Программная реализация нескольких каналов ШИМ на микроконтроллере. Теория. Многоканальный программный ШИМ в AVR

На форуме достаточно часто встречаются вопросы по реализации Широтно Импульсной Модуляции на микроконтроллерных устройствах. Я и сам очень много спрашивал по этому поводу и, разобравшись, решил облегчить труд новичкам в этой области, так как информации в сети много и рассчитана она на разработчиков разного уровня, а сам я только- только в нем разобрался и память ещё свежа.

Так как для меня самым важным было применение ШИМ именно для управления яркостью светодиодов, то именно их я и буду использовать в примерах. В качестве микроконтроллера будем использовать горячо любимый ATmega8.

Для начала вспомним, что такое ШИМ. ШИМ сигнал - это импульсный сигнал определенной частоты и скважности:

Частота, это количество периодов за одну секунду. Скважность- отношение длительности импульса к длительности периода. Можно изменять и то и другое, но для управления светодиодами достаточно управлять скважностью. На картинке выше мы видим ШИМ сигнал со скважностью 50 %, так как длительность импульса (ширина импульса) ровно половина от периода. Соответственно светодиод будет ровно половину времени во включенном состоянии и половину в выключенном. Частота ШИМ очень большая и глаз не заметит мерцания светодиода из за инерционности нашего зрения, поэтому нам будет казаться, что светодиод светится на половину яркости. Если мы изменим скважность на 75%, то яркость светодиода будет на 3 четверти от полной, а график будет выглядеть так:

Получается, что мы можем регулировать яркость светодиода от 0 до 100 %. А теперь поговорим о таком параметре ШИМ, как разрешение. Разрешение- это количество градаций (шагов) регулировки скважности, мы будем рассматривать разрешение в 256 шагов.

С параметрами вроде разобрались, теперь поговорим о том, как нам получить этот самый ШИМ от микроконтроллера. Берем остро заточенный разогретый паяльник и начинаем пытать МК, одновременно подцепившись к двум его ногам осциллографом и проверяя наличие на них сигнала нужной нам скважности. В микроконтроллерах есть аппаратная поддержка ШИМ и несколько каналов для него, в нашем случае 3. За выдачу ШИМ отвечают определенные выводы МК, в нашем случае OC2, OC1A, OC1B (15,16,17 нога в DIP корпусе). Так же для этого используются таймеры микроконтроллера, в нашем случае TC1, TC2. Так как же сконфигурировать МК для выдачи сигнала необходимой скважности? Все очень просто, для начала сконфигурируем нужные нам ноги на выход:

PORTB=0x00; DDRB=0x0E; // 0b00001110

Далее начнем конфигурировать таймеры. Для таймера TC1 нам потребуются два регистра: TCCR1A и TCCR1B. Открываем даташит и читаем как настраиваются эти регистры. Я настроил его на 8 битный сигнал ШИМ, что соответствует разрешению в 256 шагов:

TCCR1A=0xA1; TCCR1B=0x09;

Для таймера TC2 мы будем использовать регистр TCCR2=0x69;. Его настройка выглядит так:

TCCR2=0x69;

Всё, таймеры сконфигурированы. Скважность будем задавать регистрами OCR1A,OCR1B, OCR2:

Зададим требуемые скважности:

OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов

Ну и поместим инкремент и декремент этих регистров в бесконечный цикл:

While(1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }

Первая тестовая программа готова и выглядит для CVAVR она так:

#include "mega8.h" #include "delay.h" void main(void) { PORTB=0x00; DDRB=0x0E; // 0b00001110 TCCR1A=0xA1; TCCR1B=0x09; TCCR2=0x69; OCR1A=0x32; //50 шагов OCR1B=0x6A; //106 шагов OCR2=0xF0; //240 шагов while (1) { OCR1A++; OCR1B--; OCR2++; delay_ms(50); }; }

Отличительные особенности:

  • Генерация аналоговых сигналов с помощью ШИМ
  • Высокочастотная масштабируемая синхронизация ШИМ

Введение

Данные "Рекомендации…" являются руководством по использованию высокочастотного широтно-импульсного модулятора (ШИМ), который присутствует в некоторых микроконтроллерах AVR. В состав "Рекомендаций…" входит пример ассемблерного кода, который демонстрирует, как использовать высокочастотный ШИМ микроконтроллера ATtiny26. Таймер с высокочастотным ШИМ также имеется в ATtiny15.

