Как называется двоичный код. Двоичный код. Преобразование методом Горнера

Давайте разберемся как же все таки переводить тексты в цифровой код ? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы («»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле: N = 2b

  • N - та самая мощность (множество символов),
  • b - Бит (вес взятого символа).

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

  • 8 бит всегда называют 1 байт:
  • 1 байт = 8 бит.

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

Как текстовая информация может выглядеть в памяти компьютера?

Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.

Поскольку, байт - это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно - удобство такого кодирование очевидно. Однако, 256 символов - это очень удобное количество для любой символьной информации.

Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?

Этот процесс условный, и мы вправе придумать различные способы для кодировки символов . Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.

Таблица для кодировки - это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.

ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.

Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)

Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.

Для русского алфавита тоже соблюдают принцип последовательного кодирования .

Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.

Одним из первых стандартов для кодирования русского алфавит а на персональных компьютерах считают КОИ8("Код обмена информацией, 8-битный"). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.

С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 ("CP" означает "Code Page", "кодовая страница").

Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.

Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита , которая называется ISO 8859-5.

А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.

С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.

Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.

Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.

Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.

08. 06.2018

Блог Дмитрия Вассиярова.

Двоичный код — где и как применяется?

Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.

Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись.

Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.

Зачем нужен двоичный код?

До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.

Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».

Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.

Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов.

Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).

Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:

  • Четырехбитным (как в примере на абзац выше 1011) позволяет записать 2^4 = 16 комбинаций-символов;
  • Восьмибитным (например: 0101 0011; 0111 0001). Одно время он представлял наибольший интерес для программирования, поскольку охватывал 2^8 = 256 значений. Это давало возможность описать все десятичные цифры, латинский алфавит и специальные знаки;
  • Шестнадцатибитным (1100 1001 0110 1010) и выше. Но записи с такой длинной – это уже для современных более сложных задач. Современные процессоры используют 32-х и 64-х битную архитектуру;

Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):

8 бит = 1 байт.

Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).

Бинарная кодировка в действии

Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:

  • первый 31 символ – управляющие (с 00000000 по 00011111). Служат для служебных команд, вывода на принтер или экран, звуковых сигналов, форматирования текста;
  • следующие с 32 по 127 (00100000 – 01111111) латинский алфавит и вспомогательные символы и знаки препинания;
  • остальные, до 255-го (10000000 – 11111111) – альтернативная, часть таблицы для специальных задач и отображения национальных алфавитов;

Расшифровка значений в ней показано в таблице.

Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:

  • Байт из 8 знаков будем читать справа налево;
  • Если в обычных числах у нас используются разряды единиц, десятков, сотен, то здесь (читая в обратном порядке) для каждого бита представлены различные степени «двойки»: 256-124-64-32-16-8- 4-2-1;
  • Теперь смотрим на двоичный код числа, например 00011011. Там, где в соответствующей позиции есть сигнал «1» – берем значения этого разряда и суммируем их привычным способом. Соответственно: 0+0+0+32+16+0+2+1 = 51. В правильности данного метода вы можете убедиться, взглянув на таблицу кодов.

Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.

Язык, понятный современной технике

Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:

  • Текстовую информацию с параметрами форматирования;
  • Числа и любые операции с ними;
  • Графические и видео изображения;
  • Звуки, в том числе и выходящие и за предел нашей слышимости;

Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:

  • Изменением магнитного поля на ;
  • Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.

    Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.

    Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы.

    Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.

    Лучше, если вы сами ее мне подскажите;)

    До скорых встреч.


    Ариабхата
    Кириллическая
    Греческая Грузинская
    Эфиопская
    Еврейская
    Акшара-санкхья Другие Вавилонская
    Египетская
    Этрусская
    Римская
    Дунайская Аттическая
    Кипу
    Майяская
    Эгейская
    Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

    Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

    Двоичная запись чисел

    В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

    В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

    Натуральные числа

    Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

    (a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

    Отрицательные числа

    Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

    (− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

    дополнительном коде .

