Основы электротехники для начинающих. Как освоить радиоэлектронику с нуля - Дригалкин В.В

Электроника, как хобби. Кризис жанра?

Многие из тех, кто превратил электронику в занимательное времяпрепровождение, часто задают себе вопрос: «Зачем я этим занимаюсь?». Читаю журналы и книги из раздела «Электроника это просто» и прочую литературу из серии «Для чайников». На более сложные и умные книги просто не хватает терпения.

А далее рассуждения идут примерно по такому руслу: вот, мол, сделал простенький усилитель, собрал несколько мигалок (световых эффектов), . А оказывается, все это можно купить, если не новое, то во всяком случае б/у, и окажется все лучшего качества, в фирменных корпусах, даже в рабочем состоянии. Спрашивается, где же выгода, экономический эффект от подобных занятий?

Но, пожалуй, не стоит забивать голову такими мыслями. Ведь можно привести немало примеров, которые не приносят никакой выгоды. Такие занятия называются хобби, т.е. увлечение, в котором вряд ли следует искать смысл. Это как любовь, ведь мало кто может ответить, в чем ее смысл. Или рыбалка, - проще пойти в магазин и купить рыбы, чем стоять с удочкой возле реки и кормить «злющих комаров». Так таких рыбаков просто не счесть. То же самое можно сказать и об охотниках: добытая утка по размерам невелика - куда меньше покупной.

Так и электроника, увлечение которой в молодом возрасте приходит просто из любопытства: а как это устроено, и почему оно работает так, а не иначе? К тому же наука это непростая, требует приложить немало усилий на изучение теории, создание первых работающих устройств, а впоследствии, при появлении опыта, разработка собственных схем и ремонт аппаратуры промышленного изготовления.

Серьезные игрушки

Одним из «непонятных» направлений в любительской электронике можно считать роботостроение. Конструкции подобных «роботов» чаще всего представляют собой небольшую тележку, которая может объезжать препятствия, двигаться по заданному маршруту и управляться от пульта управления. Правда такое творчество наиболее характерно для западных радиолюбителей, в странах СНГ этим занимаются не столь охотно.

Казалось бы, что тут такого? Непосвященный, увидев конечный результат, просто скажет: «Ну и что?». А тем, кто занимается этим на полном серьезе, тема эта настолько близка, важна и понятна, что по этому направлению в Интернете можно найти не один и не два форума, и даже скачать книги, чаще на английском языке, на эту тему.

И в самом деле, если разобраться, то устройство «роботов» заслуживает внимания. Ведь схемы управления чаще всего строятся на микроконтроллерах, пусть даже самых простых, но начинать и следует с простого. Сначала «изобретатель» практикуется в написании простых и коротких программ (без программы не будет работать ни один контроллер), а после переходит к сложным и большим. Ведь изучить программирование можно только начав писать собственные программы. хорошо, если в этот момент рядом окажется человек, который может объяснить с чего начинать, зачем все это программирование нужно.

Любительская электроника - это один из способов поработать головой и руками. Ведь придется научиться не только хорошо паять, часто приходится делать и слесарные операции, чтобы все получилось на высшем уровне. Решить проблемы, которые другие люди решают простым походом в магазин, а вот я сделал сам. Это еще один повод, чтобы получить удовольствие от электроники, как от хобби.

Достаточно часто случается, что именно это хобби плавно переходит в любимую профессию. И, видимо, прав был древнекитайский мыслитель Конфуций, который сказал примерно следующее: «Если выбранная работа будет вам по душе, то ни одного дня в своей жизни вам не придется работать». Наверно, в этом изречении подразумевалось, что слово работа однокоренное со словом раб.

Итак, человек после основательных раздумий, может даже под влиянием своих хороших друзей, принял решение в свободное время заняться электроникой, превратить ее в свое хобби: заразительными бывают примеры не только плохие, но и хорошие. Это решение сразу вызывает появление целого ряда проблем, казалось бы неразрешимых. Вот только некоторые из них.

Как организовать рабочее место

Такая проблема достаточно просто решается в современных частных домах, где небольшой уголок, чтобы поставить стол, можно найти где угодно: в гараже, в подвале, в кладовке, в комнате и может даже на чердаке. Несколько сложнее дело обстоит в многоквартирном доме, но если близкие смогут понять, насколько серьезно и полезно это увлечение, то свободный уголок в одной из трех и даже двух комнат всегда найдется.