Для генерации импульсов используется режим быстрой ШИМ с переменным заполнением импульсов на выходе OC1A (PB1). Для получения из цифрового ШИМ-сигнала сигнала синусоидальной формы на выходе должен быть предусмотрен аналоговый фильтр.

Преимущества высокоскоростного ШИМ - расширение частотного диапазона аналогового выходного сигнала и возможность применения более компактных и недорогих компонентов в фильтре за счет более высокой частоты.

1. Принцип действия

ШИМ в сочетания с аналоговым фильтром может использоваться для генерации аналоговых выходных сигналов, т.е. в качестве цифро-аналогового преобразователя (ЦАП). В качестве основы используется последовательность прямоугольных импульсов с постоянным периодом следования (фиксированная частота преобразования). Для генерации различных аналоговых уровней регулируется заполнение импульсов и, таким образом, изменяется длительность импульсов. Если необходимо сформировать высокий аналоговый уровень, то длительность импульса увеличивают и наоборот.

Усреднение аналогового сигнала за один период (с помощью аналогового фильтра) позволяет сгенерировать аналоговый сигнал. При заполнении импульсов 50% аналоговый сигнал равен половине напряжения питания, а при 75%-ом заполнении импульсов - аналоговый сигнал равен 75% от напряжения питания. Примеры фильтрации выходных сигналов показаны в конце данного документа.

Например, аналоговый ФНЧ можно выполнить с помощью простого пассивного RC-фильтра. Фильтр удаляет несущую высокую частоту ШИМ и, таким образом, формирует аналоговый сигнал. Настроечная частота фильтра должна быть выбрана достаточно высокой, чтобы не исказить форму аналогового сигнала. В то же время настроечная частота должна быть достаточно низкой для минимизации пульсаций от несущей частоты ШИМ.

Рисунок 1. Низкочастотный RC-фильтр

Если аналоговый сигнал поступает к низкоомному входу, то между выходом фильтра и нагрузкой должен быть включен буферный усилитель. Это предотвращает нагружение конденсатора и появление пульсирующего напряжения.

На рисунке 2 показана реальная осциллограмма ШИМ-сигнала с переменным заполнением импульсов.


Рисунок 2. ШИМ-сигнал с переменным заполнением импульсов

В микроконтроллерах AVR для генерации ШИМ-сигналов используются таймеры-счетчики. Для изменения несущей частоты ШИМ изменяется частота синхронизации таймера и вершина счета. Повышение частоты синхронизации и/или снижение вершины счета приводят к повышению частоты переполнения таймера и, как следствие, увеличивается частота ШИМ. Максимальной разрешающей способности (вершина счета 255) соответствует максимальная частота ШИМ 250 кГц. Дальнейшее увеличение частоты ШИМ возможно путем уменьшения разрешающей способности, но в этом случае сокращается количество шагов при установке заполнения импульсов от 0 до 100%.

Изменение содержимого регистра сравнения (OCR) влияет на заполнение импульсов. Увеличение значения OCR увеличивает заполнение импульсов. До достижения счетчиком значения из регистра OCR ШИМ-выход находится в высоком состоянии, затем переходит в низкое состояние до достижения вершины счета, после чего счетчик переходит в нулевое состояние и цикл повторяется. Такой способ генерации у AVR-микроконтроллеров получил название быстрой ШИМ.


Рисунок 3. Значения счетчика и ШИМ-выход

При использовании высокочастотной ШИМ для генерации аналоговых сигналов ширина аналоговых уровней зависит от разрешающей способности ШИМ. Чем выше несущая частота, тем более просто ее подавить и тем самым минимизировать уровень пульсаций. Таким образом, необходимо оптимизировать соотношение разрешающей способности и несущей частоты.

2. Альтернативные области применения

Высокоскоростной таймер может также использоваться для генерации высокочастотных цифровых сигналов, которые в свою очередь используются для синхронизации других цифровых каскадов. При установке очень малой вершины счета можно генерировать сигналы с очень высокой частотой.

