Как работает рентген излучение с контрастным веществом и вредно ли оно. Аппарат для рентгена – что скрывается за рентгеновскими лучами? Основная схема работы прибора по получению рентгенограммы

– прибор для создания и дальнейшего использования рентгеновского излучения в медицинских и технических целях. Касательно области применения, данные медицинские изделия делятся на терапевтические и диагностические в зависимости от назначения. Терапевтические устройства созданы для лечения множества болезней тормозным рентгеновским излучением. Они подразделяются на приборы для поверхностной, внутриполостной, средней и глубокой терапии.

Современный диагностический рентгеновский аппарат создан для обследования пациентов на наличие патологий в организме и может использоваться только в специально оборудованных помещениях. Подобный тип медицинской техники подразделяется на несколько видов, в зависимости от условий эксплуатации и конструкции: переносной, передвижной и стационарный.

Принцип работы такого оборудования довольно прост: проходя через тело человека, рентгеновские лучи проецируют картинку на специальный белый листок. Все контуры, полученные на снимке – процесс поглощения организмом рентгеновских лучей, причем плотность скелета и других органов разнится. В результате: более светлые детали на снимке получаются от твердого материала организма, так как лучи в полной мере не могут пройти через них.


Современные аппараты

В состав рентгеновского аппарата входят:

Излучатель, состоящий из одной или нескольких трубочек;

Питающее устройство, предназначенное для регулирования рентгеновских параметров и для обеспечения электроэнергией;

Штативы для управления;

Устройство, преобразующее излучение в видимое изображение, доступное для наблюдения.

Большинство медицинских клиник перешло с устаревших моделей рентгеновского оборудования на современные модификации цифровых устройств. Они характеризуются рядом преимуществ перед своими предшественниками, а именно:

Оптимальное качество результатов;

Возможность широкого спектра исследований;

Высокая скорость диагностики;

Полная автоматизация процесса (выбор зоны облучения, настройка параметров экспозиции и т. д.);

Удобство для работы оператора (наличие пульта управления).

Особенно в экстренных ситуациях важно то, что сокращается время для исследований, увеличивается пропускная способность кабинета благодаря использованию цифровой техники.


Цифровые и портативные рентген аппараты

Цифровые рентгеновские аппараты широко используются практически во всех отраслях медицины. Это и плановые диагностические осмотры (рентген молочных желез, легких и других органов), и экстренные обследования с целью выявления характера и локализации травм. Пользуется большим спросом такая аппаратура и в стоматологии. Эти приборы оснащены графическим информативным дисплеем, пультом дистанционного управления, клавиатурой. Оператор легко программирует режимы работы и дополнительные функции, пользуясь подсказками на дисплее.

Портативные (переносные) рентгеновские аппараты довольно малогабаритны и удобны в использовании, работают в режиме с током рентгеновской трубки и с регулируемым постоянным анодным напряжением. Режим автоматической тренировки трубки гарантирует высокую надежность данных устройств.Данное оборудование обеспечивает высокое качество снимков, пучок излучения ориентирован в любом направлении благодаря надежной конструкции штатива.

Рентгеновский аппарат – далеко не новое изобретение. Не одно десятилетие его используют для изучения внутренних органов и диагностики сложных заболеваний. Благодаря рентгену, было спасено множество человеческих жизней. Устройство изобрел ученый Вильгельм Рентген в 1895 году.

Виды современных рентген аппаратов

В зависимости от целей исследования рентгенологическое устройство может носить диагностическую или терапевтическую цель. Оно разделено на такие виды:

  • компьютерный томограф;
  • флюорограф;
  • палатное устройство для стационара;
  • операционный аппарат;
  • маммограф;
  • дентальный аппарат, применяющийся в стоматологии;
  • ангиограф и другие.

Стационарные аппараты установлены повсеместно в поликлиниках крупных городов. Для их хранения и применения выделяется отдельный кабинет, в котором не проводят дополнительные процедуры и исследования, кроме рентгена. Такими помещениями не могут быть кабинеты с повышенной влажностью. Дверь всегда открывается наружу и обшита листом тонкого металла. Не допускается всяческое фактурное украшение стен или полов. Исключительно окрашенные краской поверхности или облицованные керамической плиткой.