Если увлечение электроникой не прекратится и не зачахнет в самом начале, а пойдет успешно, то со временем любитель - электронщик для занятий любимым делом может арендовать помещение, открыть свою ремонтную мастерскую, превратить хобби в любимую профессию. Таких специалистов в настоящее время великое множество.

Чаще всего электроникой начинают заниматься примерно так: берется готовая схема, приобретаются детали, инструменты, и вперед. Берется в руки паяльник, собирается самая первая схема, включается, ура, заработало!

Первый успех заставляет перейти к повторению других готовых схем. Но иногда бывает и по другому: собранная схема не заработала, попытки «оживить» ее результатов не принесли, и паяльники, детали забрасываются в дальний угол, иногда навсегда. Поэтому, первые схемы должны быть простыми, которые начинают работать сразу. В этом плане можно рекомендовать классические схемы электроники. Прежде всего это генераторы, на основе которых можно собрать «пищалки и мигалки».

Первая заработавшая схема просто окрыляет. Но, чтобы увлечение электроникой не превратилось в мучение, следует заняться изучением теории, хотя бы самых азов.

Где взять теоретические познания

Если человек в средней школе учился достаточно хорошо, то закон Ома и еще несколько основных законов физики запомнил. Совсем неплохо, если и математика была любимым предметом. А если удалось освоить еще и английский язык, то совсем прекрасно: большая часть современной технической документации как раз на английском. Именно эти учебные дисциплины и заставляют задаться вопросом, как вся эта электроника устроена, а со временем превратить ее в свое хобби.

И не надо думать, что без специального высшего образования совсем ничего не получится. В свое время журнал «Радио» многих своих авторов и читателей называл «инженерами без диплома», настолько хорошо они разбирались в схемотехнике различных устройств и собирали неплохие конструкции. Вообще журналов до сих пор выпускается множество, например украинский «Радиоаматор», белорусский «Радиомир», российские «Схемотехника» и «Ремонт электронной» техники.

В журнале «Радиоконструктор 03 - 2011» есть целая статья об использовании радиодеталей б/у, что очень кстати для начинающих радиолюбителей. Там же даются рекомендации по проверке деталей и предупреждение о том, что попытка «собрать» транзистор из двух диодов, что иногда пытаются сделать начинающие, к положительному результату не приведет, хотя при проверке транзистор похож именно на два диода. Ну, почти, как у классиков: «Моторчик был очень похож на настоящий, но не работал».

Электронные журналы

В качества примера можно привести электронный журнал «Радиолоцман». Именно последние три слова достаточно набрать в поисковой строке, например, «Яндекса», чтобы познакомиться с его содержимым, и даже скачать отдельные номера или даже подшивку за целый год. Содержимое журнала достаточно многообразно и интересно.

Журналы, это, конечно, хорошо, но не следует забывать и о книгах. В сети Интернет сейчас можно найти практически любую литературу, в том числе и техническую. Многие из этих книг стали уже музейными экспонатами, например, справочники радиолюбителя, начиная со второй половины прошлого века. В них можно не только проследить историю развития радиолюбительства, но и найти множество полезных сведений, которые до сих пор не утратили своей актуальности.

Одной из лучших книг по радиоэлектронике следует, пожалуй, считать «Искусство схемотехники» авторы П. Хоровиц и У. Хилл. Последнее издание этого занимательного трехтомника вышло в 1993 году.

В книге рассказывается практически обо всем, что использовалось в то время продолжает использоваться до сих пор. При этом авторы, даже самые сложные схемы объясняют просто, что называется «на пальцах», используя минимальное количество формул. Книга содержит множество практических схем с примерами их расчетов. Текст книги, рассчитанной на массового читателя, достаточно прост и дружелюбен, содержит некоторое количество юмора. Поэтому не надо бояться прочтения этого трехтомника.

С таким же названием есть несколько книг и других, более современных авторов, которые также можно скачать в Интернете, либо купить бумажный вариант в интернет магазине. В этих книгах можно найти сведения по современной элементной базе, ведь электроника развивается быстрее всех остальных областей науки и техники.

Добрый день, уважаемое сообщество.