Максимальная тактовая частота таймера микроконтроллера ATtiny26 равна 64 МГц (без предварительного деления). При частоте ШИМ 16 МГц (вершина счета 3) в регистр OCR можно записать значение 0, 1 (заполнение 25%), 2 (заполнение 50%, рисунок 4а) или 3 (заполнение 100%). Этим показывается, что снижением вершины счета увеличивается несущая частота ШИМ.

Для достижения максимальной выходной частоты от таймера его необходимо перевести в режим без ШИМ. Вершина счета и содержимое OCR должны быть равны 0. Счетчик в этом случае зависает на 0. Установка действия по совпадению равным "toggle output" (инвертирование выхода) приводит к инвертированию (переключению) выхода каждый такт таймера. В результате достигается частота 32 МГц (рисунок 4б).


Рисунок 4. Высокочастотный цифровой выход

3. Пример применения

Рисунок 4 иллюстрирует, как генерировать синусоидальный сигнал из высокочастотного ШИМ-сигнала.

Программный код состоит из 3 частей: инициализация, процедура обработка прерывания по переполнению таймера 1 и цикл в режиме сна. В данном примере полагается, что микроконтроллер работает на тактовой частоте 8 МГц.


Рисунок 5. Блок-схема основного цикла программы генерации синусоидального сигнала

3.1. Инициализация

Выход компаратора таймера 1 (OC1A) необходимо настроить на вывод.

Далее выполняется установка таймера 1: подготавливается тактовый источник таймера - запускается схема ФАПЧ, которая должна войти в синхронизм (захват) с системной частотой синхронизации. ФАПЧ требует порядка 100 мс для захвата с системной синхронизацией и, поэтому, перед выполнением последующих действий необходимо подождать установку флага захвата ФАПЧ. Как только ФАПЧ захватывается его необходимо выбрать в качестве тактового источника таймера.

Далее выбирается режим ШИМ с инвертированием вывода OC1A по совпадению и устанавливается вершина счета равной 0xFF. Значение вершины счета определяет разрешающую способность и несущую частоту ШИМ- чем выше значение вершины, тем выше разрешающая способность и ниже несущая частота.

Теперь таймер готов к запуску: установка предделителя приводит к запуску таймера. В завершении разрешается прерывание по переполнению таймера.


Рисунок 6. Процедура инициализации (инициализирует вывод и таймер 1 для работы в режиме быстрой ШИМ)

3.2. Процедура обработки прерывания

Когда таймер 1 достигает значения из OCR1C (0xFF) вызывается процедура обработки прерывания по переполнению таймера. Поскольку значение OCR1C - константа, то и данное событие возникает с постоянной периодичностью. Данный период определяет несущую частоту выходного ШИМ-сигнала.

В процедуре обработки прерывания реализована таблица для генерации синусоидального сигнала. При каждом входе в процедуру увеличивается указатель для доступа к таблице, чтобы всякий раз загружались новые значения. Значение, считанное из таблицы, записывается в регистр OCR1A. Таким образом, генерируемая последовательность импульсов может быть преобразована в синусоидальный сигнал. Обратите внимание, что регистр OCR1A буферизован и что перезапись из буферного регистра в действительный регистр OCR1A происходит при переполнении таймера.

Для выполнения процедуры обработки прерывания необходимо 13 тактов. На вызов процедуры и возврат из нее также затрачивается время - всего потребуется 21 такт. Поскольку таймер 1 является 8-разрядным, то прерывание возникает каждые 256/(Частота_ШИМ/Системная_частота) тактов. В данном примере полагается тактирование внутренним RC-генератором частотой 8 МГц. Если используется максимальная тактовая частота ШИМ 64 МГц, то переполнение таймера возникает каждые 32 системных такта.

Несмотря на возможность тактироваться максимальной частотой 64МГц, в данном примере частота синхронизации таймера принята 4…16 МГц, чтобы дополнительно продемонстрировать работу с предварительным делителем.


Рисунок 7. Блок-схема процедура обработки прерывания по переполнению таймера

3.3. Холостой ход

В процессе ожидания возникновения прерывания микроконтроллер переводится в экономичный режим сна "Холостой ход" (Idle). По завершении обработки прерывания микроконтроллер возвращается в режим сна.