    Дробные числа

    Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

    (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

    Сложение, вычитание и умножение двоичных чисел

    Таблица сложения

    Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

    Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

    Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

    Преобразование двоичных чисел в десятичные

    Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

    1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

    То же самое чуть иначе:

    1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

    Можно записать это в виде таблицы следующим образом:

    512 256 128 64 32 16 8 4 2 1
    1 1 0 0 0 1
    +32 +16 +0 +0 +0 +1

    Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

    Преобразование дробных двоичных чисел в десятичные

    Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

    1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 −1 + 0 * 2 −2 + 1 * 2 −3 = 90,625

    То же самое чуть иначе:

    1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

    Или по таблице:

    64 32 16 8 4 2 1 0.5 0.25 0.125
    1 0 1 1 0 1 0 , 1 0 1
    +64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

    Преобразование методом Горнера

    Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

    Например, двоичное число 1011011 2 переводится в десятичную систему так:

    0*2 + 1 = 1
    1*2 + 0 = 2
    2*2 + 1 = 5
    5*2 + 1 = 11
    11*2 + 0 = 22
    22*2 + 1 = 45
    45*2 + 1 = 91

    То есть в десятичной системе это число будет записано как 91.

    Перевод дробной части чисел методом Горнера

    Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

    Например 0,1101 2

    (0 + 1 )/2 = 0,5
    (0,5 + 0 )/2 = 0,25
    (0,25 + 1 )/2 = 0,625
    (0,625 + 1 )/2 = 0,8125

    Ответ: 0,1101 2 = 0,8125 10

    Преобразование десятичных чисел в двоичные

    Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

    19/2 = 9 с остатком 1
    9/2 = 4 c остатком 1
    4/2 = 2 без остатка 0
    2/2 = 1 без остатка 0
    1/2 = 0 с остатком 1

    Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011 .

    Преобразование дробных десятичных чисел в двоичные

    Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

    • Дробь умножается на основание двоичной системы счисления (2);
    • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
    • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

    Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

    Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

    0,116 2 = 0 ,232
    0,232 2 = 0 ,464
    0,464 2 = 0 ,928
    0,928 2 = 1 ,856
    0,856 2 = 1 ,712
    0,712 2 = 1 ,424
    0,424 2 = 0 ,848
    0,848 2 = 1 ,696
    0,696 2 = 1 ,392
    0,392 2 = 0 ,784
    и т. д.

    Таким образом 0,116 10 ≈ 0,0001110110 2

    Получим: 206,116 10 ≈ 11001110,0001110110 2

    Применения

    В цифровых устройствах

    Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

    • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
    • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

    В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

    В английской системе мер

    При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

    Обобщения

    Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

    История

    • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
    • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
    • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
    • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
    • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.

    См. также

    Примечания

    1. Попова Ольга Владимировна. Учебное пособие по информатике (неопр.) .

    Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом. Чем больше разрядов входит в код, тем больше значений может принимать данный код.

    В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два - 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева - самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) - в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" - "двоичное число").

    Рис. 2.9. Десятичное и двоичное кодирование

    В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

    Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной - всего лишь 7 (то есть 111 в двоичном коде). В общем случае n-разрядное двоичное число может принимать 2 n различных значений, а n-разрядное десятичное число - 10 n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.

    Таблица 2.3. Соответствие чисел в десятичной и двоичной системах
    Десятичная система Двоичная система Десятичная система Двоичная система

    Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатеричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом. Каждая такая группа называется полубайтом (или нибблом , тетрадой ), а две группы (8 разрядов) - байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода. В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.

    Рис. 2.10. Двоичная и 16-ричная запись числа

    В табл. 2.4 приведены примеры 16-ричного кодирования первых 20 чисел (в скобках приведены двоичные числа), а на рис. 2.10 показан пример записи двоичного числа в 16-ричном виде. Для обозначения 16-ричного кодирования иногда применяют букву "h" или "H" (от английского Hexadecimal) в конце числа, например, запись A17F h обозначает 16-ричное число A17F. Здесь А1 представляет собой старший байт числа, а 7F - младший байт числа. Все число (в нашем случае - двухбайтовое) называется словом .