Существуют также переносные аппараты, которые могут быть применены в нестандартных полевых условиях. Для их установки и транспортировки выделяется транспортное средство, имеют автономное питание.

Принцип работы рентгена заключается в его способности превращать электроэнергию в рентген лучи. Не все аппараты выглядят и работают одинаково. Каждый имеет свою функцию, в зависимости от целей исследования. И, тем не менее, все рентгенологические аппараты в поликлиниках состоят из блока питания, системы управления, источника излучения и периферии.

Изучение внутреннего строения организма может проходить через экран монитора, который фиксирует изображение. Этот метод исследования называется рентгеноскопией. Также данные могут быть отображены на таких чувствительных материалах, как бумага или пленка. Это видно на фото.

Как устроен рентген аппарат

Новое поколение рентген аппаратов нуждается в более высоком напряжении, поэтому дополнительно его подключают к трансформатору и выпрямителю тока. Устройство подключено к электросети кабинета и потребляет электроэнергию в 220 Вт или 126 Вт.

Генератор излучения представляет собой одну трубку или несколько.

При помощи пульта управления происходит регуляция и запуск работы всей установки.

Помимо основных частей аппарат имеет дополнительно штативы для крепления трубки генератора излучения и различных приспособлений для фиксирования конечностей и размещения пациентов в кабинете.

Принцип работы

Может ли рентген аппарат ошибаться и действительно ли он так информативен, как говорят врачи?

Рентгеновские лучи представляют непрерывный поток фотонов, а также квантов, движущихся непрерывно. Примечательно, их энергия отображается в джоулях, не несущих никакого заряда.

В фотоэмульсиях расположены разлагающиеся под лучами рентгена галоидные соединения серебра. Это основной принцип работы аппарата.

Лучи рентгена появляются за счет торможения электронов при взаимодействии с другими атомами. В анодные трубки подается непрерывное напряжение и именно от этого зависит непрерывная подача тормозного излучения.

При нагревании рентгеновской трубки в середине наблюдается скопление свободных электронов. Во время работы рентгена происходит подача электротока. За счет этого происходит ускорение частиц, сконцентрированных вокруг анода. Чтобы поток не перегревался и не фокусировался в одном месте, количество оборотов не должно превышать более 10 тысяч оборотов в минуту.

Рентгенологический аппарат не единственное устройство, позволяющее просветить внутренние органы, как видео. Однако он считается наименее вредным для организма.

Современный рентген – это сложное устройство, состоящее из элементов телеавтоматики, электроники, а также сложной компьютерной техники. Если не вдаваться в сложную теорию физики, можно понять, что лучи рентгена проходят сквозь наше тело и поглощаются тканями по-разному. Костный кальций на пленке отображается ярким белым цветом. Поэтому кости человека видны наиболее четко. Мышцы имеют серый цвет. Воздух меньше всего виден на рентгене, поэтому он на пленке самый темный.

Важно знать, что доза современных аппаратов ничтожно мала. Ее можно сравнить с единоразовым облучением при полете на авиалайнере. Это говорит о том, что нанесение вреда во время рентгена не сопоставимо с тем, что при этом врачам предоставляется возможность обнаружить более серьезную болезнь.

Независимо от мощности и характера эксплуатации каждый рентгеновский аппарат состоит из рентгеновской трубки, автотрансформатора, высоковольтного (повышающего) и накального (понижающего) трансформаторов, контактора (электромагнитного рубильника) и реле времени. Стационарные и передвижные установки имеют также электронные выпрямители - кенотроны.

Рентгеновская трубка в аппарате служит генератором рентгеновых лучей. В зависимости от назначения и мощности аппарата может иметь различные размеры и форму. Трубка представляет собой стеклянный баллон, в который впаяно два электрода: катод и анод (рис. 4). В баллоне создан технически достижимый вакуум, степень которого составляет 10 мм ртутного столба.