Меня все время удивляли люди, которые понимают в радиоэлектронике. Я всегда их считал своего рода шаманами: как можно разобраться в этом обилии элементов, дорожек и документации? Как можно только взглянуть на плату, пару раз «тыкнуть» осциллографом в только одному ему понятные места и со словами «а, понятно» взять паяльник в руки и воскресить, вроде как почившую любимую игрушку. Иначе как волшебством это не назовёшь.

Расцвет радиоэлектроники в нашей стране пришёлся на 80-е годы, когда ничего не было и все приходилось делать своими руками. С той поры прошло много лет. Сейчас у меня складывается впечатление, что вместе с поколением 70-х уходят и знания с умением. Мне не повезло: половину эпохи расцвета меня планировали родители, а вторую половину я провёл играя в кубики и прочие машинки. Когда в 12 лет я пошёл в кружок «Юный техник» - это были не самые благополучные времена, и ввиду обстоятельств через полгода пришлось с кружком «завязать», но мечта осталась.

По текущей деятельности я программист. Я осознаю, что найти ошибку в большом коде ровно тоже самое, что найти «плохой» конденсатор на плате. Сказано - сделано. Так как по натуре я люблю учиться самостоятельно - пошёл искать литературу. Попыток начать было несколько, но каждый раз при начале чтения книг я упирался в то, что не мог разобраться в базовых вещах, например, «что есть напряжение и сила тока». Запросы к великому и ужасному Гуглу также давали шаблонные ответы, скопированные из учебников. Попробовал найти место в Москве, где можно поучиться этому мастерству - поиски не закончились результатом.

Итак, добро пожаловать в кружок начинающего радиолюбителя.

Я люблю учиться и узнавать что-то новое, но просто знания мне мало. В школе мне привили навык «теорему нельзя выучить - её можно только понять» и теперь я несу это правило по жизни. Окружающие, конечно, смотрят с недоумением, когда вместо того, чтобы взять готовые решения и сложить по-быстрому их воедино я начинаю изобретать свои велосипеды. Второй довод для написания статьи - это мысль «если ты понимаешь предмет - ты можешь его с лёгкостью объяснить другому». Ну что ж, попробую сам понять и другим объяснить.

Первая моя цель, прямо как по книгам - аналоговый радиоприёмник, а там пойдем и в цифру.

Сразу хочу предупредить - статья написана дилетантом в радиоэлектронике и физике и является скорее рассуждением. Все поправки буду рад выслушать в комментариях.

Итак, чем что такое напряжение, ток и прочее сопротивление? В большинстве случаев для понимания электрических процессов приводят аналогию с водой. Мы не будем отходить от этого правила, правда с небольшими отклонениями.
Представим трубу. Для контроля некоторых показателей мы включим в неё несколько счётчиков расхода воды, манометров для измерения давления, и элементы, которые мешают току воды.

В электрическом эквиваленте схема будет выглядеть примерно так:

Напряжение

Курс физики нам говорит, что напряжение - это разность потенциалов между двумя точками. Если перекладывать определение на нашу трубу с водой, то потенциал - это давление, т. е. напряжение - это разница давлений между двумя точках. Этим и объясняется принцип его измерения вольтметром. Получается, что если попытаться измерить напряжение в двух соседних точках трубы, где нет никаких сопротивлений движению воды (отсутствуют краны и сужения, внутренним трением воды о стенки трубы мы пока пренебрежём) и давление не меняется - то разница давлений в этих двух точках будет равна нулю. Если же сопротивление присутствует, происходит снижение давления (в электрическом эквиваленте падение напряжения), то мы получим величину напряжения. Сумма напряжений на всех элементах равна напряжению на источнике. Т.е. если сложить показания всех вольтметров на нашей схеме, мы получим напряжение батареи.

Например, будем считать, что наша батарея даёт напряжение 5 вольт и резисторы имеют сопротивление 100 и 150 Ом. Тогда по закону Ома U=IR, или I=U/R, получаем, что по цепи течёт ток с силой I=5/250=20мА. Так как сила тока во всей цепи одинакова (пояснения чуть дальше), из того же закона Ома следует, что первый вольтметр покажет U=0,02*100=2В, а второй U=0,02*150=3В.