    Таблица 2.4. 16-ричная система кодирования
    Десятичная система 16-ричная система Десятичная система 16-ричная система
    0 (0) A (1010)
    1(1) B (1011)
    2 (10) C (1100)
    3 (11) D (1101)
    4 (100) E (1110)
    5 (101) F (1111)
    6 (110) 10 (10000)
    7 (111) 11 (10001)
    8 (1000) 12 (10010)
    9 (1001) 13 (10011)

    Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (16 2) и т.д., а затем сложить все произведения. Например, возьмем число A17F:

    A17F=F*16 0 + 7*16 1 + 1*16 2 + A*16 3 = 15*1 + 7*16+1*256+10*4096=41343

    Но каждому специалисту по цифровой аппаратуре (разработчику, оператору, ремонтнику, программисту и т.д.) необходимо научиться так же свободно обращаться с 16-ричной и двоичной системами, как и с обычной десятичной, чтобы никаких переводов из системы в систему не требовалось.

    Помимо рассмотренных кодов, существует также и так называемое двоично-десятичное представление чисел. Как и в 16-ричном коде, в двоично-десятичном коде каждому разряду кода соответствует четыре двоичных разряда, однако каждая группа из четырех двоичных разрядов может принимать не шестнадцать, а только десять значений, кодируемых символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. То есть одному десятичному разряду соответствует четыре двоичных. В результате получается, что написание чисел в двоично-десятичном коде ничем не отличается от написания в обычном десятичном коде (табл. 2.6), но в реальности это всего лишь специальный двоичный код, каждый разряд которого может принимать только два значения: 0 и 1. Двоично-десятичный код иногда очень удобен для организации десятичных цифровых индикаторов и табло.

    Таблица 2.6. Двоично-десятичная система кодирования
    Десятичная система Двоично-десятичная система Десятичная система Двоично-десятичная система
    0 (0) 10 (1000)
    1(1) 11 (1001)
    2 (10) 12 (10010)
    3 (11) 13 (10011)
    4 (100) 14 (10100)
    5 (101) 15 (10101)
    6 (110) 16 (10110)
    7 (111) 17 (10111)
    8 (1000) 18 (11000)
    9 (1001) 19 (11001)

    В двоичном коде над числами можно проделывать любые арифметические операции: сложение, вычитание, умножение, деление.

    Рассмотрим, например, сложение двух 4-разрядных двоичных чисел. Пусть надо сложить число 0111 (десятичное 7) и 1011 (десятичное 11). Сложение этих чисел не сложнее, чем в десятичном представлении:

    При сложении 0 и 0 получаем 0, при сложении 1 и 0 получаем 1, при сложении 1 и 1 получаем 0 и перенос в следующий разряд 1. Результат - 10010 (десятичное 18). При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

    Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

    При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат - 1011 (десятичное 11).

    При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

    Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

    Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль - положительное.

    Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие: , , . Эта же операция называется функцией Исключающее ИЛИ . Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:

    Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ. Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат -0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.

    Разрядность двоичного кода, Преобразование информации из непрерывной формы в дискретную, Универсальность двоичного кодирования, Равномерные и неравномерные коды, Информатика 7 класс Босова, Информатика 7 класс

    1.5.1. Преобразование информации из непрерывной формы в дискретную
    Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).
    Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.
    Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную.
    Рассмотрим суть процесса дискретизации информации на примере.
    На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления . Результатом их работы являются барограммы - кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рис. 1.9.

    На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений (рис. 1.10).

    Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.
    Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).
    В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

    Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 - вдвое больше, чем из двух двоичных символов:
    Соответственно, четырёхразрядйый двоичный позволяет получить 16 кодовых комбинаций, пятиразрядный - 32, шестиразрядный - 64 и т. д. Длину двоичной цепочки - количество символов в двоичном коде - называют разрядностью двоичного кода.
    Обратите внимание, что:
    4 = 2 * 2,
    8 = 2 * 2 * 2,
    16 = 2 * 2 * 2 * 2,
    32 = 2 * 2 * 2 * 2 * 2 и т. д.
    Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.
    Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода - буквой i, то выявленная закономерность в общем виде будет записана так:
    N = 2 * 2 * ... * 2.
    i множителей
    В математике такие произведения записывают в виде:
    N = 2 i .
    Запись 2 i читают так: «2 в i-й степени».