Катод трубки состоит из вольфрамовой нити, выполненной в виде спирали, которая помещена в корытце или чашечку. Оба конца спирали выведены наружу для подключения к источнику тока. Спираль нагревается электрическим током малого напряжения до температуры порядка 2500°С, при этом нить испускает электроны, т.е. наблюдается явление электронной эмиссии. Выпускаются также двухфокусные трубки с двумя параллельными спиралями - малой и большой. Малая спираль предназначена для исследований, требующих малой мощности аппарата, а большая - для снимков или просвечивания крупных участков тела. Анод трубки представляет собой массивный металлический стержень, впаянный с противоположной от катода стороны баллона. На нем имеется прямоугольная тугоплавкая вольфрамовая пластина - зеркало анода. При работе трубки зеркало сильно нагревается, поэтому имеются специальные приспособления для охлаждения анода. С этой же целью разработаны трубки с вращающимся анодом, благодаря чему место, на которое падают электроны, постоянно меняется и успевает охладиться. Каждая рентгеновская трубка имеет маркировку, которая указывает секундную мощность в киловаттах (кВт), род зашиты, ее назначение, вид охлаждения, номер модели и максимальное рабочее напряжение в киловольтах (кВ). Например, в рентгеновском аппарате "Арман-1" (модель 8ЛЗ) используется трубка типа 1,6-БДМ9-90. Это значит, что трубка мощностью 1,6 кВт предназначена для работы в защитной (бакелитовой) оболочке, диагностическая, с масляным охлаждением, модель 9, рассчитана на напряжение не выше 90 кВ. В передвижных рентгеновских аппаратах 12П5 и 12ВЗ используется трубка типа 6-10-БДМ8-125, двухфокусная, с вращающимся анодом. При этом первая цифра обозначает мощность малого фокуса - б кВт, вторая - мощность большого фокуса - 10 кВт. Остальные буквы и цифры имеют те же значения, что и у однофокусных трубок. Мощность трубки рассчитывается исходя из того, что 1 мманодного зеркала за, секунду может рассеять 200 ватт энергии. Поэтому, если22 площадь зеркала равна 50 мм, то мощность трубки - 10 кВт (200 Вт х 50 мм). Автотрансформатор является основным источником электрического тока для всех частей аппарата. Он позволяет повышать или понижать подаваемое к нему напряжение в 2-3 раза. Благодаря этому рентгеновский аппарат можно подключать в сеть переменного тока с любым напряжением (127, 220, 380 В). Через определенное число витков обмотки автотрансформатора делают отведения, позволяющие получать напряжение от нескольких до 380 вольт. В современных стационарных и передвижных рентгеновских установках вместо автотрансформатора с отводами применяют вариатор, обеспечивающий плавную регулировку подводимого от сети напряжения и рабочего напряжения на трубке (последнее регулируется от 40 до 125 кВ).

Высоковольтный (повышающий) трансформатор служит для повышения напряжения электрического тока до 40-200 кВ, подаваемого на катод и анод. Коэффициент трансформации повышающих трансформаторов, применяемых в стационарных аппаратах, равен 1:500 и более. Например, если на первичную обмотку подать напряжение в 220 В, то во вторичной обмотке напряжение будет равняться 110 кВ, Для диагностических целей применяют напряжение от 40 до 100 кВ, а для терапевтических - до 200 и более кВ.

Накалъный (понижающий) трансформатор служит для преобразования переменного сетевого тока напряжением 110-220 В в ток 6-15 В для накала спирали рентгеновской трубки и кенотронов. Высоковольтный и накальный трансформаторы в стационарных и передвижных рентгеновских аппаратах помешаются в специальном металлическом баке, заполненном трансформаторным маслом, которое обеспечивает их охлаждение и изоляцию от тока высокого напряжения.

Простейший рентгеновский аппарат состоит из рентгеновской трубки, накального и высоковольтного трансформаторов. Такие установки работают на полуволне переменного электрического тока и являются самыми простыми и наименее мощными, поскольку излучают рентгеновские лучи только в момент, когда на катоде будет отрицательный, а на аноде положительный заряды. То есть при питании от сетевого переменного электрического тока аппарат, включенный на 1 секунду, фактически будет испускать лучи в течение половины секунды через каждый полупериод переменного тока. Такую схему имеют переносные, малогабаритные рентгеновские аппараты.

В стационарных, более мощных аппаратах используют оба направления питающего переменного тока. Это достигается применением высоковольтных выпрямителей - кенотронов. Кенотрон служит для выпрямления тока высокого напряжения, поступающего от высоковольтного трансформатора к электродам рентгеновской трубки. По устройству кенотрон представляет собой стеклянный баллон с двумя впаянными вольфрамовыми электродами, внутри которого создан вакуум. Кенотрон пропускает ток только в одном направлении - от катода к аноду. Собранные в определенной последовательности 4 кенотрона обеспечивают полное использование рентгеновской трубкой обоих полуволн переменного тока. В настоящее время в качестве высоковольтных выпрямителей используются селеновые диоды.

