Основные понятия модели. Критерии принятия решений - файл ТПР.doc

27 августа 2017 в 14:20

Решение прямой и двойственной задачи линейного программирования средствами Python

Введение

Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.

Постановка задачи

В публикациях рассматривались решения прямых задач оптимизации методом линейного программирования и был предложен обоснованный выбор решателя scipy. optimize.

Однако известно , что каждой задаче линейного программирования соответствует так называемая выделенная(двойственная)задача. В ней по сравнению с прямой задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума - максимум). Задача, двойственная к двойственной - эта сама исходная задача.

Решение двойственной задачи очень важно для анализа использования ресурсов. В данной публикации будет доказано, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной).

Оптимальные значения стоимости материала и труда будут оцениваться по их вкладу в целевую функцию. В результате будут получены «объективно обусловленные оценки» сырья и рабочей силы, которые не совпадают с рыночными ценами.

Решение прямой задачи о оптимальной производственной программе

Учитывая высокий уровень математической подготовки подавляющего большинства пользователей данного ресурса не стану приводить балансовые уравнения с верхними и нижними ограничениями и введением для перехода к равенствам дополнительных переменных. Поэтому сразу приведу обозначения используемых в решении переменных:
N – количество видов производимых изделий;
m– количество видов используемого сырья;
b_ub - вектор имеющихся ресурсов размерности m;
A_ub – матрица размерности m×N, каждый элемент которой является расходом ресурса вида i на производство единицы изделия вида j;
с - вектор прибыли от производства единицы изделия каждого вида;
x – искомые объёмы производимых изделий каждого вида (оптимальный план производства) обеспечивающие максимальную прибыль.

Функция цели
maxF(x)=c×x

Ограничения
A×x≤b

Численные значения переменных:
N=5; m=4; b_ub = ; A_ub = [, , ,]; c = .

Задачи
1.Найти x для обеспечения максимальной прибыли
2. Найти использованные ресурсы при выполнении п.1
3. Найти остатки ресурсов (если они есть) при выполнении п.1


Для определения максимума (по умолчанию определяется минимум коэффициенты целевой функции нужно записать с отрицательным знаком c = [-25, -35,-25,-40,-30] и проигнорировать знак минус перед прибылью.

Используемые при выводе результатов обозначения:
x – массив значений переменных, доставляющих минимум (максимум) целевой функции;
slack – значения дополнительных переменных. Каждая переменная соответствует ограничению-неравенству. Нулевое значение переменной означает, что соответствующее ограничение активно;
success – True, если функции удалось найти оптимальное решение;
status – статус решения:
0 – поиск оптимального решения завершился успешно;
1 – достигнут лимит на число итераций;
2 – задача не имеет решений;
3 – целевая функция не ограничена.
nit – количество произведенных итераций.

Листинг решения прямой задачи оптимизации

#!/usr/bin/python # -*- coding: utf-8 -*- import scipy from scipy.optimize import linprog # загрузка библиотеки ЛП c = [-25, -35,-25,-40,-30] # список коэффициентов функции цели b_ub = # список объёмов ресурсов A_ub = [, # матрица удельных значений ресурсов , , ] d=linprog(c, A_ub, b_ub) # поиск решения for key,val in d.items(): print(key,val) # вывод решения if key=="x": q=#использованные ресурсы print("A_ub*x",q) q1= scipy.array(b_ub)-scipy.array(q) #остатки ресурсов print("b_ub-A_ub*x", q1)


Результаты решения задачи
nit 3
status 0

success True
x [ 0. 0. 18.18181818 22.72727273 150. ]
A_ub*x
b_ub-A_ub*x [ 0. 0. 0. 90.90909091]
fun -5863.63636364
slack [ 0. 0. 0. 90.90909091]

Выводы

  1. Найден оптимальный план по видам продукции
  2. Найдено фактическое использование ресурсов
  3. Найден остаток не использованного четвёртого вида ресурса [ 0. 0 0.0 0.0 90.909]
  4. Нет необходимости в вычислениях по п.3, так как тот же результат выводить в переменной slack

Решение двойственной задачи о оптимальной производственной программе

Четвёртый вид ресурса в прямой задаче использована не полностью. Тогда ценность этого ресурса для предприятия оказывается более низкой по сравнению с ресурсами, ограничивающими выпуск продукции, и предприятие готово заплатить более высокую цену за приобретение ресурсов, позволяющих увеличить прибыль.

