Питание от литий ионного аккумулятора. Какие есть типы литиевых аккумуляторов и особенности их конструкции

Категория: Поддержка по аккумуляторным батареям Опубликовано 30.03.2016 23:38

Разные подвиды литий-ионной электрохимической системы именуются по типу своего активного вещества, и могут обозначаться как полностью словами, так и в укороченном виде - химическими формулами. Объединяется литиевые аккумуляторы то, что все они относятся к герметичным необслуживаемым аккумуляторам . Такие формулы не очень удобны для прочтения или запоминания ввиду своей сложности, поэтому и они упрощаются - к буквенной аббревиатуре.

Например, кобальтит лития, один из самых распространенных материалов для литий-ионных аккумуляторов, имеет химическую формулу LiCoO2 и аббревиатуру LCO. Из соображений простоты также может использоваться короткая словесная форма - “литий-кобальт”. Кобальт является основным активным веществом и именно по нему характеризуется тип батареи. Другие типы литий-ионной электрохимической системы также аналогично сводятся к краткой форме. В данном разделе перечислены шесть наиболее распространенных типов Li-ion.

1. Литий-кобальтовый аккумулятор (LiCoO2)

Высокий показатель удельной энергоемкости делает литий-кобальтовый аккумулятор популярным выбором для мобильных телефонов, ноутбуков и цифровых камер. Аккумулятор состоит из графитового анода и катода из оксида кобальта. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются к нему от анода. При зарядке направление меняется на противополжное. Недостатком литий-кобальтовых аккумуляторов является относительно короткий срок службы, низкая термическая стабильность и ограниченные возможности нагрузки (удельная мощность). На рисунке 1 показана структура такого аккумулятора.

Рисунок 1: Структура литий-кобальтового аккумулятора. Во время разряда ионы лития перемещаются от анода к катоду, при зарядке - от катода к аноду.

Литий-кобальтовый аккумулятор не может заряжаться или разряжаться при силе тока выше его С-рейтинга . Это означает, что ячейка типоразмера 18650 емкостью 2400 мАч может заряжаться или разряжаться силой тока не превышающей 2400 мА. Принудительный быстрый заряд или подключение нагрузки, требующей больше чем 2400 мА, приведет к чрезмерному стрессу и перегреву. Для быстрой зарядки производители рекомендуют С-рейтинг 0,8С или около 2000 мА. При использовании системы защиты аккумулятора она автоматически ограничивает заряд и разряд до безопасного уровня - около 1С.

Рисунок 2: Оценка усредненного литий-кобальтового аккумулятора. Литий-кобальтовая электрохимическая система выделяется высокой удельной энергоемкостью, но предлагает средние показатели удельной мощности, безопасности и срока службы.

Таблица характеристик

Кобальтит лития: LiCoO2 катод (~60% кобальта), графитовый анод
Сокращенное обозначение: LCO или Li-кобальт
Разработан в 1991 году
Напряжение 3,60 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В
Удельная энергоемкость 150-200 Вт*ч/кг; специализированные модели обеспечивают до 240 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, напряжение зарядки 4,20 В (большинство моделей); процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; при напряжении ниже 2,50 В срабатывает отсекатель; разряд силой тока выше 1С сокращает срок службы батареи
500-1000, зависит от глубины разрядов, нагрузки, температур
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Мобильные телефоны, планшеты, ноутбуки, фотоаппараты
Комментарий Очень высокая удельная энергоемкость, ограниченная удельная мощность. Высокая стоимость кобальта. Служит в областях, где требуется большая емкость. Имеет стабильный спрос на рынке.

Таблица 3: Характеристики литий-кобальтового аккумулятора.

2. Литий-марганцевый аккумулятор (LiMn2O4)

Устройство литий-ионного аккумулятора с марганцевой шпинелью было впервые опубликовано в журнале “Materials Research Bulletin” в 1983 году. В 1996 году компания Moli Energy коммерциализировала литий-ионную ячейку с литий-марганцевой шпинелью в качестве материала катода. Трехмерная структура шпинели улучшает поток ионов на электроде, что приводит к уменьшению внутреннего сопротивления и улучшению обработки тока. Еще одним преимуществом шпинели является высокая термическая стабильность, но срок жизни и количество циклов ограничены.

Низкое внутреннее сопротивление такой ячейки обеспечивает быструю зарядку и высокое возможное значение силы тока разряда. В типоразмере 18650 литий-марганцевый аккумулятор может разряжаться силой тока в 20-30 А с умеренным теплообразованием. Кроме того, он способен выдерживать импульсы до 50 А в течение одной-двух секунд. Непрерывная же нагрузка в 50 А приведет к нагреву аккумулятора, который не должен превышать 80°С во избежание деградации. Литий-марганцевые аккумуляторы используются для мощных инструментов, медицинского оборудования, а также в гибридном и электротранспорте.

На рисунке 4 представлена графическая иллюстрация трехмерного кристаллического каркаса материала катода. Этим материалом является шпинель, у которой начальная ромбовидная решеточная структура трансформируется в трехмерную.