Контактор (электромагнитный рубильник) служит для автоматического включения и выключения тока, поступающего от автотрансформатора к первичной обмотке высоковольтного трансформатора.

Реле времени - прибор для включения питания высоковольтного трансформатора на заданное (от сотых долей до десятков секунд) время. Кроме основных составных частей, рентгеновские аппараты обычно имеют различные включающие и регулирующие приспособления, а также измерительные приборы, позволяющие судить о количестве и качестве используемого излучения. Как правило, измерительные приборы смонтированы вместе в пульте управления. В зависимости от назначения и мощности рентгеновские диагностические аппараты подразделяются на стационарные (рабочее напряжение, подаваемое на трубку 100150 кВ, сила тока - 60-1000 мА), передвижные (60-125 кВ и 10-300 мА) и переносные (50-85 кВи 5-15 мА).

Принцип работы рентгеновских аппаратов. Напряжение от электрической сети подается к пульту управления, в котором оно регулируется с помощью автотрансформатора и затем подается на первичную обмотку повышающего трансформатора, в котором напряжение возрастает в 500 и более раз. Автотрансформатор и повышающий трансформатор соединяются через контактор для включения и выключения высокого напряжения.

От вторичной обмотки повышающего трансформатора напряжение подается на рентгеновскую трубку. В аппаратах малой мощности напряжение на трубку подается непосредственно, а в стационарных аппаратах - через кенотроны или селеновые диоды, которые преобразуют переменный ток трансформатора в постоянный пульсирующий.

Степень накала спирали трубки регулируется посредством реостата (регулировка накала), стабилизатора (поддерживает неизменное напряжение) и компенсатора (делает ток рентгеновской трубки независимым от величины высокого напряжения). Спираль накала катода рентгеновской трубки питается от понижающего трансформатора.

По характеру защиты рентгеновские аппараты подразделяются на блокаппараты и кабельные. В первых высоковольтные узлы (повышающий трансформатор, выпрямитель, трубка) заключены в один металлический корпусный блок. Это в основном переносные, маломощные аппараты типа "Арман-1". В кабельных установках рентгеновская трубка расположена отдельно.

Диагностические рентгеновские аппараты. Аппарат рентгеновский диагностический переносной "Арман-1", модель 8ЛЗ. Предназначен для получения рентгеновских снимков любой области тела мелких животных, головы, шеи, конечностей и хвоста крупных животных. Аппарат экономичен, прост в эксплуатации, портативен. В нем рабочее напряжение на трубке не зависит от колебаний напряжения и сопротивления питающей сети. Пригоден для работы в полевых условиях, на фермах и т.д.

По схеме представляет собой безкенотронный аппарат. Состоит из моноблока, пульта управления и штатива. Моноблок представляет собой запаянный стальной блок с трансформаторным маслом, в котором расположены рентгеновская трубка и высоковольтный трансформатор. Крепится на штативе и может поворачиваться в разных направлениях. Пульт управления с выносным кабелем длиной 3 м помещен в пластмассовый кожух. Он имеет переключатель миллиамперсекунд, кнопку снимков и световой сигнализатор анодного тока трубки.

Напряжение питания - 220 В, частота - 50 Герц (Гц). Напряжение на рентгеновскую трубку - 75 кВ. Анодный ток - 18 миллиампер (мА). Габаритные размеры - 855x790x1925 мм, масса-36 кг, в разобранном виде помещается в четырех небольших специальных футлярах. Аппарат рентгеновский диагностический передвижной 12П5. На его базе специально для ветеринарной медицины разработан рентгеновский передвижной аппарат 12В-3 (рис. 6). Он предназначен для диагностических исследований в условиях ветеринарных лечебных учреждений, клиник, специальных учебных заведений. Его можно использовать также при выездах в хозяйства. Рентгенап- паратом производят снимки любой части тела мелких животных, головы, шеи, грудной клетки и конечностей крупных животных.