Введём новое назначение искомой переменной x как некоторой «теневой» цены, определяющей ценность данного ресурса в отношении прибыли от реализации выпускаемой продукции.

C – вектор имеющихся ресурсов;
b_ub – вектор прибыли от производства единицы изделия каждого вида;
A_ub_T– транспонированная матрица A_ub.

Функция цели
minF(x)=c×x

Ограничения
A_ub_T ×x≥ b_ub

Численные значения и соотношения для переменных:
с = ; A_ub_T transpose(A_ub); b_ub = .

Задача:
Найти x показывающий ценность для производителя каждого вида ресурсов.

Особенности решения с библиотекой scipy. optimize
Для замены ограничений сверху на ограничения с низу необходимо умножить на минус единицу обе части ограничения – A_ub_T ×x≥ b_ub… Для этого исходные данные записать в виде: b_ub = [-25, -35,-25,-40,-30]; A_ub_T =- scipy.transpose(A_ub).

Листинг решения двойственной задачи оптимизации

#!/usr/bin/python # -*- coding: utf-8 -*- import scipy from scipy.optimize import linprog A_ub = [, , , ] c= b_ub = [-25, -35,-25,-40,-30] A_ub_T =-scipy.transpose(A_ub) d=linprog(c, A_ub_T, b_ub) for key,val in d.items(): print(key,val)


Результаты решения задачи
nit 7
message Optimization terminated successfully.
fun 5863.63636364
x [ 2.27272727 1.81818182 6.36363636 0. ]
slack [ 5.45454545 2.27272727 0. 0. 0. ]
status 0
success True

Выводы

Третий вид ресурсов имеет наибольшую ценность для производителя поэтому данный вид ресурсов должен быть закуплен в первую очередь, затем первый и второй вид. Четвёртый вид ресурса имеет для производителя нулевую ценность и закупается последним.

Результаты сравнения прямой и двойственной задачи

  1. Двойственная задача расширяет возможности планирования выпуска продукции, но средствами scipy. optimize решается за вдвое большее чем прямая количество итераций.
  2. Переменная slack выводит информацию об активности ограничений в виде неравенств, что может быть использовано, например, для анализа остатков сырья.
  3. Прямая задача является задачей максимизации, а двойственная - задачей минимизации, и наоборот.
  4. Коэффициенты функции цели в прямой задаче являются ограничениями в двойственной задаче.
  5. Ограничения в прямой задаче становятся коэффициентами функции цели в двойственной.
  6. Знаки неравенств в ограничениях меняются на противоположные.
  7. Матрица системы равенств транспонируется.
Ссылки

Целевая функция представляет собой функцию с некоторыми переменными, от которых непосредственно зависит достижение оптимальности. Также она может выступать в качестве нескольких переменных, которые характеризуют тот или иной объект. Можно сказать, что, по сути, она показывает, как мы продвинулись в достижении поставленной задачи.

Примером таких функций может выступать расчет прочности и массы конструкции, мощности установки, объема выпуска продукции, стоимости перевозок и другие.

Целевая функция позволяет ответить на несколько вопросов:

Выгодно или нет то или иное событие;

В правильном ли направлении идет движение;

Насколько верно сделан выбор и т.д.

Если мы не имеем возможности влиять на параметры функции, то, можно сказать, что и сделать мы ничего не можем, разве что только проанализировать и все. Но чтобы быть в состоянии что-то изменить, обычно существуют изменяемые параметры функции. Главная задача - это изменить значения на те, при которых функция станет оптимальной.

Целевые функции не всегда могут быть представлены в виде формулы. Это может быть таблица, например. Также условие может быть в виде нескольких целевых функций. Например, если требуется обеспечить максимальную надежность, минимальные затраты и минимальную материалоемкость.

Задачи на оптимизацию должны иметь важнейшее исходное условие - целевую функцию. Если мы ее то можно считать, что оптимизации не существует. Иными словами, если нет цели, то и нет путей ее достижения, а тем более выгодных условий.

Задачи на оптимизацию бывают условными и безусловными. Первый вид предполагает ограничения, то есть определенные условия при постановке задачи. Второй вид состоит в том, чтобы отыскать максимум или при существующих параметрах. Зачастую такие задачи предполагают поиск минимума.