Рисунок 4: Структура литий-марганцевого аккумулятора. Катод из кристаллической литий-марганцевой шпинели имеет трехмерную каркасную структуру, которая появляется после начального формирования. Шпинель обеспечивает низкое сопротивление, но имеет более умеренную удельную энергоемкость чем кобальт.

Емкость литий-марганцевого аккумулятора примерно на треть меньше емкости литий-кобальтового. Гибкость конструкции позволяет оптимизировать батарею под разные задачи и создавать модели с улучшенными показателями долговечности, удельной мощности или удельной энергоемкости. Например, версия в типоразмере 18650 с улучшенными показателями мощности имеет емкость только 1100 мАч, в то время как оптимизированная под емкость - 1500 мАч.

На рисунке 5 показан гексагональный график типичного литий-марганцевого аккумулятора. Характеристики могут казаться не особо впечатлительными, но последние разработки имеют улучшенные показатели удельной мощности, безопасности и продолжительности жизни.

Рисунок 5: Характеристики обычной литий-марганцевого аккумулятора. Несмотря на умеренную общую производительность, новые модели демонстрируют улучшенную удельную мощность, безопасность и продолжительность жизни.

Большинство литий-марганцевых аккумуляторов комбинируются с литий-никель-марганец-кобальтовыми (NMC) для повышения удельной энергоемкости и продления срока службы. Этот союз позволяет использовать сильные стороны обеих систем и называется LMO (NMC). Именно эти комбинированные аккумуляторы используются в большинстве электромобилей, таких как Nissan Leaf, Chevy Volt и BMW i3. LMO – часть такого аккумулятора, которая составляет около 30 %, обеспечивает высокие ускорительные возможности электродвигателя, а NMC часть отвечает за размер автономного пробега.

Исследования в литий-ионной системе в значительной степени тяготеют к объединению литий-марганцевых ячеек с никель-марганец-кобальтовыми. Эти три активных металла могут легко комбинироваться для получения необходимого результата, будь то повышение удельной мощности, нагрузочных характеристик или долговечности аккумулятора. Этот широкий диапазон возможностей необходим для удовлетворения единым технологическим подходом и рынка потребительских аккумуляторов, где на первом месте стоит емкость; и промышленности, где необходимы аккумуляторные системы с хорошими нагрузочными характеристиками, с длительным сроком службы и с надежной безопасной эксплуатацией.

Таблица характеристик

Литий-марганцевая шпинель: LiMn2O4 катод, графитовый анод
Сокращенное обозначение: LNO или Li-марганцевый (шпинельная структура)
Разработан в 1996 году
Напряжение 3,70 В (3,80 В) номинальное; стандартный рабочий диапазон - 3.0-4.2 В
Удельная энергоемкость 100-150 Вт*ч/кг
С-рейтинг зарядки Стандарт 0,7-1С; 3С максимум; зарядка до 4,20 В (большинство батарей)
С-рейтинг разряда Стандарт 1С; существуют модели с 10С; импульсный режим работы (до 5 секунд) - 50С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 300-700 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 250°С. Полный заряд способствует тепловому пробою
Области применения Электроинструмент, медицинское оборудование, электрические силовые агрегаты
Комментарий Высокая мощность, но умеренная емкость; безопаснее литий-кобальтовых; обычно используется вместе с NMC

Таблица 6: Характеристики литий-марганцевого аккумулятора.

3. Литий-никель-марганец-кобальт-оксидный аккумулятор (LiNiMnCoO2 или NMC)

Одним из наиболее успешных вариантов исполнения литий-ионной электрохимической системы является сочетание никеля, марганца и кобальта (NMC) в катоде. По аналогии с литий-марганцевыми, эти системы могут быть оптимизированы под емкость или мощность. Например, NMC аккумулятор в типоразмере ячейки 18650 для умеренной нагрузки имеет емкость 2800 мАч и может обеспечивать силу тока в 4-5 А; а версия в том же типоразмере, но оптимизированная под мощностные показатели имеет емкость только 2000 мАч, но максимальная сила тока разряда у нее - 20 А. Показатель емкости можно увеличить и до 4000 мАч, если добавить кремний в состав анода. Но с другой стороны, это значительно уменьшит нагрузочные характеристики и долговечность такого аккумулятора. Столь неоднозначные свойства кремния появляются из-за его расширения и уменьшения при зарядке и разрядке, что приводит к механической неустойчивости конструкции аккумулятора.

Секрет технологии NMC заключается в сочетании никеля и марганца. Аналогией может служить обыкновенная поваренная соль, где по отдельности ее компоненты, натрий и хлор, весьма токсичны, но их соединение образует полезное пищевое вещество. Никель известен своей высокой удельной энергоемкостью, но низкой стабильностью; марганец же имеет преимущество в виде шпинельной структуры, которая обеспечивает низкое внутреннее сопротивление, но и приводит к недостатку - низкой удельной энергоемкости. Сочетание же этих металлов позволяет компенсировать недостатки друг друга и в полной мере использовать сильные стороны.