Аппарат состоит из рентгеновской трубки, генераторного устройства и пульта управления. Трубка двухфокусная, с вращающимся анодом. Помещена в защитный кожух с масляной изоляцией. Генераторное устройство состоит из повышающего и понижающего трансформаторов, высоковольтных полупроводниковых выпрямителей (селеновые диоды). Эти элементы расположены в баке, наполненном трансформаторным маслом. На панели управления расположен вольтметр для контроля напряжения сети и миллиамперметр для измерения анодного тока трубки. Имеются также переключатели выдержек времени, малого и большого фокусов, рукоятки управления работой различных узлов аппарата. Напряжение питания - 220/380 В, частота - 50 Гц. Напряжение на рентгеновскую трубку - от 40 до 125 кВ. Максимальная потребляемая мощность - до 15 кВт (кратковременно). Габаритные размеры - 2460x650x1950 мм, масса - 320 кг, при перевозке разбирается на отдельные узлы: тележку, штангу, трубку. Рентгеновский ветеринарный передвижной аппарат 12В-3 дополнительно снабжен экраном для просвечивания, что позволяет производить на нем не только снимки, но и рентгеноскопию любой части тела животных. Экраносъемочная фиксационная приставка имеет крепления для синхронного движения рентгеновской трубки и экрана.

Рентгеновские аппараты (синоним рентгеновские установки) - это устройства для получения и использования рентгеновского излучения в технических и медицинских целях. Медицинские рентгеновские аппараты в зависимости от назначения разделяют на диагностические и терапевтические. По условиям, в которых они подлежат эксплуатации, рентгеновские аппараты подразделяют на стационарные, передвижные и переносные.

Стационарные рентгеновские аппараты, как диагностические (рис. 1), так и терапевтические (рис. 2), предназначены для постоянного использования в специально приспособленном помещении - рентгеновском кабинете (см.). Передвижные рентгеновские аппараты в зависимости от условий использования делят на палатные (рис. 3), приспособленные для перемещения в пределах лечебного учреждения с целью рентгенологического исследования больных непосредственно в палатах, и переносные, рассчитанные на применение вне лечебного учреждения. К передвижным рентгеновским аппаратам относятся также аппараты (РУМ-4), предназначенные для работы в полевых условиях (рис. 4). Они обычно устанавливаются и перевозятся на специально приспособленных видах автотранспорта, имеют автономное питание и помещение для развертывания, а также собственную фотолабораторию. В условиях мирного времени передвижные рентгеновские аппараты используются в специально оборудованных автомашинах, железнодорожных вагонах и на судах морского и речного флота (так называемые корабельные рентгеновские установки). Имеются также передвижные рентгеновские аппараты, размещаемые в специальных укладочных ящиках и перевозимые на любом виде подрессоренного транспорта.

К полевым рентгеновским аппаратам предъявляется ряд специальных требований, вытекающих из неблагоприятных и сложных условий транспортировки, климатических условий и необходимости частого монтажа и демонтажа аппаратуры. В частности, укладочные ящики должны быть достаточно герметичными, чтобы защищать аппаратуру от воздействия пыли и влаги. Отдельные части рентгеновского аппарата должны быть надежно закреплены, чтобы обеспечить возможность транспортировки рентгеновского аппарата на подрессоренном (обычно автомобильном) транспорте по шоссейным и грунтовым дорогам без повреждения частей рентгеновского аппарата. Колебания температуры окружающего воздуха в пределах от 40 до -40° не должны влиять на качество работы рентгеновского аппарата при хранении и транспортировке их в этих условиях. Монтаж и демонтаж рентгеновского аппарата должны осуществляться силами обслуживающего персонала в течение получаса без применения специальных инструментов.

В мирное время рентгеновские аппараты полевого типа могут быть использованы для массовых обследований (см. Флюорография), а также для рентгенодиагностической работы в отдаленных районах.

Переносные рентгеновские аппараты (рис. 5) предназначены для производства простейших видов рентгенологических исследований в условиях скорой и неотложной помощи, а также помощи на дому. Они малогабаритны, легки, умещаются в двух небольших чемоданах и обычно приспособлены для переноски силами 1-2 человек.

Существует большое количество типов рентгеновских аппаратов, предназначенных для различных целей. Рабочая мощность выпускаемых рентгеновских аппаратов определяется произведением вторичного напряжения (напряжение генерирования в киловольтах) на силу тока (в миллиамперах), проходящего через рентгеновскую трубку (см.) в одну секунду.