В классическом понимании оптимизации подбираются такие значения параметров, при которых целевая функция удовлетворяет желаемым результатам. Также ее можно обозначить как процесс подбора самого лучшего варианта из возможных. Например, выбрать лучшее распределение ресурсов, вариант конструкции и т.д.

Существует такое понятие, как неполная оптимизация. Она может образоваться по нескольким причинам. Например:

Число попавших в максимальную точку систем ограничено (уже установлена монополия или олигополия);

Нет монополии, но отсутствуют ресурсы (недостаток квалификации на каком-либо конкурсе);

Отсутствие самой а точнее «незнание» ее (мужчина мечтает о некой красивой женщине, но неизвестно, существует ли такая в природе) и т.д.

В условиях рыночных отношений управления сбытовой и производственной деятельностью фирм и предприятий основой принятия решений является информация о рынке, а обоснованность этого решения проверяется уже при выходе на рынок с соответствующим товаром или услугой. В таком случае отправной точкой является изучение потребительского спроса. Для нахождения решений устанавливается целевая функция потребления. Она показывает количество потребляемых благ и степень удовлетворения потребностей потребителя, а также зависимость между ними.

Если ограничивающий фактор один (например, дефицитный станок), решение может быть найдено с применением простых формул (см. ссылку в начале статьи). Если же ограничивающих факторов несколько, применяется метод линейного программирования.

Линейное программирование – это название, данное комбинации инструментов используемых в науке об управлении. Этот метод решает проблему распределения ограниченных ресурсов между конкурирующими видами деятельности с тем, чтобы максимизировать или минимизировать некоторые численные величины, такие как маржинальная прибыль или расходы. В бизнесе он может использоваться в таких областях как планирование производства для максимального увеличения прибыли, подбор комплектующих для минимизации затрат, выбор портфеля инвестиций для максимизации доходности, оптимизация перевозок товаров в целях сокращения расстояний, распределение персонала с целью максимально увеличить эффективность работы и составление графика работ в целях экономии времени.

Скачать заметку в формате , рисунки в формате

Линейное программирование предусматривает построение математической модели рассматриваемой задачи. После чего решение может быть найдено графически (рассмотрено ниже), с использованием Excel (будет рассмотрено отдельно) или специализированных компьютерных программ.

Пожалуй, построение математической модели – наиболее сложная часть линейного программирования, требующая перевода рассматриваемой задачи в систему переменных величин, уравнений и неравенств – процесс, в конечном итоге зависящий от навыков, опыта, способностей и интуиции составителя модели.

Рассмотрим пример построения математической модели линейного программирования

Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно.

Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.

Рис. 1. Использование и предоставление ресурсов

Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.

Линейная модель может быть построена в четыре этапа.

Этап 1. Определение переменных

Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:

Z = суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.

Существует ряд неизвестных искомых переменных (обозначим их х 1 , х 2 , х 3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:

х 1 = количество единиц продукта А, произведенных в следующем месяце.

х 2 = количество единиц продукта В, произведенных в следующем месяце.

Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.

Этап. 2. Построение целевой функции

Целевая функция – это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х 1 , х 2 … в виде линейного уравнения.

В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х 1 единиц продукта А, маржинальная прибыль составит 2500 * х 1 . Аналогично маржинальная прибыль от изготовления х 2 единиц продукта В составит 3500 * х 2 . Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х 1 единиц продукта А и х 2 единиц продукта В, то есть, целевая переменная Z составит:

Z = 2500 * х 1 + 3500 *х 2

Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:

Максимизировать Z = 2500 * х 1 + 3500 *х 2

Этап. 3. Определение ограничений

Ограничения – это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».

В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х 1 их 2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х 1 , единиц, то будет потрачено З * х 1 , часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х 2 продуктов, то потребуется 10 * х 2 часов. Таким образом, общий объем машинного времени, необходимого для производства х 1 единиц продукта А и х 2 единиц продукта В, составляет 3 * х 1 + 10 * х 2 . Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:

3 * х 1 + 10 * х 2 ≤ 330

Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В:

Этап 4. Запись условий неотрицательности

Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х 1 ≥ 0 и х 2 ≥ 0. В нашем примере второе условия является избыточным, так как выше было определено, что х 2 не может быть меньше 12.

Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:

Максимизировать: Z = 2500 * х 1 + 3500 *х 2

При условии, что: 3 * х 1 + 10 * х 2 ≤ 330

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Рассмотрим графический метод решения задачи линейного программирования.

Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.

Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.

Рис. 2. Оси графика линейного программирования

Рассмотрим, например, первое ограничение: 3 * х 1 + 10 * х 2 ≤ 330. Это неравенство описывает область, лежащую ниже прямой: 3 * х 1 + 10 * х 2 = 330. Эта прямая пересекает ось х 1 при значении х 2 = 0, то есть уравнение выглядит так: 3 * х 1 + 10 * 0 = 330, а его решение: х 1 = 330 / 3 = 110

Аналогично вычисляем точки пересечения с осями х 1 и х 2 для всех условий-ограничений:

Область допустимых значений Граница допустимых значений Пересечение с осью х 1 Пересечение с осью х 2
3 * х 1 + 10 * х 2 ≤ 330 3 * х 1 + 10 * х 2 = 330 х 1 = 110; х 2 = 0 х 1 = 0; х 2 = 33
16 * х 1 + 4 * х 2 ≤ 400 16 * х 1 + 4 * х 2 = 400 х 1 = 25; х 2 = 0 х 1 = 0; х 2 = 100
6 * х 1 + 6 * х 2 ≤ 240 6 * х 1 + 6 * х 2 = 240 х 1 = 40; х 2 = 0 х 1 = 0; х 2 = 40
х 2 ≥ 12 х 2 = 12 не пересекает; идет параллельно оси х 1 х 1 = 0; х 2 = 12

Графически первое ограничение отражено на рис. 3.

Рис. 3. Построение области допустимых решений для первого ограничения

Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.

Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х 1 и х 2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.

Рис. 4. Область допустимых решений для модели в целом

Теперь в области допустимых решений необходимо определить значения х 1 и х 2 , которые максимизируют Z. Для этого в уравнении целевой функции:

Z = 2500 * х 1 + 3500 *х 2

разделим (или умножим) коэффициенты перед х 1 и х 2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон – от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):

Z = 25х 1 + 35х 2

затем присвоим Z значение равное произведению коэффициентов перед х 1 и х 2 (25 * 35 = 875):

875 = 25х 1 + 35х 2

и, наконец, найдем точки пересечения прямой с осями х 1 и х 2:

Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):

Рис. 5. Нанесение целевой функции (черная пунктирная линия) на область допустимых решений

Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х 1 и х 2 , которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С (рис. 6).

Рис. 6. Линия целевой функции достигла максимума в пределах области допустимых решений (в точке С)

Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию – все, что необходимо, это определить значения х 1 и х 2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х 1 и х 2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная – при решении задачи минимизации.

Определим, например значения х 1 и х 2 в точке С. Заметим, что точка С находится на пересечении линий: 3х 1 + 10х 2 = 330 и 6х 1 + 6х 2 = 240. Решение этой системы уравнений дает: х 1 = 10, х 2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:

Точка Значение х 1 Значение х 2 Z = 2500х 1 + 3500х 2
А 22 12 97 000
В 20 20 120 000
С 10 30 130 000
D 0 33 115 500
E 0 12 42 000

Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.

Кратко суть графического метода решения задач линейного программирования можно изложить следующим образом:

  1. Начертите на графике две оси, представляющие собою два параметра решения; нарисуйте только I-й квадрант.
  2. Определите координаты точек пересечения всех граничных условий с осями, подставляя в уравнения граничных условий поочередно значения х 1 = 0 и х 2 = 0.
  3. Нанести линии ограничений модели на график.
  4. Определите на графике область (называемую допустимой областью принятия решения), которая соответствует всем ограничениям. Если такая область отсутствует, значит, модель не имеет решения.
  5. Определите значения искомых переменных в крайних точках области принятия решения, и в каждом случае рассчитайте соответствующее значение целевой переменной Z.
  6. Для задач максимизации решение – точка, в которой Z максимально, для задач минимизации, решение – точка, в которой Z минимально.

