородь, можно начать с ее левого края и продолжать двигаться вправо до завершения. Вероятно, во время выполнения подобной задачи вы не думаете о возможности рекурсивной окраски - вначале левой половины изгороди, а затем рекурсивно - правой.

Для того чтобы думать рекурсивно, нужно разбить задачу на подзадачи, которые затем можно разбить на подзадачи меньшего размера. В какой‑то момент подзадачи становятся настолько простыми, что могут быть выполнены непосредственно. Когда завершится выполнение подзадач, большие подзадачи, которые из них составлены, также будут выполнены. Исходная задача окажется выполнена, когда будут все выполнены образующие ее подзадачи.

    1. Опасности рекурсии

      1. Бесконечная рекурсия

Наиболее очевидная опасность рекурсии заключается в бесконечной рекурсии. Если неправильно построить алгоритм, то функция может пропустить условие остановки рекурсии и выполняться бесконечно. Проще всего совершить эту ошибку, если просто забыть о проверке условия остановки, как это сделано в следующей ошибочной версии функции факториала. Поскольку функция не проверяет, достигнуто ли условие остановки рекурсии, она будет бесконечно вызывать сама себя.

Private Function BadFactorial(num As Integer) As Integer

BadFactorial = num * BadFactorial (num - 1)

Функция также может вызывать себя бесконечно, если условие остановки не прекращает все возможные пути рекурсии. В следующей ошибочной версии функции факториала, функция будет бесконечно вызывать себя, если входное значение - не целое число, или если оно меньше 0. Эти значения не являются допустимыми входными значениями для функции факториала, поэтому в программе, которая использует эту функцию, может потребоваться проверка входных значений. Тем не менее, будет лучше, если функция выполнит эту проверку сама.

Private Function BadFactorial2(num As Double) As Double

BadFactorial2 = 1

BadFactorial2 = num * BadFactorial2(num-1)

Следующая версия функции Fibonacciявляется более сложным примером. В ней условие остановки рекурсии прекращает выполнение только нескольких путей рекурсии, и возникают те же проблемы, что и при выполнении функцииBadFactorial2, если входные значения отрицательные или не целые.

Private Function BadFib(num As Double) As Double

BadFib = BadPib(num - 1) + BadFib (num - 2)

И последняя проблема, связанная с бесконечной рекурсией, заключается в том, что «бесконечная» на самом деле означает «до тех пор, пока не будет исчерпано стековое пространство». Даже корректно написанные рекурсивные процедуры будут иногда приводить к переполнению стека и аварийному завершению работы. Следующая функция, которая вычисляет сумму N + (N - 1) + … + 2 +1, приводит к исчерпанию стекового пространства при больших значенияхN. Наибольшее возможное значениеN, при котором программа еще будет работать, зависит от конфигурации вашего компьютера.

Private Function BigAdd(N As Double) As Double

If N <= 1 Then

BigAdd=N + BigAdd(N - 1)

Программа BigAddна диске с примерами демонстрирует этот алгоритм. Проверьте, насколько большое входное значение вы можете ввести в этой программе до того, как наступит переполнение стека на вашем компьютере.

Рекурсия достаточно распространённое явление, которое встречается не только в областях науки, но и в повседневной жизни. Например, эффект Дросте, треугольник Серпинского и т. д. Самый простой вариант увидеть рекурсию – это навести Web-камеру на экран монитора компьютера, естественно, предварительно её включив. Таким образом, камера будет записывать изображение экрана компьютера, и выводить его же на этот экран, получится что-то вроде замкнутого цикла. В итоге мы будем наблюдать нечто похожее на тоннель.

В программировании рекурсия тесно связана с функциями, точнее именно благодаря функциям в программировании существует такое понятие как рекурсия или рекурсивная функция. Простыми словами, рекурсия – определение части функции (метода) через саму себя, то есть это функция, которая вызывает саму себя, непосредственно (в своём теле) или косвенно (через другую функцию). Типичными рекурсивными задачами являются задачи: нахождения n!, числа Фибоначчи. Такие задачи мы уже решали, но с использованием циклов, то есть итеративно. Вообще говоря, всё то, что решается итеративно можно решить рекурсивно, то есть с использованием рекурсивной функции. Всё решение сводится к решению основного или, как ещё его называют, базового случая. Существует такое понятие как шаг рекурсии или рекурсивный вызов. В случае, когда рекурсивная функция вызывается для решения сложной задачи (не базового случая) выполняется некоторое количество рекурсивных вызовов или шагов, с целью сведения задачи к более простой. И так до тех пор пока не получим базовое решение. Разработаем программу, в которой объявлена рекурсивная функция, вычисляющая n!