    Задача. Вождь племени Мульти поручил своему министру разработать двоичный и перевести в него всю важную информацию . Двоичный какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.
    Решение. Так как алфавит племени Мульти состоит из 16 символов, то и кодовых комбинаций им нужно 16. В этом случае длина (разрядность) двоичного кода определяется из соотношения: 16 = 2 i . Отсюда i = 4.
    Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110,0111,1000,1001,1010,1011,1100,1101,1110,1111.

    1.5.3. Универсальность двоичного кодирования
    В начале этого параграфа вы узнали, что, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный. Таким образом, с помощью двоичного кода может быть представлена любая на естественных и формальных языках, а также изображения и звуки (рис. 1.14). Это и означает универсальность двоичного кодирования.
    Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы - «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).
    Простота технической реализации - главное достоинство двоичного кодирования. Недостаток двоичного кодирования - большая длина получаемого кода.

    1.5.4. Равномерные и неравномерные коды
    Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные - разное.
    Выше мы рассмотрели равномерные двоичные коды.
    Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш - четыре длинных сигнала (четыре «тире»). Неравномерное позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.

    Информация, которую дает этот символ, равна энтропии системы и максимальна в случае, когда оба состояния равновероятны; в этом случае элементарный символ передает информацию 1 (дв. ед.). Поэтому основой оптимального кодирования будет требование, чтобы элементарные символы в закодированном тексте встречались в среднем одинаково часто.

    Изложим здесь способ построения кода, удовлетворяющего поставленному условию; этот способ известен под названием «кода Шеннона - Фэно». Идея его состоит в том, что кодируемые символы (буквы или комбинации букв) разделяются на две приблизительно равновероятные группы: для первой группы символов на первом месте комбинации ставится 0 (первый знак двоичного числа, изображающего символ); для второй группы - 1. Далее каждая группа снова делится на две приблизительно равновероятные подгруппы; для символов первой подгруппы на втором месте ставится нуль; для второй подгруппы - единица и т. д.

    Продемонстрируем принцип построения кода Шеннона - Фэно на материале русского алфавита (табл. 18.8.1). Отсчитаем первые шесть букв (от «-» до «т»); суммируя их вероятности (частоты), получим 0,498; на все остальные буквы (от «н» до «сф») придется приблизительно такая же вероятность 0,502. Первые шесть букв (от «-» до «т») будут иметь на первом месте двоичный знак 0. Остальные буквы (от «н» до «ф») будут иметь на первом месте единицу. Далее снова разделим первую группу на две приблизительно равновероятные подгруппы: от «-» до «о» и от «е» до «т»; для всех букв первой подгруппы на втором месте поставим нуль, а второй подгруппы"- единицу. Процесс будем продолжать до тех пор, пока в каждом подразделении не останется ровно одна буква, которая и будет закодирована определенным двоичным числом. Механизм построения кода показан на таблице 18.8.2, а сам код приведен в таблице 18.8.3.

    Таблица 18.8.2.

    Двоичные знаки

    Таблица 18.8.3

    С помощью таблицы 18.8.3 можно закодировать и декодировать любое сообщение.

    В виде примера запишем двоичным кодом фразу: «теория информации»

    01110100001101000110110110000

    0110100011111111100110100

    1100001011111110101100110

    Заметим, что здесь нет необходимости отделять друг от друга буквы специальным знаком, так как и без этого декодирование выполняется однозначно. В этом можно убедиться, декодируя с помощью таблицы 18.8.2 следующую фразу:

    10011100110011001001111010000

    1011100111001001101010000110101

    010110000110110110

    («способ кодирования»).