Диапазоны напряжения и тока рентгеновских аппаратов в зависимости от их назначения приведены в таблице.

Рентгеновский аппарат состоит из следующих основных узлов.

1. Высоковольтное устройство, включающее трансформатор высокого напряжения (так называемый главный трансформатор), трансформатор накала рентгеновской трубки, систему, выпрямляющую ток, подаваемый на рентгеновскую трубку (в маломощных аппаратах выпрямительное устройство может отсутствовать).

2. Генератор рентгеновых лучей - рентгеновская трубка.

3. Распределительное устройство - пульт управления, регулирующий режимы работы аппарата.

4. Штатив или группы штативов для крепления рентгеновской трубки, снабженные приспособлениями для установки или укладки больных в процессе тех или иных видов рентгенологического исследования и лечения, а также средствами противолучевой защиты.

Схематически принцип работы рентгеновского аппарата состоит в том, что напряжение электрической сети подводится к пульту управления, в котором оно регулируется с помощью автотрансформатора и подается на первичную обмотку главного трансформатора. В результате разницы в количестве витков первичной и вторичной обмоток главного трансформатора напряжение в нем резко возрастает и подается на рентгеновскую трубку непосредственно (так называемые полуволновые рентгеновские аппараты) или через выпрямляющее устройство (кенотроны, селеновые выпрямители). Регулировка тока, проходящего через рентгеновскую трубку, осуществляется степенью накала ее катодной нити.

Современные рентгеновские аппараты снабжены весьма сложными устройствами для стабилизации напряжения и тока рентгеновской трубки, а также для защиты ее от возможных перегрузок. Помимо сложных релейных устройств для регулирования времени экспозиции, диагностические аппараты снабжены автоматическими переключателями режимов работы рентгеновского аппарата, что бывает необходимо, например, при быстром переходе с режима просвечивания на режим снимков и обратно. Кроме того, все современные рентгеновские аппараты имеют систему защиты от неиспользуемого рентгеновского излучения и от поражения током высокого напряжения.

По характеру защиты от поражения током высокого напряжения различают блок-аппараты, в которых высоковольтное устройство вместе с рентгеновской трубкой заключено в общий заземленный металлический кожух, и кабельные рентгеновские аппараты, в которых провода высокого напряжения заключены в изолированные высоковольтные кабели, а трубка и главный трансформатор - в металлические заземленные кожухи. Блок-аппараты обычно применяют для передвижных и переносных рентгеновских аппаратов, а кабельные - для стационарных.

Диагностические рентгеновские аппараты снабжаются устройствами для томографии (см.), кимографии, электрокимографии и других специальных методов исследования, а также ЭОП (см. Электронно-оптический усилитель рентгеновского изображения) (рис. 6), позволяющими проводить рентгенокиносъемку, телевизионную передачу рентгеновского изображения и обеспечивающими высокую яркость изображения при значительном снижении лучевой нагрузки.

Для исследования отдельных фаз быстротекущих процессов имеются специальные рентгеновские аппараты, позволяющие производить рентгеновскую съемку при выдержках, составляющих тысячные доли секунды. Это достигается не путем увеличения мощности (а следовательно, и габаритов) рентгеновских аппаратов, а при помощи системы конденсаторов, которые заряжаются от сравнительно маломощного трансформатора до необходимого напряжения и затем в нужный момент мгновенно разряжаются на рентгеновскую трубку (так называемые импульсные рентгеновские аппараты). Кроме того, существуют приспособления к обычным диагностическим рентгеновским аппаратам в виде приставок, позволяющих производить съемку физиологически подвижных объектов (легкие, сердце) в заранее заданную фазу деятельности, например в фазу вдоха или выдоха или в определенную фазу сердечной деятельности.

Терапевтические рентгеновские аппараты применяют для лучевой терапии.

С внедрением в клиническую практику искусственных радиоактивных изотопов и различного рода ускорителей заряженных частиц, линейных ускорителей, бетатронов, синхротронов, синхрофазотронов и др. роль собственно рентгенотерапии несколько сузилась, и в настоящее время она применяется для лучевого воздействия на патологические очаги сравнительно неглубокого расположения.

Существуют терапевтические рентгеновские аппараты не только для статического, но и для так называемого подвижного облучения (методы ротационной и конвергентной рентгенотерапии).