где - постоянные затраты, которые не зависят от режима обработки, мин;

Здесь - подготовительно – заключительное время на операцию, мин;

Размер партии обрабатываемых деталей;

Вспомогательное время операции, мин;

Время на обслуживание без учета времени на замену инструмента, мин;

Время на отдых рабочего, мин;

Затраты времени, связанные с заменой затупившегося инструмента и соответствующей поднастройкой технологической системы;

где - время на замену инструмента и соответствующую размерную настройку;

Диаметр и длина обрабатываемого вала;

Коэффициент для расчета скорости резания;

Скорость резания;

Глубина резания;

Здесь - показатели степени в формулах для расчета режимов резания.

Анализ целевой функции времени позволяет вскрыть резервы дополнительного повышения производительности и определить оптимальные режимы резания, обеспечивающие минимальные затраты на выполнение операции.

Целевая функция стоимости на примере обработки вала имеет вид:

Здесь - расходы на материал;

Расходы в единицу времени соответственно на эксплуатацию оборудования, приспособления, по зарплате с учетом накладных расходов;

Время на замену инструмента и соответствующую размерную настройку;

Стоимость инструмента за период его эксплуатации.

Первый член выражения определяет постоянные затраты на материал, расходы, связанные с подготовительно – заключительным временем и временем обслуживания. Второй член выражения определяет затраты на режущий инструмент и простои при его замене. Третий член выражения определяет расходы, связанные непосредственно с выполнением процесса резания.

Объемное планирование работы технологических станочных систем

Эта и все последующие лекции посвящены вопросам математического моделирования и оптимизации технологических станочных систем.

Объемное планирование работы механического участка при достижении максимальной загрузки технологического оборудования

Постановка задачи . Имеется m – станков (m – групп станков), на которых могут быть изготовлены n – типов деталей. Трудоемкость обработки j - ой детали на i – м станке составляет , час. Известны фонды времени работы каждого станка (группы станков) – B i . Исходные данные для решения задачи представлены в таблице 14.1.

Таблица 14.1. Исходные данные для решения задачи, представленные в общем виде

Требуется определить количество деталей каждого наименования , при обработке которых достигается максимальная загрузка оборудования участка.



Математическая модель для решения задачи запишется:

Ограничения :

Задача решается методом линейного программирования. При этом следует иметь в виду следующее. Количество ограничений вида (14.1) - (14.3) в математической модели должно строго равняться количеству станков (групп станков) участка. При решении задачи с помощью компьютера количество станков (групп станков), а также типов деталей практически не ограничено и определяется только возможностями компьютера и соответствующей программы. При решении задачи вручную с применением графо-аналитического метода количество типов станков (групп станков) также не ограничено, но их увеличение естественным образом приведет к увеличению времени расчетов. Количество же типов деталей не должно превышать двух, т.к. в противном случае невозможно будет на плоскости выполнить необходимые графические построения.

Пример. Исходные данные для примера приведены в таблице 14.2.

Таблица 14.2. Исходные данные для решения задачи

Обозначим через количество деталей типа D 1 , через количество деталей типа D 2 .

Математическая модель для решения данной задачи запишется следующим образом:

Ограничения (по фонду времени работы оборудования):

Требуется найти значения и , удовлетворяющие заданным ограничениям (14.6) – (14.10) и обеспечивающие максимум целевой функции (14.11). Параметры и являются управляемыми параметрами в математической модели.

Решим задачу графо – аналитическим методом (см. лекцию 6). Графическая иллюстрация решения задачи приведена на рис. 14.1.

Рис.14.1. Графическая иллюстрация решения задачи

Вычисления для построения ограничений (14.6) – (14.8):

x 1
x 2
x 1
x 2

Проведя прямую линию, параллельную данной, находим точку касания ее границы ОДР – это точка А. Для нахождения ее координат (точки пересечения ограничений 14.7 и 14.8) решаем следующую систему уравнений:

Т.е. окончательно

Максимальное значение целевой функции (максимальная загрузка оборудования участка) при оптимальных значениях искомых параметров составит:

Задача о минимальной загрузке оборудования

Эта и последующие задачи в данной лекции приводятся на уровне постановки задачи и формирования математической модели для ее решения. Все они решаются методами линейного программирования.

Имеется m станков, на которых могут быть изготовлены n типов деталей. Производительность i - го станка при изготовлении детали j - го типа составляет C ij . Величины плановых заданий A j на изготовление j - ой детали и ресурс времени B i работы i - го станка приведены в таблице 14.3.