NMC аккумуляторы используются для мощных инструментов, электровелосипедов и других силовых агрегатов. Состав катода, как правило, сочетает никель, марганец и кобальт в равных частях, то есть каждый металл занимает треть от общего объема. Такое распределение также известно как 1-1-1. Сочетание в таком соотношении выгодно своей стоимостью, так как содержание дорогого кобальта по сравнению с другими версиями батареи относительно невелико. Еще одна успешная комбинация NMC содержит 5 частей никеля, 3 части кобальта и 2 части марганца. Эксперименты по поиску удачных комбинаций этих активных веществ продолжаются и сейчас. На рисунке 7 продемонстрированы характеристики NMC аккумулятора.

Рисунок 7: Оценка характеристик NMC аккумулятора. NMC имеет хорошую общую производительность и отличную удельную энергоемкость. Данная аккумуляторная батарея является предпочтительным выбором для электротранспорта и имеет самый низкий уровень самонагрева.

В последнее время именно NMC семейство литий-ионных аккумуляторов становится наиболее популярным, так как благодаря возможности комбинации активных веществ стало можно сконструировать экономичную батарею с хорошей производительностью. Никель, марганец и кобальт могут быть легко смешаны, чтобы удовлетворить широкий спектр требований для электротранспорта или систем аккумулирования энергии, специфика которых предполагает регулярную циклическую работу. Семейство NMC аккумуляторов активно развивается в своем многообразии.

Таблица характеристик

Литий-никель-марганец-кобальт-оксид: LiNiMnCoO2 катод, графитовый анод
Сокращенное обозначение: NMC (NCM, CMN, CNM, MNC, MCN аналогично комбинации металлов)
Разработан в 2008 году
Напряжение 3,60-3,70 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В на ячейку, или выше
Удельная энергоемкость 150-220 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, зарядка до 4,20 В, в некоторых моделях до 4,30 В; процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; некоторые модели поддерживают 2С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда
Тепловой пробой Обычно при 210°С. Полный заряд способствует тепловому пробою
Области применения Электровелосипеды, медицинское оборудование, электроавтомобили, промышленность
Комментарий Обеспечивают высокую емкость и мощность. Широкий спектр практического применения, доля рынка стремительно растет

Таблица 8: Характеристики литий-никель-марганец-кобальт-оксидного (NMC) аккумулятора.

4. Литий-железо-фосфатный аккумулятор (LiFePO4)

В 1996 году в Университете Техаса были проведены исследования, в результате которых был открыт новый материал для катода литий-ионного аккумулятора - фосфат железа. Литий-фосфатная система обладает хорошими электрохимическими свойствами и низким внутренним сопротивлением. Основными преимуществами таких аккумуляторов являются высокие показатели силы тока и длительный срок службы, к тому же они обладают хорошей термической стабильностью, повышенной безопасностью и стойкостью к неправильному использованию.

Литий-фосфатные аккумуляторы более стойкие к перезаряду; если в случае длительного времени к ним приложено высокое напряжение, то деградационные последствия будут заметно меньше в сравнении с другими литий-ионными аккумуляторами. Но напряжение ячейки в 3.20 В снижает показатель удельной энергоемкости до уровня, даже меньшего, чем у литий-марганцевого аккумулятора. Для большинства электрических батарей холодная температура снижает производительность, а жаркая - сокращает срок службы, литий-фосфатная система не является исключением. У нее также более высокий показатель саморазряда в сравнении с другими литий-ионными аккумуляторами. На рисунке 9 показаны характеристики литий-фосфатного аккумулятора.

Литий-фосфатные аккумуляторы часто используются в качестве замены стартерным свинцово-кислотным. Четыре ячейки такой батареи обеспечат напряжение в 12,8 В - аналогично напряжению шести двухвольтовых ячеек свинцово-кислотного. Генератор транспортного средства подзаряжает свинцово-кислотный аккумулятор до 14,40 В (2,40 В на ячейку). Для четырех литий-фосфатных ячеек предельное напряжение будет 3,60 В, после подзарядку следует отключить, чего не происходит в обычном транспортном средстве. Литий-фосфатные аккумуляторы стойкие к перезаряду, но даже они при длительном сохранении повышенного напряжения деградируют. Низкие температуры также могут стать проблемой при использовании литий-фосфатного аккумулятора в качестве замены обычному стартерному.

Рисунок 9: Оценка характеристик литий-фосфатного аккумулятора. Литий-фосфатная электрохимическая система обеспечивает отличную безопасность и долгий срок службы, но удельная энергоемкость имеет умеренные показатели, также стоит отметить высокий саморазряд.

Таблица характеристик

Литий-феррофосфат: LiFePO4 катод, графитовый анод
Сокращенное обозначение: LFP или Li-фосфат
Напряжение 3,20, 3,30 В номинальное; стандартный рабочий диапазон - 2,5-3,65 В на ячейку
Удельная энергоемкость 90-120 Вт*ч/кг
С-рейтинг зарядки 1С стандарт, зарядка до 3,65 В; процесс зарядки обычно занимает 3 часа
С-рейтинг разряда 1С; в некоторых версиях до 25С; 40 А импульсные токи (до 2 секунд); при 2,50 В срабатывает отсекатель (напряжение ниже 2 В наносит вред)
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой 270°С. Безопасный даже при полном заряде
Области применения Портативные и стационарные устройства, где необходимы высокие токи нагрузки и выносливость

Время работы современных смартфонов без подзарядки определяется их аккумуляторной батареей и ее характеристиками.