"stdafx.h" #include << "Enter n!: "; cin >> n; cout << n << "!" << "=" << factorial(n) << endl; // вызов рекурсивной функции system("pause"); return 0; } unsigned long int factorial(unsigned long int f) // рекурсивная функция для нахождения n! { if (f == 1 || f == 0) // базовое или частное решение return 1; // все мы знаем, что 1!=1 и 0!=1 cout << "Step\t" << i << endl; i++; // операция инкремента шага рекурсивных вызовов cout << "Result= " << result << endl; result = f * factorial(f - 1); // функция вызывает саму себя, причём её аргумент уже на 1 меньше return result; }

// код Code::Blocks

// код Dev-C++

// factorial.cpp: определяет точку входа для консольного приложения. #include using namespace std; unsigned long int factorial(unsigned long int);// прототип рекурсивной функции int i = 1; // инициализация глобальной переменной для подсчёта кол-ва рекурсивных вызовов unsigned long int result; // глобальная переменная для хранения возвращаемого результата рекурсивной функцией int main(int argc, char* argv) { int n; // локальная переменная для передачи введенного числа с клавиатуры cout << "Enter n!: "; cin >> n; cout << n << "!" << "=" << factorial(n) << endl; // вызов рекурсивной функции return 0; } unsigned long int factorial(unsigned long int f) // рекурсивная функция для нахождения n! { if (f == 1 || f == 0) // базовое или частное решение return 1; // все мы знаем, что 1!=1 и 0!=1 cout << "Step\t" << i << endl; i++; // операция инкремента шага рекурсивных вызовов cout << "Result= " << result << endl; result = f * factorial(f - 1); // функция вызывает саму себя, причём её аргумент уже на 1 меньше return result; }

В строках 7, 9, 21 объявлен тип данных unsigned long int , так как значение факториала возрастает очень быстро, например уже 10! = 3 628 800. Если не хватит размера типа данных, то в результате мы получим совсем не правильное значение. В коде объявлено больше операторов, чем нужно, для нахождения n!. Это сделано для того, чтобы, отработав, программа показала, что происходит на каждом шаге рекурсивных вызовов. Обратите внимание на выделенные строки кода, строки 23, 24, 28 — это рекурсивное решение n!. Строки 23, 24 являются базовым решением рекурсивной функции, то есть, как только значение в переменной f будет равно 1 или 0 (так как мы знаем, что 1! = 1 и 0! = 1), прекратятся рекурсивные вызовы, и начнут возвращаться значения, для каждого рекурсивного вызова. Когда вернётся значение для первого рекурсивного вызова, программа вернёт значение вычисляемого факториала. В строке 28 функция factorial() вызывает саму себя, но уже её аргумент на единицу меньше. Аргумент каждый раз уменьшается, чтобы достичь частного решения. Результат работы программы (см. Рисунок 1).

Enter n!: 5 Step 1 Result= 0 Step 2 Result= 0 Step 3 Result= 0 Step 4 Result= 0 5!=120

Рисунок 1 — Рекурсия в С++

По результату работы программы хорошо виден каждый шаг и результат на каждом шаге равен нулю, кроме последнего рекурсивного обращения. Необходимо было вычислить пять факториал. Программа сделала четыре рекурсивных обращения, на пятом обращении был найден базовый случай. И как только программа получила решение базового случая, она порешала предыдущие шаги и вывела общий результат. На рисунке 1 видно всего четыре шага потому, что на пятом шаге было найдено частное решение, что в итоге вернуло конечное решение, т. е. 120. На рисунке 2 показана схема рекурсивного вычисления 5!. В схеме хорошо видно, что первый результат возвращается, когда достигнуто частное решение, но никак не сразу, после каждого рекурсивного вызова.