Таблица 14.3 Исходные данные для решения задачи

Требуется, учитывая ресурсы времени работы каждого станка распределить задания между станками таким образом, чтобы общее время работы всех станков было минимальным.

Пусть t ij - время изготовления j - ой детали i - м станком. Составим ограничения по ресурсу времени для каждого станка:

Решение поставленной задачи состоит в минимизации линейной целевой функции (суммарного времени)

(14.14)

при ограничениях (14.12), (14.13) и условии, что все переменные .

Задача об оптимальном распределении деталей по станкам

Пусть некоторая машина состоит из различных видов деталей, которые мы пронумеруем числами . Имеется типов различных станков, причем количество станков - го типа равно . Детали могут быть изготовлены на станках разного типа. Производительность станка - го типа при изготовлении - ой детали составляет . После изготовления детали поступают на сборку. Требуется закрепить станки за деталями так, чтобы в единицу времени получать максимальное количество машин.

Пусть - количество станков - го типа, на которых можно изготовить - ю деталь. Очевидно, что количество станков - го типа, изготавливающих детали видов, не должно превышать заданное число :

Общее количество комплектов деталей, необходимых для сборки машины, равно общему количеству какой-либо одной детали, имеющей, например, номер 1. Поэтому решение задачи заключается в максимизации линейной функции

(14.17)

при ограничениях (14.15), (14,16) с дополнительным условием, что все переменные .

Найденные оптимальные значения этой задачи не обязательно целые числа. Например, означает, что на двух станках первого типа в течение единицы времени будут изготовлять деталь с номером 1, тогда как третий станок того же типа будет работать лишь половину указанного времени.

Задача о производстве продукции при ограниченных запасах сырья

Из видов сырья производится различных типов продукции. Стоимость реализации изготовленной продукции - го типа составляет . Запас сырья - го вида на планируемый период равен . Потребность в сырье - го типа составляет . Исходные данные для решения задачи приведены в таблице 14.4.

Таблица 14.4 Исходные данные для решения задачи

Требуется для каждого типа продукта определить такой объем производства , чтобы обеспечить максимальную стоимость реализации изготовленной продукции при условии, что не будут превышены запасы имеющегося сырья.

Ограничения по запасам сырья имеют вид:

(14.18)

Задача заключается в том, чтобы определить оптимальные значения параметров (переменных) , обращающих в максимум стоимость продукции, т.е. целевую функцию

при ограничениях (14.18) и дополнительных условиях .

Основы теории массового обслуживания

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы знаем характеристики состояния системы в настоящем и все, что было при t < t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t > t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S 1 или останется в состоянии S 0 и т.д.

Пример . Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t 0 количество сохранившихся (не сбитых) самолетов соответственно – x 0 , y 0 . Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента t 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состояния S 1 , S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.15.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.15.1.

Примечание. Переход из состояния S 0 в S 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 15.2.

Рис.15.2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий () – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий , если для любых двух непересекающихся участков времени и (см. рис.15.2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным , если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью

Определение . Любое решение системы ограничений называется допустимым решением ЗЛП.
Определение . Допустимое решение, в котором целевая функция достигает максимального или минимального значения, называется оптимальным решением.

В силу этих определений задача ЛП может быть сформулирована следующим образом: среди всех точек выпуклой области, являющейся решением системы ограничений, выбрать такую, координаты которой минимизируют (максимизируют) линейную функцию F = с 1 x + с 2 y .
Заметим, что переменные x , y в ЗЛП принимают, как правило, неотрицательные значения (x ≥ 0, y ≥ 0), поэтому область расположена в I четверти координатной плоскости.