Какие бывают аккумуляторы?

Никель-кадмиевые (Ni-Cd) и никель-металлогидридные (Ni-MH) аккумуляторы уже неактуальны - они исправно работали долгое время, но имели ряд недостатков. В наших гаджетах в большинстве случаев используются батареи на основе лития - литий-ионные (Li-Ion) и литий-полимерные (Li-Pol).

Одна из основных характеристик АКБ - емкость. Она определяет, сколько электроэнергии способен накопить аккумулятор, и как долго устройство сможет работать автономно. Наиболее часто встречаются батареи с емкостью от 2000 до 3000 мАч (миллиампер/час). Габариты литий-ионных источников остаются весьма компактными в отличие от предшественников.

Литий-полимерные АКБ отличаются от литий-ионных разнообразием геометрических форм и, что сейчас особенно актуально, минимальной толщиной, которая начинается от 1 мм. Это позволяет использовать их в весьма тонких смартфонах.

Литиевые аккумуляторы отличаются длительным сроком службы при условии правильной эксплуатации. Производители многих известных смартфонов предусмотрели замену АКБ только в сервисном центре, сделав корпус устройства монолитным, а заднюю крышку и батарею - несъемными. Без специального оборудования и знаний самостоятельно пользователь не сможет провести эту операцию.

Температура во время эксплуатации. На емкость аккумулятора напрямую влияет . Высокая температура способствует более быстрому накоплению энергии, при низкой температуре емкость значительно падает. Если вы будете использовать недостаточно заряженный , то он быстро разрядится. Причем существует риск опустить заряд до нуля, что крайне нежелательно - литиевые аккумуляторы страдают от полного разряда.

И противоположная ситуация. Заряженный на 100% смартфон используется под прямыми солнечными лучами. Образно говоря, в этом случае 100% заряда превращается в 110%, и получается излишек накопленной электроэнергии, что может привести к снижению емкости.

Исходя из этого, стоит соблюдать температурные условия работы гаджета. Причем речь не идет о естественном нагреве при активном использовании - такое повышение температуры для аккумулятора не представляет опасности

Время зарядки и зарядное устройство. Каждый литиевый источник оснащен специальным контроллером, который должен предохранить его от лишнего тока. При достижении полного заряда происходит отключение поступающего тока.

В работе контроллера возможны ошибки и погрешности, которые приводят к перезаряду. Иногда это связано с использованием неоригинальных зарядных устройств для смартфона. Не рекомендуется надолго оставлять в розетке заряжающийся смартфон по достижении им полного заряда. Также нужно использовать оригинальные зарядные устройства или те, чьи параметры .

Литиевые аккумуляторы нужно заряжать, не дожидаясь полного отключения устройства, к примеру, на 10-15% остаточного заряда. Их можно подпитывать по возможности в течение дня, например, USB-порта рабочего компьютера или в машине. Добиваться полного заряда необязательно.

Хранение. Если владелец смартфона планирует длительное время не использовать устройство, рекомендуемая степень заряда АКБ в этом случае должна составлять около 50%.

Количество циклов зарядки литиевых аккумуляторов составляет примерно 1200 раз. Простая арифметика говорит о том, что ресурса АКБ хватит минимум на 3 года. При соблюдении указанных выше рекомендаций можно увеличить срок службы батареи.

Сегодня именнолитий-ионные аккумуляторынаиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.

Устройство

В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.

  • Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
  • Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
  • Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
  • Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
  • Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.

Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.

Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.

Принцип действия

  • В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
  • Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
  • Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
  • После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.

При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.

  • Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.

Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.

Стандартная зарядка аккумулятора выглядит следующим образом:

  • Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
  • Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
  • В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.

Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.

Разновидности и применение

Существуют два форм-фактора литий-ионных аккумуляторов:

  1. Цилиндрические литий-ионные аккумуляторы.
  2. Таблеточные литий-ионные аккумуляторы.

Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.

Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
  1. Литий-кобальтовый аккумулятор . Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.

Области применения; мобильная электроника.

  1. Литий-марганцевый аккумулятор . Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.

Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.

  1. Литий-никель-марганец-кобальт-оксидный аккумулятор . В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.

Области применения; для частного и промышленного использования ( , системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).

  1. Литий-железо-фосфатный аккумулятор . Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.

Области применения;стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.

  1. Литий-никель-кобальт-алюминий-оксидный аккумулятор . Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.

Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.

  1. Литий-титанатный аккумулятор . Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.

Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.

Области применения; уличное , электрические силовые агрегаты автомобилей (Honda Fit-EV, Mitsubishi i-MiEV), ИБП.

Типичные характеристики

В целом литий-ионные аккумуляторы имеют следующие типичные характеристики:

  • Минимальное напряжение — не ниже 2,2-2,5В.
  • Максимальное напряжение – не выше 4,25-4,35В.
  • Время заряда: 2-4 часа.
  • Саморазряд при комнатной температуре – порядка 7 % в год.
  • Диапазон рабочих температур, начиная от −20 °C и заканчивая +60 °C.
  • Число циклов заряд/разряд до достижения потери 20% емкости составляет 500-1000.