Рисунок 2 — Рекурсия в С++

Итак, чтобы найти 5! нужно знать 4! и умножить его на 5; 4! = 4 * 3! и так далее. Согласно схеме, изображённой на рисунке 2, вычисление сведётся к нахождению частного случая, то есть 1!, после чего по очереди будут возвращаться значения каждому рекурсивному вызову. Последний рекурсивный вызов вернёт значение 5!.

Переделаем программу нахождения факториала так, чтобы получить таблицу факториалов. Для этого объявим цикл for , в котором будем вызывать рекурсивную функцию.

using namespace std; unsigned long int factorial(unsigned long int);// прототип рекурсивной функции int i = 1; // инициализация глобальной переменной для подсчёта кол-ва рекурсивных вызовов unsigned long int result; // глобальная переменная для хранения возвращаемого результата рекурсивной функцией int main(int argc, char* argv) { int n; // локальная переменная для передачи введенного числа с клавиатуры cout << "Enter n!: "; cin >> n; for (int k = 1; k <= n; k++) { cout << k << "!" << "=" << factorial(k) << endl; // вызов рекурсивной функции } system("pause"); return 0; } unsigned long int factorial(unsigned long int f) // рекурсивная функция для нахождения n! { if (f == 1 || f == 0) // базовое или частное решение return 1; // все мы знаем, что 1!=1 и 0!=1 //cout << "Step\t"<< i <> n; for (int k = 1; k <= n; k++) { cout << k << "!" << "=" << factorial(k) << endl; // вызов рекурсивной функции } return 0; } unsigned long int factorial(unsigned long int f) // рекурсивная функция для нахождения n! { if (f == 1 || f == 0) // базовое или частное решение return 1; // все мы знаем, что 1!=1 и 0!=1 //cout << "Step\t"<< i < << "Enter number from the Fibonacci series: "; cin >> <= entered_number; counter++) cout << setw(2) <

// код Code::Blocks

// код Dev-C++

// fibonacci.cpp: определяет точку входа для консольного приложения. #include // библиотека для форматирования выводимой информации на экран #include using namespace std; unsigned long fibonacci(unsigned long);// прототип рекурсивной функции поиска чисел из ряда Фибоначчи int main(int argc, char* argv) { unsigned long entered_number; cout << "Enter number from the Fibonacci series: "; cin >> entered_number; for (int counter = 1; counter <= entered_number; counter++) cout << setw(2) < #include using namespace std; void tower(int, int, int, int); // объявление прототипа рекурсивной функции int count = 1; // глобальная переменная для подсчёта количества шагов int _tmain(int argc, _TCHAR* argv) { cout << "Enter of numbers of disks: ";// введите количество дисков, которые надо переместить int number; cin >> number; cout << "Enter the number of basic rod: "; // введите номер стержня, на котором диски будут находится изначально int basic_rod; cin >> basic_rod; cout << "Enter the number of final rod: "; // введите номер стержня, на который необходимо переместить диски int final_rod; cin >> final_rod; int help_rod; // блок определения номера вспомогательного стержня, анализируя номера начального и финального стержня if (basic_rod != 2 && final_rod != 2) help_rod = 2; else if (basic_rod != 1 && final_rod != 1) help_rod = 1; else if (basic_rod != 3 && final_rod != 3) help_rod = 3; tower(// запуск рекурсивной функции решения задачи Ханойских башен number, // переменная, хранящая количество дисков, которые надо переместить basic_rod, // переменная, хранящая номер стержня, на котором диски будут находится изначально help_rod , // переменная, хранящая номер стержня, который используется, как вспомогательный final_rod); // переменная, хранящая номер стержня, на который необходимо переместить диски system("pause"); return 0; } void tower(int count_disk, int baza, int help_baza, int new_baza) { if (count_disk == 1) // условие завершения рекурсивных вызовов { cout << setw(2) << count << ") "<< baza << " " << "->" << " " << new_baza << endl; count++; } else { tower(count_disk -1, baza, new_baza, help_baza); // перемещаем все диски кроме самого последнего на вспомогательный стержень tower(1, baza, help_baza, new_baza); // перемещаем последний диск с начального стержня на финальный стержень tower(count_disk -1, help_baza, baza, new_baza); // перемещаем все диски со вспомогательного стержня на финальный } }