4. Осциллограммы

На следующих рисунках приведены осциллограммы генерации синусоидальных сигналов с помощью микроконтроллера ATtiny26. На осциллограммах представлены два сигнала: цифровой сигнал с выхода OC1A и обработанный/фильтрованный ШИМ-сигнал. Для формирования аналогового синусоидального сигнала использовался простой RC-фильтр с параметрами R = 10 кОм и C = 100 нФ, которым соответствует настроечная частота фильтра 1 кГц. Таким образом, синусоида пропускается, а высокочастотная несущая частота подавляется.


Рисунок 8. Фильтрованный и нефильтрованный выход OC1A


Рисунок 9. Фильтрованный и нефильтрованный выход OC1A (с большим масштабом)

Мы затронули тему использования счётчика/таймера ATtiny13 в обычном режиме и в режиме подсчёта импульсов (CTC). В этой статье я продолжаю тему таймера, но теперь мы рассмотрим его применение для реализации широтно-импульсной модуляции (ШИМ).

Все микропроцессоры работают с цифровыми сигналами, т.е. с логическим нулем (0 В), и логической единицей (5 В или 3.3 В). Но что делать, если мы хотим получить на выходе какое-либо промежуточное значение? В таких случаях применяют Широтно-импульсную модуляцию (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов, при постоянной частоте.
Широтно-импульсная модуляция представляет собой периодический импульсный сигнал. Существуют цифровые и аналоговые ШИМ, однополярные и двуполярные, и т.д. Но принцип их работы остается одинаковым вне зависимости от исполнения и заключается в сравнении двух видов сигналов: опорного (пилообразные или треугольные импульсы) и входного (постоянного, либо изменяемого нужным образом, в зависимости от конкретной задачи ШИМ). Эти сигналы сравниваются и, при их пересечении, изменяется уровень сигнала на выходе ШИМ. Выходное напряжение ШИМ имеет вид прямоугольных импульсов, изменяя их длительность, мы можем регулировать среднее значение напряжения на выходе ШИМ *.

* Если на выходе ШИМ использовать интегрирующую RC-цепь , то можно вместо импульсного получить постоянное напряжение нужной величины. Но в нашем примере со светодиодами можно обойтись и без этого, так как человеческий глаз всё равно не сможет разглядеть мерцания светодиода при используемой тактовой частоте.

Параметры ШИМ

  • T - период тактирования (опорного сигнала);
  • t - длительность импулься;
  • S - скважность;
  • D - коэффициент заполнения.

Скважность определяется отношением периода к длительности импульса. Коэффициент заполнения - величина, обратная скважности (может выражаться в процентах):

S=T/t=1/D

Рассмотрим подробнее, как работает ШИМ в AVR микроконтроллерах, на примере ATtiny13.
Как уже упоминалось в предыдущем примере , в ATtiny13 реализовано две разновидности ШИМ: так называемые "Быстрая ШИМ" (Fast PWM) и "ШИМ с коррекцией фазы" (Phase correct PWM). Оба варианта основаны на использовании встроенного в МК восьмибитного счётчика/таймера T0. Таймер тут используется вместо опорного сигнала. Тактовая частота таймера задаётся предделителем тактовой частоты процессора, либо от внешнего тактового генератора. Режим тактирования задаётся битами CS02 (2), CS01 (1), CS00 (0) регистра TCCR0B :

  • 000 - таймер/счетчик T0 остановлен
  • 001 - тактовый генератор CLK
  • 010 - CLK/8
  • 011 - CLK/64
  • 100 - CLK/256
  • 101 - CLK/1024
  • 110 - от внешнего источника на выводе T0 (7 ножка, PB2) по спаду сигнала
  • 111 - от внешнего источника на выводе T0 (7 ножка, PB2) по возрастанию сигнала

Настройка таймера для ШИМ

Режим работы таймера задаётся битами WGM01 (1) и WGM00 (0) регистра TCCR0A :

  • 00 - обычный режим
  • 01 - режим коррекции фазы ШИМ
  • 10 - режим подсчета импульсов (сброс при совпадении)
  • 11 - режим ШИМ

Здесь нас интересуют варианты "01" и "11".

Биты COM0A1 (7) и COM0A0 (6) регистра TCCR0A задают, какой сигнал появится на выводе OC0A (5 ножка, PB0) при совпадении счётчика (регистр TCNT0 ) с регистром сравнения A (OCR0A ).