Достоинства и недостатки

К преимуществам можно отнести:

  • Высокая энергетическая плотность при сравнении с щелочными аккумуляторами с применением никеля.
  • Достаточно высокое напряжение одного аккумуляторного элемента.
  • Отсутствие «эффекта памяти», что обеспечивает простую эксплуатацию.
  • Значительное число циклов заряда-разряда.
  • Длительный срок эксплуатации.
  • Широкий температурный диапазон, обеспечивающий неизменные рабочие характеристики.
  • Относительная экологическая безопасность.

Среди недостатков можно выделить:

  • Умеренный ток разряда.
  • Относительно быстрое старение.
  • Сравнительно высокая стоимость.
  • Невозможность работы без встроенного контроллера.
  • Вероятность самовозгорания при высоких нагрузках и при слишком глубоком разряде.
  • Конструкция требует существенных доработок, ведь она не доведена до совершенства.

Читая "советы по эксплуатации" аккумуляторов на форумах невольно задумываешься - то ли люди физику с химией в школе прогуливали, то ли думают что правила эксплуатации свинцовых и ионных аккумуляторов одинаковые.
Начнем пожалуй с принципов работы Li-Ion аккумулятора. На пальцах все предельно просто - есть отрицательный электрод (сделаный обычно из меди), есть положительный (из алюминий), между ними находится пористое вещество (сепаратор), пропитанный электролитом (он предотвращает "самовольный" переход ионов лития между электродами):

Принцип работы основан на возможности ионов лития встраиваться в кристаллическую решетку различных материалов - обычно графита или оксида кремния - с образованием химических связей: соответственно при зарядке ионы встраиваются в кристаллическую решетку, тем самым накапливая заряд на одном электроде, при разрядке соответственно переходят обратно к другому элетроду, отдавая нужный нам электрон (кому интересно более точное объяснение происходящих процессов - гуглим интеркаляцию). В качестве электролита используются водосодержащие растворы, не содержащие свободного протона и устойчивые в широком диапазоне напряжений. Как видно в современных аккумуляторах все сделано достаточно безопасно - металлического лития нет, взрываться нечему, по сепаратору бегают только ионы.
Теперь, когда с принципом работы все стало более-менее понятно, перейдем к самым распростаренным мифам о Li-Ion аккумуляторах:

  1. Миф первый. Li-Ion аккумулятор в устройстве нельзя разряжать до нуля процентов.
    На деле все звучит правильно и согласуется с физикой - при разрядке до ~2.5 В Li-Ion аккумулятор начинает очень быстро деградировать, и даже одна такая разрядка может существенно (до 10%!) уменьшить его емкость. К тому же при разряде до такого напряжение штатным зарядником зарядить его уже не получится - при падении напряжения ячейки аккумулятора ниже ~3 В "умный" контроллер отключит ее как поврежденную, а если такие ячейки все - аккумулятор можно нести на помойку.
    Но тут есть одно очень важное но, о котором все забывают: в телефонах, планшетах и других мобильных устройствах рабочий диапазон напряжений на аккумуляторе это 3.5-4.2 В. При опускании напряжения ниже 3.5 В индикатор показывает ноль процентов заряда и аппарат выключается, но до "критических" 2.5 В еще очень далеко. Это подтверждается тем что если подсоединить к такому "разряженному" аккумулятору светодиод то он может гореть еще долгое время (может кто-то помнит что раньше продавались телефоны с фонариками, которые включались кнопкой независимо от системы. Так вот там лампочка продолжала гореть и после разрядки и выключения телефона). То есть как видно при штатном использовании разрядки до 2.5 В не происходит, а значит разряжать акум до нуля процентов вполне можно.
  2. Миф второй. При повреждении Li-Ion аккумуляторы взрываются.
    Все мы помним "взрывной" Samsung Galaxy Note 7. Однако это скорее исключение из правил - да, литий очень активный металл, и взорвать его в воздухе нетрудно (а в воде он и сам очень ярко горит). Однако в современных аккумуляторах используется не литий, а его ионы, которые куда менее активны. Так что чтобы произошел взрыв нужно сильно постараться - или повредить заряжающийся аккумулятор физически (устроить короткое замыкание), или заряжать очень высоким напряжением (тогда он сам повредится, однако скорее всего контроллер банально сгорит сам и не даст заряжать аккумулятор). Поэтому если у вас вдруг в руках оказался поврежденный или дымящийся аккумулятор - не стоит бросать его на стол и убегать из комнаты с криками "мы все умрем" - просто положите его в металлическую тару и вынесите на балкон (чтобы не дышать химией) - аккумулятор будет тлеть какое-то время и потом потухнет. Главное - не заливать водой, ионы конечно менее активные чем литий, но все же какое-то количество водорода при реакции с водой так же выделится (а он любит взрываться).
  3. Миф третий. При достижении на Li-Ion аккумуляторе 300(500/700/1000/100500) циклов он становится небезопасен и его нужно срочно менять.
    Миф, к счастью все меньше и меньше гуляющий по форумам и не имеющий под собой вообще никакого физического или химического объяснения. Да, во время эксплуатации электроды окисляются и коррозируют, что уменьшает емкость аккумулятора, но ничем кроме меньшего времени автономной работы и нестабильного поведения на 10-20% заряда это вам не грозит.
  4. Миф четвертый. С Li-Ion аккумуляторами нельзя работать на морозе.
    Это скорее рекомендация, чем запрет. Многие производители запрещают использовать телефоны при отрицательное температуре, да и многие сталкивались с быстрым разрядом и вообще отключением телефонов на холоде. Объяснение этому очень простое: электролит - это водосодержащий гель, а что происходит с водой при отрицательных температурах все знают (да, она замерзает если что), тем самым выводя некоторую область аккумулятора из работы. Это приводит к падениею напряжения, а контроллер начинает считать это разрядкой. Аккумулятору это не полезно, но и не смертельно (после нагрева емкость вернется), так что если вам позарез нужно пользоваться телефоном в мороз (именно пользоваться - достать из теплого кармана, посмотреть время и спрятать назад не считается) то лучше зарядите его на 100% и включите любой процесс, нагружающий процессор - так охлаждение будет происходить медленнее.
  5. Миф пятый. Вздувшийся Li-Ion аккумулятор опасен, его нужно срочно выкинуть.
    Это не совсем миф, скорее предосторожность - вздувшийся аккумулятор может банально лопнуть. С химической точки зрения все просто: при процессе интеркаляции происходит разложение электродов и электролита, в результате чего выделяется газ(так же он может выделяться и при перезарядке, но об этом чуть ниже). Но его выделяется крайне мало, и чтобы аккумулятор казался вздутым должно пройти несколько тсотен (если не тысяч) циклов перезарядки (если конечно он не бракованный). Проблем избавиться от газа нет - достаточно проткнуть клапан (в некоторых аккумуляторах он сам открывается при избыточном давлении) и стравить его (дышать им не рекомендую), после чего можно замазать дырку эпоксидной смолой. Конечно былую емкость это аккумулятору не вернет, но хотя бы теперь он точно не лопнет.
  6. Миф шестой. Li-Ion аккумуляторам вреден перезаряд.
    А вот это уже не миф, а суровая реальность - при перезарядке велик шанс что аккумулятор вздуется, лопнет и загорится - поверьте, мало удовольствия быть забрызганным кипящим электролитом. Поэтому во всех аккумуляторах стоят контроллеры, банально не дающие зарядить аккумулятор выше определенного напряжения. Но тут надо быть крайне осторожным в выборе аккумулятора - контроллеры китайских поделок зачастую могут сбоить, а фейерверк из телефона в 3 часа ночи думаю вас не обрадует. Разумеется, такая же проблема есть и в брендовых аккумуляторах, но во-первых там такое случается гораздо реже, а во-вторых вам по гарантии поменяют весь телефон. Обычно этот миф порождает следующий:
  7. Миф седьмой. При достижении 100% нужно снимать телефон с зарядки.
    Из шестого мифа это кажется разумным, но на деле нет смысла вставать посреди ночи и снимать устройство с зарядки: во-первых сбои контроллера крайне редки, а во-вторых даже при достижении 100% на индикаторе аккумулятор еще некоторое время дозаряжается до самого-самого максимума низкими токами, что добавляет еще 1-3% емкости. Так что на деле не стоит так сильно перестраховываться.
  8. Миф восемь. Заряжать устройство можно только оригинальным зарядником.
    Миф имеет место быть по причине некачественности китайских зарядников - при нормальном напряжении в 5 +- 5% вольт они могут выдавать и 6, и 7 - контроллер, конечно, какое-то время будет сглаживать такое напряжение, однако в будущем оно в лучшем случае приведет к сгоранию контроллера, в худшем - к взрыву и (или) выходу из строя материнской платы. Бывает и обратное - под нагрузкой китайский зарядник выдает 3-4 вольта: это приведет к тому что аккумулятор не сможет зарядиться полностью.
Как видно из целой кучи заблуждений далеко не все имеют под собой научное объяснение, и еще меньше реально ухудшают характеристики аккумуляторов. Но это не значит что после прочтения моей статьи нужно бежать сломя голову и покупать дешевые китайские аккумуляторы за пару баксов - все-же для долговечности лучше взять или оригинальные, или качественные копии оригинальных.

Эксплуатация, зарядка, плюсы и минусы литиевых аккумуляторов

Очень многие сегодня используют электронные устройства в своей повседневной жизни. Сотовые телефоны, планшеты, ноутбуки… Все знают, что это такое. Но немногие знают, что ключевым элементом этих устройств является литиевый аккумулятор. Этим типом аккумуляторных батарей комплектуется практически каждое мобильное устройство. Сегодня мы поговорим о литиевых аккумуляторах. Эти АКБ и технология их производства постоянно развиваются. Существенное обновление технологии происходит раз в 1─2 года. Мы рассмотрим общий принцип работы литиевых батарей, а разновидностям будут посвящены отдельные материалы. Ниже будет рассмотрена история возникновения, эксплуатация, хранение, преимущества и недостатки литиевых аккумуляторов.

Исследования в этом направлении проводились ещё в начале 20 века. «Первые ласточки» в семействе литиевых аккумуляторов появились в начале семидесятых годов прошлого столетия. Анод этих батарей был выполнен из лития. Они быстро стали востребованы благодаря тому, что обладали высокой удельной энергией. Благодаря наличию лития, очень активного восстановителя, разработчикам удалось сильно нарастить номинальное напряжение и удельную энергию элемента. Разработка, последующие испытания и доводки технологии «до ума» заняли около двух десятков лет.