// код Code::Blocks

// код Dev-C++

// hanoi_tower.cpp: определяет точку входа для консольного приложения. // Программа, рекурсивно решающая задачу "Ханойская башня" #include #include using namespace std; void tower(int, int, int, int); // объявление прототипа рекурсивной функции int count = 1; // глобальная переменная для подсчёта количества шагов int main() { cout << "Enter of numbers of disks: ";// введите количество дисков, которые надо переместить int number; cin >> number; cout << "Enter the number of basic rod: "; // введите номер стержня, на котором диски будут находится изначально int basic_rod; cin >> basic_rod; cout << "Enter the number of final rod: "; // введите номер стержня, на который необходимо переместить диски int final_rod; cin >> final_rod; int help_rod; // блок определения номера вспомогательного стержня, анализируя номера начального и финального стержня if (basic_rod != 2 && final_rod != 2) help_rod = 2; else if (basic_rod != 1 && final_rod != 1) help_rod = 1; else if (basic_rod != 3 && final_rod != 3) help_rod = 3; tower(// запуск рекурсивной функции решения задачи Ханойских башен number, // переменная, хранящая количество дисков, которые надо переместить basic_rod, // переменная, хранящая номер стержня, на котором диски будут находится изначально help_rod , // переменная, хранящая номер стержня, который используется, как вспомогательный final_rod); // переменная, хранящая номер стержня, на который необходимо переместить диски return 0; } void tower(int count_disk, int baza, int help_baza, int new_baza) { if (count_disk == 1) // условие завершения рекурсивных вызовов { cout << setw(2) << count << ") "<< baza << " " << "->" << " " << new_baza << endl; count++; } else { tower(count_disk -1, baza, new_baza, help_baza); // перемещаем все диски кроме самого последнего на вспомогательный стержень tower(1, baza, help_baza, new_baza); // перемещаем последний диск с начального стержня на финальный стержень tower(count_disk -1, help_baza, baza, new_baza); // перемещаем все диски со вспомогательного стержня на финальный } }

На рисунке 5 показан пример работы рекурсивной программы Ханойская башня. Сначала мы ввели количество дисков равное трём, потом ввели базовый стержень (первый), и обозначили конечный стержень (третий). Автоматически второй стержень стал вспомогательным. Программа выдала такой результат, что он полностью совпадает с анимационным решением данной задачи.

Enter of numbers of disks: 3 Enter the number of basic rod: 1 Enter the number of final rod: 3 1) 1 -> 3 2) 1 -> 2 3) 3 -> 2 4) 1 -> 3 5) 2 -> 1 6) 2 -> 3 7) 1 -> 3

Рисунок 5 — Рекурсия в С++

Из рисунка видно, что сначала перемещается диск со стержня один на стержень три, потом со стержня один на стержень два, со стержня три на стержень два и т. д. То есть программа всего лишь выдает последовательность перемещений дисков и минимальное количество шагов, за которые будут перемещены все диски.

Все эти задачи можно было решить итеративно. Возникает вопрос: “Как лучше решать, итеративно или рекурсивно?”. Отвечаю: “Недостаток рекурсии в том, что она затрачивает значительно больше компьютерных ресурсов, нежели итерация. Это выражается в большой нагрузке, как на оперативную память, так и на процессор. Если очевидно решение той или иной задачи итеративным способом, то им и надо воспользоваться иначе, использовать рекурсию!” В зависимости от решаемой задачи сложность написания программ изменяется при использовании того или иного метода решения. Но чаще задача, решённая рекурсивным методом с точки зрения читабельности кода, куда понятнее и короче.

От лат recursio (возвращение). В общем случае так называется процесс повторения элементов «самоподобным образом».

Яркий пример рекурсии - матрёшки. Рекурсивное определение: «матрёшка - это разъемная пустотелая деревянная кукла, содержащая внутри матрёшку меньшего размера». Вот такая рекурсия по-русски. И если бы не предел возможностей мастеров, идеальная матрёшка уходила бы в глубь себя до атомарного уровня. А то и глубже. Просто у Левши не нашлось мелкоскопа достаточной силы. Верхний предел теоретически тоже не ограничен, но баобабы подходящего размера на нашей планете не растут. В общем, по техническим причинам рекурсия должна быть конечной.