В режиме "Быстрая ШИМ":

  • 10 - установка 0 на выводе OC0A при совпадении с A, установка 1 на выводе OC0A при обнулении счётчика (неинверсный режим)
  • 11 - установка 1 на выводе OC0A при совпадении с A, установка 0 на выводе OC0A при обнулении счётчика (инверсный режим)
  • 00 - вывод OC0A не функционирует
  • 01 - если бит WGM02 регистра TCCR0B установлен в 0, вывод OC0A не функционирует
  • 01 - если бит WGM02 регистра TCCR0B установлен в 1, изменение состояния вывода OC0A на противоположное при совпадении с A
  • 10 - установка 0 на выводе OC0A при совпадении с A во время увеличения значения счетчика, установка 1 на выводе OC0A при совпадении с A во время уменьшения значения счетчика (неинверсный режим)
  • 11 - установка 1 на выводе OC0A при совпадении с A во время увеличения значения счетчика, установка 0 на выводе OC0A при совпадении с A во время уменьшения значения счетчика (инверсный режим)

Биты COM0B1 (5) и COM0B0 (4) регистра TCCR0A задают, какой сигнал появится на выводе OC0B (6 ножка, PB1) при совпадении счётчика (регистр TCNT0 ) с регистром сравнения B (OCR0B ).

В режиме "Быстрая ШИМ":

  • 01 - резерв
  • 10 - установка 0 на выводе OC0B при совпадении с B, установка 1 на выводе OC0B при обнулении счётчика (неинверсный режим)
  • 11 - установка 1 на выводе OC0B при совпадении с B, установка 0 на выводе OC0B при обнулении счётчика (инверсный режим)

В режиме "ШИМ с коррекцией фазы":

  • 00 - вывод OC0B не функционирует
  • 01 - резерв
  • 10 - установка 0 на выводе OC0B при совпадении с B во время увеличения значения счетчика, установка 1 на выводе OC0B при совпадении с B во время уменьшения значения счетчика (неинверсный режим)
  • 11 - установка 1 на выводе OC0B при совпадении с B во время увеличения значения счетчика, установка 0 на выводе OC0B при совпадении с B во время уменьшения значения счетчика (инверсный режим)

Быстрая ШИМ (Fast PWM)

В этом режиме счётчик считает от нуля до максимума. При установке нулевого значения счётчика - на выходе появляется импульс (устанавливается логическая единица). При совпадении с регистром сравнения - импульс сбрасывается (устанавливается логический ноль). В инверсном режиме, соответственно - наоборот.

ШИМ с коррекцией фазы (Phase correct PWM)

В этом режиме счётчик считает от нуля до максимума, а затем в обратном направлении, до нуля. При совпадении с регистром сравнения во время нарастания значения счётчика - импульс сбрасывается (устанавливается логический ноль). При совпадении во время убывания - появляется импульс (устанавливается логическая единица). В инверсном режиме, соответственно - наоборот. Недостатком данного режима является уменьшенная в два раза тактовая частота по сравнению с режимом Fast PWM. Но зато при изменении скважности не смещаются центры импульсов. Основное назначение данного режима - делать многофазные ШИМ сигналы, например трехфазную синусоиду, чтобы при изменении скважности не сбивался угол фазового сдвига между двумя ШИМ сигналами.

Чтобы увидеть наглядно, как работает ШИМ, напишем небольшую программу (все опыты я провожу на своей отладочной плате , соответственно код привожу применительно к ней):

/* * tiny13_board_pwm * Демо-прошивка отладочной платы на ATtiny13. * Демонстрация работы ШИМ на двух каналах: * неинверсный сигнал на выходе OC0A, инверсный - на выходе OC0B. */ #define F_CPU 1200000UL #include #include #define LED0 PB0 // OC0A #define LED1 PB1 // OC0B int main(void) { // Светидиоды: DDRB |= (1 << LED0)|(1 << LED1); // выходы = 1 PORTB &= ~((1 << LED0)|(1 << LED1)); // по умолчанию отключены = 0 // Таймер для ШИМ: TCCR0A = 0xB3; // режим ШИМ, неинверсный сигнал на выходе OC0A, инверсный - на выходе OC0B TCCR0B = 0x02; // предделитель тактовой частоты CLK/8 TCNT0=0; // начальное значение счётчика OCR0A=0; // регистр совпадения A OCR0B=0; // регистр совпадения B while(1) { do // Нарастание яркости { OCR0A++; OCR0B = OCR0A; _delay_ms(5); } while(OCR0A!=255); _delay_ms(1000); // Пауза 1 сек. do // Затухание { OCR0A--; OCR0B = OCR0A; _delay_ms(5); } while(OCR0A!=0); _delay_ms(1000); // Пауза 1 сек. } }