За это время решались в основном вопросы с безопасность использования литиевых аккумуляторов, подбором материалов и т. п. Вторичные литиевые элементы с апротонными электролитами и разновидность с твёрдым катодом похожи по электрохимическим процессам, протекающих в них. В частности, на минусовом электроде идёт анодное растворение лития. В кристаллическую решётку плюсового электрода идёт внедрение лития. Когда аккумуляторный элемент заряжается, то процессы на электродах идут в обратном направлении.

Материалы для плюсового электрода разработали достаточно быстро. Основное требование к ним было в том, чтобы на них проходило обратимые процессы.

Речь идёт об анодной экстракции и катодном внедрении. Эти процессы ещё называют анодным деинтеркалированием и катодным интеркалированием. Исследователи испытывали различные материалы в качестве катода.

Требование было в том, чтобы отсутствовали изменения при циклировании. В частности, изучались такие материалы, как:

  • TiS2 (дисульфид титана);
  • Nb(Se)n (селенид ниобия);
  • сульфиды и диселениды ванадия;
  • сульфиды меди и железа.

Все перечисленные материалы имеют слоистую структуру. Проводились исследования и с материалами более сложных составов. Для этого использовались добавки некоторых металлов в небольших количествах. Это были элементы имеющее катионы большего радиуса, чем у Li.

Высокие удельные характеристики катода были получены на оксидах металлов. Пробовались разные оксиды на предмет обратимой работы, которая зависит от степени искажения кристаллической решётки материала оксида, когда туда внедряются катионы лития. В расчёт принималась и электронная проводимость катода. Задача заключалась в том, чтобы обеспечить изменения объёма катода не более 20 процентов. Согласно исследованиям, наилучшие результаты показали оксиды ванадия и молибдена.



С анодом возникли главные сложности при создании литиевых аккумуляторов. Точнее в процессе зарядки, когда происходит катодное осаждение Li. При этом образуется поверхность с очень высокой активностью. Литий осаждается на поверхности катода в виде дендритов и в результате образуется пассивная плёнка.

Получается так, что эта плёнка обволакивает частицы лития и препятствует их контакту с основой. Этот процесс называется инкапсулированием и приводит к тому, что после зарядки аккумулятора определённая часть лития исключается из электрохимических процессов.

В итоге после определённого количества циклов, электроды изнашивались и нарушалась температурная стабильность процессов внутри литиевого аккумулятора.

В какой-то момент элемента разогревался до точки плавления Li и реакция переходила в неконтролируемую фазу. Так, в начале 90-х годов на предприятия компаний, занимавшихся их выпуском, возвратили много литиевых АКБ. Это были одни из первых аккумуляторов, которые стали применяться в мобильных телефонах. В момент разговора (ток достигает максимального значения) по телефону из этих батарей происходил выброс пламени. Было немало случаев, когда пользователю обжигало лицо. Образование дендритов при осаждении лития, помимо опасности пожара и взрыва, может приводить к короткому замыканию.

Поэтому исследователи потратили много времени и сил на разработку методом обработки поверхности катода. Разрабатывались способы введения в электролит добавок, препятствующих образованию дендритов. В этом направлении учёные достигли успехов, но полностью проблема не решена до сих пор. Эти проблемы с использованием металлического лития пытались решить и другим методом.

Так, отрицательный электрод стали изготавливать из литиевых сплавов, а не из чистого Li. Самым успешным оказался сплав лития и алюминия. Когда идёт процесс разряда, то в электроде из такого сплава вытравливается литий, а при заряде, наоборот. То есть, в процессе цикла заряд-разряд изменяется концентрация Li в сплаве. Конечно, произошла некоторая потеря активности лития в сплаве по сравнению с металлическим Li.

Потенциал электрода из сплава снизился где-то на 0,2─0,4 вольта. Рабочее напряжение литиевой батареи снизилось и одновременно уменьшилось взаимодействие электролита и сплава. Это стало положительным фактором, поскольку уменьшился саморазряд. Но сплав лития и алюминия не получил широкого распространения. Проблема здесь заключалась в том, что при циклировании сильно изменялся удельный объем этого сплава. Когда происходил глубокий разряд, то электрод охрупчивался и осыпался. Из-за снижения удельных характеристик сплава исследования в этом направлении были прекращены. Изучались и другие сплавы.


Как показали исследования, лучше всего подходят сплав Li с тяжёлыми металлами. Примером может служить сплав Вуда. Они хорошо показали себя в плане сохранения удельного объёма, но удельные характеристики оказались недостаточными для использования в литиевых аккумуляторах.

В результате из-за того, что металлический литий нестабилен, исследования стали вести в другом направлении. Было решено исключить из компонентов батареи литий в чистом виде, а использовать его ионы. Так появились литий─ионные (Li-Ion) аккумуляторы.

Энергетическая плотность литий─ионных АКБ меньше, чем у литиевых. Но безопасность и удобство эксплуатации у них значительно выше. Можете прочитать подробнее про по указанной ссылке.