Сила тока

Из того же курса физики известно, что это количество заряда за единицу времени. В водяном эквиваленте - это сама вода, а её измеритель, амперметр - есть счётчик воды. Опять таки становится понятно, почему амперметр подключается в разрыв цепи. Если его подключить на место, например, вольтметра V1, то образуется новая цепь, из которой будет исключено сопротивление R1, а значит как минимум мы получим некорректные значения (что будет «как максимум»станет понятно чуть позже). Вернёмся к нашей водичке - подключение амперметра параллельно любому из элементов означает, что часть воды пойдёт по основной трубе, а другая часть пойдёт через счётчик - и как раз этот счётчик будет врать.

Ах, да, о цепи. В большинстве литературы что мне попадалось фраза о том, что батарейки являются лишь источником напряжения, и только сопротивления являются источником тока. Как же так? Как сопротивление может являться источником чего-то ещё, кроме как источником сопротивления (тепло пока не в счёт)? Все верно, если опираться на закон Ома I=U/R, однако сколько не прикладывай сопротивление, ток не появится, пока не будет источника напряжения и замкнутой цепи (ровно как если заткнуть справа нашу трубу пробкой что не делай - счётчики воды будут молчать)!

Сопротивление в цепи просто должно присутствовать, ведь если оно равно нулю - сила тока устремится в бесконечность. Такую ситуацию мы видим при «замыкании» - искры это и есть очень большая сила тока, а если точнее теплота, равная Q=(I^2)Rt (формула действительна при постоянной силе тока и сопротивления).

Ещё одно важное замечание - при рассмотрении расчёта напряжения и силы тока я не нашёл уточнений, что в замкнутой цепи на всех участках сила тока будет одинаковой. Т.е. все счётчики будут крутиться с одной скоростью и показывать одни и те же значения. По сути, количество тока, который прошёл по цепи аналогичен количеству «воды», вышедшей из трубы.

Сопротивление

Пожалуй, самое простое явление для объяснения. Вернувшись к нашей трубе, сопротивление - это есть все возможные сужения и краны. Согласно тому, что мы разобрали выше - при повышении сопротивления уменьшается ток во всей цепи и понижает напряжение на концах сопротивления. Или снова в водяных реалиях - закрытие нашего крана на пол оборота вызовет уменьшение расхода воды на всех счётчиках и пропорциональное (в зависимости от сопротивления) снижение давления на манометрах.

Так куда же все падает и уменьшается? Вот здесь аналогия с водой неоднозначна, так как в случае с электричеством «излишки» превращаются в тепло и рассеиваются. Количество теплоты, которое при этом выделяется, снова можно рассчитать формулой Q=(ΔI^2)Rt (снова при постоянном сопротивлении). Если поделить количество теплоты на время, получим мощность, которую нужно применить при выборе самого резистора P=Q/t=(ΔI^2)R.

Курить не круто!

Когда я ходил в кружок Юный техник более старшие товарищи проводили «эксперименты» с прикуриванием от электричества. Для этого они брали блок питания, подключали к нему резисторы малой мощности и повышали напряжение. Повышали до тех пор, пока он не раскалялся до красна, как автомобильный прикуриватель. После этого, практически через мгновение резистор «перегорал» и отправлялся в мусорное ведро.

С постоянным током все понятно, а переменный?

Переменный ток, как таковой в радиоэлектронике используется редко. Его как минимум делают постоянным и в большинстве случаев снижают. Видимо по этому в попадавшейся мне литературе про него практически не говорится.

В чем же его отличие? C обывательской точки зрения, в малом - направление тока в нем меняется. Здесь аналогия с трубой не совсем уместна, первое что приходит в голову - шейкер для коктейлей (жидкость при смешивании в нем гуляет туда-сюда). Нам в радиоэлектронике нужно знать, как идёт ток в нашей цепи, чтобы получить от него то, что мы хотим.

Следующее, с чем я пошёл разбираться - полупроводники. Дырки? Электроны? Ключевой режим? Каскады? Полевой транзистор, то тот, который нашли в поле? Пока ничего не понятно…

Теги: Добавить метки

Название: Радиоэлектроника для начинающих.