    Однако необходимо отметить, что любая ошибка при кодировании (случайное перепутывание знаков 0 и 1) при таком коде губительна, так как декодирование всего следующего за ошибкой текста становится невозможным. Поэтому данный принцип кодирования может быть рекомендован только в случае, когда ошибки при кодировании и передаче сообщения практически исключены.

    Возникает естественный вопрос: а является ли составленный нами код при отсутствии ошибок действительно оптимальным? Для того чтобы ответить на этот вопрос, найдем среднюю информацию, приходящуюся на один элементарный символ (0 или 1), и сравним ее с максимально возможной информацией, которая равна одной двоичной единице. Для этого найдем сначала среднюю информацию, содержащуюся в одной букве передаваемого текста, т. е. энтропию на одну букву:

    ,

    где - вероятность того, что буква примет определенное состояние («-», о, е, а,…, ф).

    Из табл. 18.8.1 имеем

    (дв. единиц на букву текста).

    По таблице 18.8.2 определяем среднее число элементарных символов на букву

    Деля энтропию на, получаем информацию на один элементарный символ

    (дв. ед.).

    Таким образом, информация на один символ весьма близка к своему верхнему пределу 1, а выбранный нами код весьма близок к оптимальному. Оставаясь в пределах задачи кодирования по буквам, мы ничего лучшего получить не сможем.

    Заметим, что в случае кодирования просто двоичных номеров букв мы имели бы изображение каждой буквы пятью двоичными знаками и информация на один символ была бы

    (дв. ед.),

    т. е. заметно меньше, чем при оптимальном буквенном кодировании.

    Однако надо заметить, что кодирование «по буквам» вообще не является экономичным. Дело в том, что между соседними буквами любого осмысленного текста всегда имеется зависимость. Например, после гласной буквы в русском языке не может стоять «ъ» или «ь»; после шипящих не могут стоять «я» или «ю»; после нескольких согласных подряд увеличивается вероятность гласной и т. д.

    Мы знаем, что при объединении зависимых систем суммарная энтропия меньше суммы энтропий отдельных систем; следовательно, информация, передаваемая отрезком связного текста, всегда меньше, чем информация на один символ, умноженная на число символов. С учетом этого обстоятельства более экономный код можно построить, если кодировать не каждую букву в отдельности, а целые «блоки» из букв. Например, в русском тексте имеет смысл кодировать целиком некоторые часто встречающиеся комбинации букв, как «тся», «ает», «ние» и т. п. Кодируемые блоки располагаются в порядке убывания частот, как буквы в табл. 18.8.1, а двоичное кодирование осуществляется по тому же принципу.

    В ряде случаев оказывается разумным кодировать даже не блоки из букв, а целые осмысленные куски текста. Например, для разгрузки телеграфа в предпраздничные дни целесообразно кодировать условными номерами целые стандартные тексты, вроде:

    «поздравляю новым годом желаю здоровья успехов работе».

    Не останавливаясь специально на методах кодирования блоками, ограничимся тем, что сформулируем относящуюся сюда теорему Шеннона.

    Пусть имеется источник информации и приемник, связанные каналом связи (рис. 18.8.1).

    Известна производительность источника информации, т. е. среднее количество двоичных единиц информации, поступающее от источника в единицу времени (численно оно равно средней энтропии сообщения, производимого источникам в единицу времени). Пусть, кроме того, известна пропускная способность канала, т. е. максимальное количество информации (например, двоичных знаков 0 или 1), которое способен передать канал в ту же единицу времени. Возникает вопрос: какова должна быть пропускная способность канала, чтобы он «справлялся» со своей задачей, т. е. чтобы информация от источника к приемнику поступала без задержки?

    Ответ на этот вопрос дает первая теорема Шеннона. Сформулируем ее здесь без доказательства.

    1-я теорема Шеннона

    Если пропускная способность канала связи больше энтропии источника информации в единицу времени

    то всегда можно закодировать достаточно длинное сообщение так, чтобы оно передавалось каналом связи без задержки. Если же, напротив,

    то передача информации без задержек невозможна.