Тут мы видим, что при старте МК в регистры сравнения A и B устанавливается 0, а счётчик запускается в режиме Fast PWM, с генерацией неинверсного ШИМ сигнала на выходе OC0A и инверсного - на выходе OC0B. В основном цикле значения регистров сравнения плавно меняются от 0 до максимума и обратно. В результате, светодиоды, подключенные к выводам OC0A и OC0B, будут поочерёдно плавно загораться и гаснуть, как бы в противофазе.
Но если приглядеться внимательнее, то видим, что один из светодиодов гаснет не до конца, а продолжает тускло светиться. Эта особенность характерна для Fast PWM режима. Дело в том, что в этом режиме, даже если записать в регистр сравнения 0, при обнулении счётчика на выходе всё равно устанавливается логическая единица, которая сбрасывается в следующем такте (по совпадению с регистром сравнения). Таким образом, в каждом периоде будет проскакивать по одному короткому импульсу длительностью 1 такт, но этого достаточно для засвечивания светодиода. Этот эффект отсутствует в инверсном режиме формирования выходных импульсов, т.к. в данном случае при обнулении счётчика будет происходить не короткий импульс, а наоборот - короткий провал во время максимального заполнения ШИМ. Этот провал можно увидеть на осциллографе, но такое мерцание светодиода человеческое зрение просто не заметит. Поэтому второй светодиод загорается и гаснет полностью. В режиме ШИМ с коррекцией фазы, этот эффект отсутствует независимо, инверсный сигнал формируется на выходе или нет. Поменяем значение бита WGM01 (1) регистра TCCR0A с 1 на 0.

ШИМ (PWM) — широтно-импульсная модуляция. Не нужно пугаться данного термина. Это всего навсего способ регулирования напряжения. Допустим подсветка монитора горит слишком ярко, вы меняете яркость. А что же происходит в этот момент на самом деле?

Представим себе, что подсветка монитора это несколько светодиодов. Питается все это дело от постоянного напряжения. Но вот нам понадобилось уменьшить яркость монитора. Логично ответить, что это можно сделать переменным резистором. На маленьких токах — возможно. Но на больших, резистор будет сильно греться. Сильно возрастут габариты, потери, энергопотребление.

Поэтому люди придумали схему на транзисторах, которая делает из постоянного напряжения пульсирующее. Оказывается, пульсирующее напряжение, в зависимости от заполнения периода будет эквивалентно постоянному напряжению. Т.е. если в течение периода напряжение 50% времени было включено, 50% выключено, то эквивалент постоянного напряжения будет равен 50% от номинального.

В цифрах это просто — было 5В постоянного напряжения прогнали через ШИМ — получили 2,5В. Если заполнение импульса равно 75%, то эквивалентное постоянное напряжение будет 3,75В. Думаю идея понятна.

Теперь приступим к практической реализации. Будем при помощи микроконтроллера изменять заполнение от 0 до 100%, потом от 100% до нуля. Конечный результат должен выглядеть так:

Чтобы было более наглядно, подключим светодиод. В результате у нас будет плавно включаться и отключаться светодиод.

Запускаем наш любимый CodeVision. Создаем проект при помощи мастера. В разделе таймеров (Timers), выбираем Timer 2 и выставляем настройки как на рисунке.

Если попробовать сгенерировать проект, то прога может ругнуться. Соглашаемся, ведь у нас нога 3 порта В должна быть настроена как выход.