Рассмотрим линейную функцию F = с 1 x + с 2 y и зафиксируем какое-нибудь ее значение F . Пусть, к примеру, F = 0, т.е. с 1 x + с 2 y = 0. Графиком этого уравнения будет прямая, проходящая через начало координат (0;0) (рис.).
Рисунок
При изменении этого фиксированного значения F = d , прямая с 1 x + с 2 y = d будет смещаться параллельно и «зачертит» всю плоскость. Пусть D – многоугольник – область решения системы ограничений. При изменении d прямая с 1 x + с 2 y = d , при некотором значении d = d 1 достигнет многоугольника D , назовем эту точку А «точкой входа», и затем, пройдя многоугольник, при некотором значении d = d 2 будем иметь с ним последнюю общую точку В , назовем В «точкой выхода».
Очевидно, что своего наименьшего и наибольшего значения целевая функция F =с 1 x + с 2 y достигнет в точках «входа» А и «выхода» В .
Учитывая, что оптимальное значение на множестве допустимых решений целевая функция принимает в вершинах области D , можно предложить следующий план решения ЗЛП:

  1. построить область решений системы ограничений;
  2. построить прямую, соответствующую целевой функции, и параллельным переносом этой прямой найти точку «входа» или «выхода» (в зависимости от требования минимизировать или максимизировать целевую функцию);
  3. определить координаты этой точки, вычислить в них значение целевой функции.
Заметим, что вектор (с 1 , с 2), перпендикулярный прямой, показывает направление роста целевой функции.

При графическом решении ЗЛП возможны два случая, которые требуют особого обсуждения.

Случай 1
Рисунок 6
При перемещении прямой с 1 x + с 2 y = d «вход» или «выход» (как на рисунке) произойдет по стороне многоугольника. Это случится, если в многоугольнике есть стороны, параллельные прямой с 1 х + с 2 у = d .
В этом случае точек «выхода» (« входа») бесчисленное множество, а именно – любая точка отрезка АВ . Это означает, что целевая функция принимает максимальное(минимальное) значение не в одной точке, а во всех точках, лежащих на соответствующей стороне многоугольника D .

Случай 2
Рассмотрим случай, когда область допустимых значений неограниченна.
В случае неограниченной области целевая функция может быть задана таким образом, что соответствующая ей прямая не имеет точки «выхода» (или «входа»). Тогда максимальное значение функции (минимальное) не достигается никогда – говорят, что функция не ограничена.
Рисунок
Необходимо найти максимальное значение целевой функции F = 4x + 6y → max , при системе ограничений
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.
x + y = 18


x

12

9

y

6

9

0,5x + y = 12


x

12

18

y

6

3

x = 12 – параллельна оси OY ;
y = 9 – параллельна оси OX ;
x = 0 – ось OY ;
y = 0 – ось OX ;
x ≥ 0 – полуплоскость правее оси OY ;
y ≥ 0 – полуплоскость выше оси OX ;
y ≤ 9 – полуплоскость ниже y = 9;
x ≤ 12 – полуплоскость левее x = 12;
0,5x + y ≤ 12 – полуплоскость ниже прямой 0,5x + y = 12;
x + y ≤ 18 – полуплоскость ниже прямой x + y = 18.
Рисунок
Пересечением всех этих полуплоскостей является очевидно, пятиугольник ОАВСД , с вершинами в точках О (0; 0), А (0; 9), В (6; 9), С (12; 6), Д (12; 0). Этот пятиугольник и образует область допустимых решений задачи.

Рассмотрим целевую функцию задачи F = 4x + 6y → max.


x

3

0

y

–2

0

Построим прямую, отвечающую значению функции F = 0: 4x + 6y = 0. Будем двигать эту прямую параллельным образом. Из всего семейства прямых 4x + 6y = const последней вершиной, через которую пройдет прямая при выходе за границу многоугольника, будет вершина С (12; 6). Именно в ней F = 4x + 6y достигнет своего максимального значения.
Значит, при x = 12, y = 6 функция F достигает своего максимального значения F = 4 ∙ 12 + 6 ∙ 6 = 84, равного 84. Точка с координатами (12; 6) удовлетворяет всем неравенствам системы ограничений, и в ней значение целевой функции оптимально F * = 84 (оптимальное значение будем обозначать «*»).
Задача решена. Итак, необходимо выпустить 12 изделий I вида и 6 изделий II вида, при этом прибыль составит 84 тыс. руб.

Графический метод применяется для решения задач, которые имели в системе ограничений только две переменные. Этот метод может применяться и для систем неравенств, имеющих три переменных. Геометрически ситуация будет иная, роль прямых будут играть плоскости в трехмерном пространстве, а решением неравенства от трех переменных будет являться полупространство, находящееся по одну сторону от плоскости. Роль областей будут играть многогранники, являющиеся пересечением полупространств.