В программировании (как и в математике) рекурсия - процесс вызова функцией самой себя (прямая рекурсия), либо вызов изнутри функции A функции B, которая в свою очередь содержит вызов функции A (косвенная или взаимная рекурсия). Разумеется, рекурсивные вызовы должны иметь выполнимое условие завершения, иначе такая программа «зависнет», как в бесконечном цикле - но, в отличие от бесконечного цикла, при бесконечной рекурсии она аварийно завершится переполнением стека.

Пример рекурсии

Самый надоевший пример рекурсии в математическом программировании - вычисление факториала. Не будем изменять славным традициям. Для тех, кто еще не проходил: N! (факториал N) - это произведение всех натуральных чисел от единицы до N (факториал нуля равен 1).
Можно тупо перемножать числа от 1 до N в цикле. А можно соорудить функцию factorial(n), которая будет содержать условие и вызов самой себя. Если n равно единице, то функция возвращает значение 1, иначе возвращает значение n, умноженное на factorial(n-1).
Зарисовка на PHP

Function factorial($n) { if ($n == 1) { return 1; } else { return intval($n * factorial($n - 1)); } }

Практические применения рекурсии

«Ну, и зачем это здесь нужно?» - спросит нас нетерпеливый юный читатель - «Чушь научная, занудство, факториалы всякие… А практически к чему эту рекурсию приложить?»
«К подбитому глазу веб-программированию» - без колебаний ответим мы. И тут же это обоснуем.

На самом деле применений рекурсии в веб-программировании гораздо больше, чем кажется. Потому что рекурсия - это, пожалуй, единственный способ обхода любой древовидной структуры, когда заранее неизвестны ни ее размеры, ни глубина вложенности. Кстати, построение и обход графов тоже без нее не обойдется. Это классика, господа - попробуйте каким-нибудь другим способом искать нужные файлы в юниксовом дереве директорий, и вам сразу станет понятно, что без рекурсии - никуда.

Попробуйте обойтись без нее, строя карту сайта с иерархической структурой разделов в виде вложенных списков. Вы скорее повеситесь, чем ее построите, если заранее не знаете точно, сколькими уровнями ограничена глубина вложения. И даже если знаете, но попытаетесь обойтись без рекурсии, то вместо простой, прозрачной и безотказной функции соорудите громоздкую программную «этажерку на костылях». А когда закончите и вытрете вспотевший лоб, до вас дойдет мрачная правда жизни: при изменении глубины вложенности ваша развесистая конструкция моментально прекратит корректно работать. Поэтому применить ее где-то еще вам вряд ли удастся.

Рекурсия в поисковых системах

Да, именно так. Поисковым системам от рекурсии тоже некуда деваться. С тех пор, как был заведен обычай мерить авторитетность сайта (документа) количеством ссылок, поисковики попались в рекурсивную ловушку, и пусть они блуждают в ней вечно (это искреннее доброе пожелание автора). Ссылочный «вес» сайта складывается из маленьких кусочков «веса» от всех тех, которые на него ссылаются. Чтобы вычислить этот вес для A, на которого ссылаются B, C и D, надо обсчитать их вес, который в свою очередь передается всякими другими, вес которых тоже нужно обсчитывать… и так по всей учтенной в поисковике Сети. Совершенно рекурсивная задачка. А вы говорите - сплошная теория. Самая что ни на есть реальная практика.

Рекурсивный PageRank от Google

Свой базовый алгоритм расчета PageRank создатели Google опубликовали давно. И как бы он с тех пор ни менялся, сколько бы его ни дополняли усовершенствованиями, основа остается прежней. Нельзя узнать, какую величину PageRank страница B передает по ссылке странице A, пока мы не сосчитали, какой PageRank получила страница B от всех прочих страниц, которые на нее сослались, а этого нельзя узнать, пока мы не посчитаем PageRank этих страниц… продолжать? Наверное, уже не надо. Это опять Она - Её Величество Рекурсия .