Приводим код к следующему виду:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #include void main(void ) { PORTB= 0x00 ; DDRB= 0x08 ; // Timer/Counter 2 initialization ASSR= 0x00 ; TCCR2= 0x6C ; TCNT2= 0x00 ; OCR2= 0x00 ; TIMSK= 0x00 ; while (1 ) { } ; }

#include void main(void) { PORTB=0x00; DDRB=0x08; // Timer/Counter 2 initialization ASSR=0x00; TCCR2=0x6C; TCNT2=0x00; OCR2=0x00; TIMSK=0x00; while (1) { }; }

Уделим внимание строке OCR2=0x00; Эта переменная как раз и отвечает за величину заполнения импульса. Изменяется данная величина от 0 до 255(0хFF), т.е. 255 соответствует 100% -му заполнению (постоянный ток). Следовательно, если нужно 30% заполнение (255/100)*30=77. Далее 77 переводим в шестнадцатеричную систему OCR2=0x4D;

TCCR2=0x6C; Изменяя данную величину мы можем регулировать частоту ШИМ. Величина частоты работы ШИМ кратна частоте, на которой работает микроконтроллер. В проекте использована частота микроконтроллера 8 МГц, частоту ШИМ использовали 125кГц, следовательно делитель равен 8/125=64
0x6C в двоичной системе счисления 1101100, открываем даташит на Atmega8 и видим описание регистра TCCR2, так вот 1101100 последние цифры 100 и отвечают за выбор частоты работы ШИМ

Приступим непосредственно к программе:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 #include #include void main(void ) { PORTB= 0x00 ; DDRB= 0x08 ; ASSR= 0x00 ; TCCR2= 0x6C ; TCNT2= 0x00 ; OCR2= 0x00 ; TIMSK= 0x00 ; while (1 ) { while (OCR2< 0xff ) { OCR2= OCR2+ 0x01 ; delay_ms(5 ) ; } while (OCR2> 0x00 ) { OCR2= OCR2- 0x01 ; delay_ms(5 ) ; } } ; }

#include #include void main(void) { PORTB=0x00; DDRB=0x08; ASSR=0x00; TCCR2=0x6C; TCNT2=0x00; OCR2=0x00; TIMSK=0x00; while (1) { while(OCR2<0xff) { OCR2=OCR2+0x01; delay_ms(5); } while(OCR2>0x00) { OCR2=OCR2-0x01; delay_ms(5); } }; }

Код прост до безобразия: сначала в цикле увеличиваем заполнение от 0 до 255(ff), потом уменьшаем от 255 до 0.
И напоследок видосик, как это все должно работать. Успехов в изучении)

ШИМ - Широтно импульсная модуляция
PWM - Pulse Width Modulation (т.е. то же самое, что и ШИМ)

Что такое ШИМ и зачем он нужен?

Зачем нужен программный ШИМ?

Затем, что на самом AVR (Atmega) каналов шим 1-2, что часто не хватает для того, что надо.

Пусть у нас есть 3 (три) светодиода и яркостью каждого их них мы хотим управлять индивидуально. Встроенных ШИМ каналов таймера не хватит. И, вообще, может мы еще какой-то особый контроль хотим осуществлять над каждым из них. Поэтому сажаем их на обычные ноги (в примере PORTC ноги 3,4,5) и управляем программно.

Дополнительная информация по поводу подключения: http://www.radiokot.ru/start/mcu_fpga/avr/05/ и в даташите к контроллеру.

Расчет резистора для светодиода:

Питание: 5В. Падение напряжения на светодиоде можно считать 1.5В. Тока на светодиоде должен быть не более 20мА (некоторые поспорят, что надо 15мА, но мне нравится поярче).
По закону Ома: I=U/R, R=U/I=(5-1.5)/0.02=175 Ом. Я поставил резисторы R1,R2 и R2 - 220 Ом.

Алгоритм

Простейший вариант - вечный цикл. Вариант с прерыванием будет позже (ниже), сейчас рассмотрим простой пример, чтобы понять суть.

Во-первых надо определить с двумя вещами: с какой частотой будут моргать светодиоды, чтобы не было видно этого моргания и, второе, сколько уровней яркости может иметь светодиод.

По уровням яркости пусть будет 256. 0 - выключен полностью, 255 - включен полностью (т.е. ШИМ канал находится в логической единице все время, т.е. duty cycle = 100%.

Однако, сейчас я малек запутаю вас.