Данной книгой автор намерен вовлечь в интереснейший мир радиоэлектроники новых юных поклонников этого творчества.
Подача материала производится от простого к сложному. Использован многолетний опыт преподавания в радиокружке.
Книга рассчитана на учащихся 5-11 классов, учащихся колледжей, техникумов, студентов ВУЗов, а также на начинающих радиолюбителей.

Книга «Радиоэлектроника для начинающих (и не только)» написана педагогом-практиком, по многолетнему опыту знающим как заинтересовать учащихся для появления у них интереса к радиоэлектронике.
Теоретический материал в книге излагается в доступной для начинающих радиолюбителей форме, для понимания физических процессов используются аналогии из механики и гидравлики, с которыми они часто встречаются в жизни.
Конструкции, рекомендуемые для самостоятельного изготовления, взяты из курса, который автор уже много лет ведет в радиокружке. Автор книги надеется, что авторы используемых в книге статей благосклонно отнесутся к такому подходу. Рекомендуемые конструкции подобраны таким образом, что каждый радиолюбитель может проверить свои знания на практике. Если в предлагаемой для изготовления конструкции радиолюбитель найдет незнакомые для себя элементы (транзисторы, микросхемы и т.д.), он может обратиться к соответствующей главе книги, где, как правило, может найти ответ на свой вопрос.

Введение
Глава 1. Электро- и радиотехнические материалы.