Эксплуатация и срок службы

Эксплуатация

Правила эксплуатации будут рассмотрены на примере распространённых литиевых аккумуляторов, которые применяются в мобильных устройствах (телефонах, планшетах, ноутбуках). В большинстве случаев от «дурака» такие аккумуляторы защищает встроенный контроллер. Но пользователю полезно знать базовые вещи об устройстве, параметрах и эксплуатации литиевых АКБ.

Для начала следует запомнить, что литиевый аккумулятор должен иметь напряжением от 2,7 до 4,2 вольта. Нижнее значение здесь говорит о минимальном уровне заряда, верхнее – о максимальном. В современных Li батареях электроды выполняются из графита и в их случае нижняя граница напряжения составляет 3 вольта (2,7 – это значение для электродов из кокса). Электрическая энергия, которую отдаёт аккумулятор при падении напряжения от верхней границы к нижней, называется его ёмкостью.

Чтобы продлить срок службы литиевых аккумуляторов производители несколько сужают диапазон напряжения. Часто это 3,3─4,1 вольта. Как показывает практика, максимальный срок службы литиевых батарей достигается при уровне заряда 45 процентов. Если аккумулятор передерживать на зарядке или сильно разряжать, то срок эксплуатации сокращается. Обычно рекомендуется ставить литиевый аккумулятор заряжаться при 15─20% заряда. А прекращать зарядку надо сразу после достижения 100% ёмкости.

Но, как уже говорилось, от перезарядки и глубокого разряда аккумулятор спасает его контроллер. Эта управляющая плата с микросхемой имеется практически на всех литиевых аккумуляторных батареях. В различной потребительской электронике (планшет, смартфон, ноутбук) работу контроллера, интегрированного в АКБ, ещё дополняет микросхема, которая распаяна на плате самого устройства.

В общем, правильная эксплуатация литиевых аккумуляторов обеспечивается их контроллером. От пользователя в основном требуется не встревать в этот процесс и не заниматься самодеятельностью.

Срок службы

Срок службы литиевых аккумуляторных батарей составляет около 500 циклов заряд-разряд. Это значение справедливо для большинства современных литий─ионных и литий─полимерных аккумуляторов. По времени срок службы может быть разный. Это зависит от интенсивности использования мобильного устройства. При постоянном использовании, нагрузкой ресурсоёмкими приложениями (видео, игры) аккумулятор может исчерпать свой лимит за год. Но в среднем срок службы литиевых аккумуляторов составляет 3─4 года.

Процесс зарядки

Сразу стоит отметить, что для нормальной эксплуатации батареи, нужно использовать штатное зарядное устройство, которое поставляется в комплекте с гаджетом. В большинстве случаев это источник постоянного тока с напряжением 5 вольт. Штатные зарядки для телефона или планшета обычно отдают ток около 0,5─1 * С (С – номинальная ёмкость батареи).
Стандартным режимом зарядки литиевого аккумулятора считается следующий. Этот режим используется в контроллерах компании Sony и обеспечивает максимальную полноту зарядки. На рисунке ниже этот процесс представлен в графическом виде.



Процесс состоит из трёх этапов:

  • продолжительность первого этапа около одного часа. При этом ток зарядки держится на постоянном уровне до тех пор, пока напряжение АКБ не достигнет значения 4,2 вольта. По окончании степень заряженности равна 70%;
  • второй этап также идёт около часа. В это время контроллер поддерживает постоянное напряжение 4,2 вольта, а ток зарядки при этом снижается. Когда сила тока падает примерно до 0,2*C, запускается заключительный этап. По окончании степень заряженности равна 90%;
  • на третьем этапе ток постоянно снижается при напряжении 4,2 вольта. В принципе, эта стадия повторяет второй этап, но имеет строгое ограничение по времени в 1 час. После этого контроллер отключает батарею от зарядного устройства. По окончании степень заряженности равна 100%.

Контроллеры, которые способны обеспечить такую стадийность, стоят довольно дорого. Это отражается на стоимости аккумулятора. В целях удешевления многие производители устанавливают в аккумуляторы контроллеры с упрощённой системой заряда. Часто это бывает только первый этап. Зарядка прерывается при достижении напряжения 4,2 вольта. Но в этом случае литиевая батарея заряжается лишь на 70% от ёмкости. Если литиевый аккумулятор вашего устройства заряжается 3 часа и меньше, то, скорее всего, он имеет упрощённый контроллер.

Стоит отметить ещё ряд моментов. Периодически (раз в 2─3 месяца) делайте полный разряд АКБ (чтобы телефон отключился). Затем проводится полная зарядка до 100%. После этого вынимаете батарею на 1─2 минуты, вставляете и включаете телефон. Уровень заряда будет меньше 100%. Заряжаете полностью и так делаете несколько раз, пока при вставке батареи не будет показан полный заряд.


Помните, что через разъём USB ноутбука, десктопа, переходника от прикуривателя в машине зарядка идёт значительно медленнее, чем от штатного ЗУ. Это объясняется ограничением интерфейса USB по току в 500 мА.

Также помните о том, что на холоде и при низком атмосферном давлении литиевые аккумуляторы теряют часть своей ёмкости. При отрицательных температурах этот тип батарей становится неработоспособным.