Суть в том, что у нас ПЛЮС диода на схеме тыкнут на прямую на питание, а минус идет через резистор к ноге (где резистор - не важно, важно что к ноге МК). Поэтому светодиод светится, когда на ноге МК низкий уровень, т.е. ноль, т.е. нога внутри МК прокинута на GND, т.е. на ЗЕМЛЮ. Это значит, что на самом деле 0 и 1 в ШИМ должны быть инвертированы. Т.е. чем дольше в сигнале будет 0 по отношению к 1, тем ярче будет диод.

И так, уровней яркости 256.

О каком моргании идет речь? Суть в том, что если мы должны подать ШИМ сигнал на много много диодов и делаем это последовательно на каждый, то после вывода сигнала на первый диод надо вернуться к выводу сигнала на него же за такое время, чтобы:

  1. успеть сформировать полноценный ШИМ сигнал,
  2. не прошло более 1/25 секунды, иначе будет заметное мигание светодиода,
  3. между отрезками сигнала ШИМ не было заметных пауз в генерации шим, т.е. чтобы ШИМ сигнал НЕ БЫЛ ИСКАЖЕН.

Вот пример искажения ШИМ сигнала:

Мы это все будем иметь ввиду, но на самом деле нам здесь это не важно, так как у нас будет очень простая плавная мигалка и она будет только изменять яркость, т.е. времени будет предостаточно, а задача настолько проста, что не будет отъедать время от генерации ШИМ сигнала.

И так, вот исходный код (для AVR studio, т.е. gcc):

#define F_CPU 1000000UL #include #include #define LEDS_N 3 #define LEDS_PORT PORTC #define LEDS_DDR DDRC int main() { register unsigned char scancounter=0; register unsigned char i; register unsigned char glow=0; unsigned char level={0,16,32}; // which part of all cycles the led is ON unsigned char ledbits={0b00001000,0b00010000, 0b00100000}; // set C5 direction - output LEDS_DDR=0b11111111; // turn off all leds LEDS_PORT=0b11111111; for(;;){ // main pwm part for (i=0;i=level[i]){ // off - turn on the pin LEDS_PORT|=ledbits[i]; } else { // on - turn off he pin LEDS_PORT&=~ledbits[i]; } } scancounter++; // led brightness change if (!scancounter){ for (i=0;i128)level[i]=0; } } } }

Принцип работы программы

Есть счетчик отрезков времени - scancount. Максимальное значение этого счетчика - это количество уровней яркости минус 1. Каждый оборот цикла он увеличивается на единицу, потом переваливает за 255 и снова становится 0. В каждом обороте цикла происходит установка сигнала для каждого светодиода. Если счетчик меньше больше или равен уровню яркости, то выключаем диод. Если счетчик меньше уровня яркости заданного для диода - то включаем это диод. И как каждый цикл. Например, если уровень яркости равен 0, то счетчик всегда будет равен или более нуля и диод всегда будет выключен. Если уровень яркости 255, то счетчик будет меньше этого значения 254 из 255 оборотов счетчика и будет гореть практически в полную силу. Если яркость установлена в 50, то 50 первых оборотом цикла диод будет включен, а 206 оставшихся оборотов - выключен, т.е. на него будет подана 50/256 тока от максимума.

Ниже в программе идет управление уровнем яркости диодом, чтобы была какая-то демонстрация. При каждом переполнении счетчика к яркости всех диодов добавляется 1, но если яркость становится более 128, то она сбрасывается в 0. Вообще, если бы не было этой проверки, то после достижения уровня яркости в 255 она сама бы сбросилась в ноль, но опыт показал, что после яркости в 128 она нарастает так незаметно, что можно считать что при значении в 128 она уже практически максимум. И чтобы получаемый эффект был более динамичный и была введена это проверка.

Надо также знать, что зависимость яркости от тока у светодиодов НЕ ЛИНЕЙНАЯ. Т.е. 128 не в два раза тусклее, чем 255 и не в 2 раза ярче, чем 64.

За сколько проворачивается весь цикл со всеми диодами, нас здесь мало интересует, так как понятно, что на чистоте 1Мгц (именно на ней у меня работает МК), это будет достаточно быстро, чтобы глаз не видел никаких мерцаний.

Фото сборки:


нажмите на фото, чтобы увеличить

И вот видео работы: (avi, divx, 3MB)
Видео плохо показывает процесс перехода яркости, так как матрица фотоаппарата не обладает такой инерцией зрения, как человеческий глаз, но, в целом, процесс виден.