Пайка и основы электрического монтажа
1.1.Металлы
1.1.1.Правка листового материала
1.1.2.Изгибание листового металла
1.1.3.Изгибание листового дюралюминия
1.1.4.Резка металлов
1.1.5.Простые правила сверления
1.1.6.«Рубашка» для сверла
1.1.7.Вместо сверла - напильник
1.1.8.Опасности при сверлении
1.1.9.Резьба в отверстиях
1.1.10.Самодельные метчики для нарезки резьбы
1.1.11.Очистка загрязненных поверхностей
1.1.12. Уход за напильником
1.1.13.Надписи на металле
1.1.14.Совместимые и несовместимые пары металлов
1.2.Изоляционные материалы
1.2.1.Области применения
1.2.2.Работа с изоляционными материалами
1.3.Работа с древесиной
1.3.1.Покрытие эпоксидным клеем
1.3.2.Как освежить изделия и детали из светлой древесины
1.3.3.Ремонт трещин
1.4.Магнитные материалы
1.5.Провода
1.5.1.Обмоточные провода
1.5.1.1.Медные обмоточные провода
1.5.1.2.Высокочастотные обмоточные провода (литцендраты)
1.5.1.3.Обмоточные провода высокого сопротивления (манганин, константан, нихром)
1.5.2.Монтажные провода
1.6.Пайка и основы электрического монтажа
1.6.1. Устройство паяльника
1.6.2.Ремонт паяльника
1.6.3.Методика обучения пайке
1.6.4.Припои и флюсы
1.7.Полезные советы
1.7.1.Пайка алюминия
1.7.2.Пайка нихрома
1.7.3. Лужение провода в эмалевой изоляции
1.7.4.Вместо припоя - клей
1.7.5.Провод типа «литцендрат»
1.7.6. Лак для закраски паек
1.7.7. Зашита переводных надписей
Глава 2. Постоянный электрический ток
2.1.Электрическая цепь постоянного тока
2.2.Электрический ток и напряжение
2.3.Закон ома. сопротивление проводов
2.4.Последовательное и параллельное соединение резисторов
2.5.Измерение силы тока, напряжения и сопротивления
2.6.Мощность электрического тока
2.7. Для самостоятельного изготовления
2.7.1. Миллиавометр
2.8.Полезные советы
2.8.1. Измерение напряжений вольтметром с малым входным сопротивлением
2.8.2. Измерение постоянных напряжений миллиамперметром
2.8.3. Измерение силы тока низкоомным вольтметром
2.8.4. Измерение малых сопротивлений миллиамперметром
2.8.5. Измерение сопротивлений вольтметром
2.8.6.Два способа измерения сопротивления и тока полного отклонения микроамперметра с помощью двух постоянных резисторов
2.8.7. На что способна батарейка
2.9.Задачи
Глава 3. Переменный ток
3.1.Переменный ток синусоидальной формы, получение переменного тока, основные параметры
3.2.Электрическая цепь переменного тока. Элементы цепи
3.2.1. Конденсатор как накопитель электрической энергии
3.2.2. Конденсатор «не пропускает» постоянный ток
3.2.3.Сопротивление конденсатора переменному току зависит от его емкости и частоты тока
3.2.4. Сила тока опережает напряжение на емкости на угол п/2
3.2.5. Катушка индуктивности обладает индуктивным сопротивлением, которое также называется реактивным
3.2.6. Последовательное и параллельное соединение катушек индуктивности
3.2.7. Катушка индуктивности как накопитель магнитной энергии
3.2.8. Сила тока отстает от напряжения на катушке индуктивности на угол п/2
3.2.9. На активном сопротивлении (на резисторе) сила тока и напряжение совпадают по фазе
3.3. Интегрирующие и дифференцирующие цепи
3.4. Последовательный колебательный контур
3.5. Для самостоятельного изготовления
3.5.1.Цветомузыкальная приставка
3.5.2. Усилитель звуковой частоты «электронное ухо»
3.5.3. Электронная сирена с усилителем
3.5.4.Когда напряжение сети нестабильно
3.5.5. Тиристорный регулятор напряжения
3.5.6. Два варианта включения ламп дневного света
3.6. Полезные советы
3.6.1. Определение назначения обмоток сетевого трансформатора
3.6.2. Определение числа витков обмоток сетевого трансформатора
3.6.3. Нахождение обмотки с большим числом витков
3.6.4. Электродвигатель станет сильнее
3.6.5. Устройство для намагничивания магнитов
3.6.6. Как размагнитить инструмент
3.7.Задачи
Глава 4. Полупроводниковые приборы
4.1. Полупроводниковые диоды
4.2.1.Рекомендации по применению диодов
4.2.2.Стабилитроны -
4.3. Биполярные транзисторы
4.3.1. Общие сведения
4.3.2. Схемы включения транзисторов
4.3.3.Основные параметры транзисторов
4.3.4.Статические вах транзистора
4.3.5. Анализ усилительных каскадов
4.4.Полевые транзисторы
4.4.1. Основные параметры полевых транзисторов
4.4.2. Максимально допустимые параметры
4.4.3. Вольт-амперные характеристики ПТ
4.4.4. Рекомендации по применению ПТ
4.5. Тиристоры
4.4.1.Основные параметры тиристоров
4.6. Для самостоятельного изготовления
4.6.1. Испытатель тиристоров
4.6.2. Универсальный вольтметр
4.6.3. Индикатор радиоактивности
4.6.4. Пробник для проверки однопереходных транзисторов
4.7. Полезные советы. Простые эксперименты с диодами и стабилитронами
4.7.1. Как снять ВАХ диода? (рис. 4.39)
4.7.2. Регулятор мощности на одном диоде (рис. 4.40)
4.7.3. Управление люстрой по двум проводам (рис. 4.41)
4.7.4. Простейший генератор шума (рис. 4.42)
4.7.5. Получение прямоугольных импульсов из синусоидального напряжения (рис. 4.43)
4.7.6. Стабилитрон - ограничитель постоянного напряжения (рис. 4.44)
4.7.7. Как «растянуть» шкалу вольтметра (рис. 4.45)
4.7.8. Подключение кассетного магнитофона или приемника к автомобильной сети (рис. 4.46)
4.7.9. Транзистор - переменный резистор (рис. 4.47)
4.7.10. Транзистор в качестве стабилитрона (рис. 4.48)
4.7.11. Транзистор как выпрямительный диод (рис.4.49)
4.7.12. Устройство для термоиспытаний транзисторов (рис. 4.50)
4.7.13. Определение цоколевки транзистора (рис. 4.51)
4.7. Задачи
Глава 5. Питание радиоэлектронных устройств от сети переменного тока
5.1.Однофазные выпрямители
5.2.Сглаживающие фильтры
5.2.1.Емкостные фильтры
5.2.2.Г-образные фильтры
5.3.Внешние характеристики выпрямителей
5.4.Стабилизаторы напряжения
5.4.1. Параметрические стабилизаторы напряжения
5.5. Для самостоятельного изготовления
5.5.1.Приставка-автомат к блоку питания
5.5.2. Стабилизатор в адаптере
5.5.3. Электрошоковое средство защиты
5.5.4. Формирователь биполярных напряжений }