В зависимости от глубины расположения облучаемого очага применяют аппараты для поверхностной рентгенотерапии (рис. 7) и для статической глубокой терапии (рис. 2).

Кроме того, выпускаются рентгеновские аппараты для ротационной (рис. 8) и конвергентной (рис. 9) рентгенотерапии, в которых во время лучевого воздействия трубка автоматически перемещается по заранее заданному пути так, чтобы основной пучок излучения был постоянно направлен на патологический очаг, а окружающие его ткани и область кожи попадали под воздействие лучей попеременно. Это позволяет, щадя кожу и здоровые ткани, подвести к очагу большие дозы рентгеновского излучения, чем при статических методах облучения.

Современные терапевтические рентгеновские аппараты, как и диагностические, снабжены рядом специальных приспособлений и устройств, автоматизирующих их работу. Наряду с аппаратами для терапии с обычными автоматическими реле времени имеются рентгеновские аппараты, в которых реле времени заменено на реле дозы, представляющее интегральный дозиметр, автоматически выключающий высокое напряжение при достижении величины заранее заданной дозы излучения. Кроме того, в комплект терапевтических рентгеновских аппаратов входят специальные наборы тубусов, диафрагм, ограничивающих поле облучения, и фильтров, отсеивающих более мягкую часть излучения и придающих рабочему пучку более однородный характер.

См. также Рентгенотехника, Рентгенологическое исследование, Рентгенотерапия.

Рис. 1. Стационарный диагностический рентгеновский аппарат типа РУМ-5.


Рис. 2. Рентгеновский аппарат типа РУМ-11 для статической глубокой рентгенотерапии.


Рис. 3. Палатный рентгеновский аппарат.


Рис. 4. Общий вид рентгеновского аппарата РУМ-4.


Рис. 5. Переносный рентгеновский аппарат.


Рис. 6. Электронно-оптический преобразователь (ЭОП) с зеркалом для визуального наблюдения, кинокамерой и передающей телевизионной камерой.


Рис. 7. Рентгеновский аппарат типа РУМ-7 для кожной и контактной рентгенотерапии.


Рис. 8. Рентгеновский аппарат для ротационной рентгенотерапии.


Рис. 9. Рентгеновский аппарат для конвергентной рентгенотерапии.

Рентгеновские аппараты - устройства для получения и применения его в медицине и технике. Медицинские рентгеновские аппараты по назначению делятся на диагностические (рис. 1) и терапевтические (рис. 2), а по условиям эксплуатации - на стационарные, передвижные и переносные. Стационарные рентгеновские аппараты размещаются в специальных . Передвижные рентгеновские аппараты бывают двух типов: разборные, предназначенные для разъездной работы (рис. 3), и палатные (рис. 4) - для рентгенодиагностической помощи в больницах у постели больного. Переносные рентгеновские аппараты (рис. 5) используются для проведения простейших рентгенологических исследований на дому (отечественный переносный аппарат РУ-560 со всеми принадлежностями укладывается в два чемодана и имеет общий вес около 45 кг). Диапазон напряжений и тока рентгеновских аппаратах в зависимости от их назначения приводится в таблице.

Устроен рентгеновский аппарат следующим образом: высокое напряжение на (см.) подается от повышающего трансформатора (так называемого главного трансформатора), к вторичной обмотке которого трубка присоединяется либо непосредственно (в маломощных переносных и передвижных аппаратах), либо через выпрямительное устройство - кенотрон или полупроводниковый вентиль (см. Выпрямители тока). Питание цепи накала катода рентгеновской трубки производится от понижающего трансформатора накала. Так как анод рентгеновской трубки обычно заземляется, а катод находится под высоким напряжением, трансформатор накала имеет высоковольтную изоляцию. Высоковольтные элементы схемы рентгеновского аппарата обычно помещаются в заземленный кожух и соединяются с электродами защитной рентгеновской трубки при помощи высоковольтных кабелей (кабельные рентгеновские аппараты). В так называемых блок-аппаратах высоковольтная часть вместе с трубкой размещается в металлическом кожухе, заполненном минеральным изоляционным маслом.

Высокое напряжение обычно регулируется с помощью автотрансформатора (см.), включенного в первичную цепь главного трансформатора. Специальный коммутатор, присоединенный к различным отпайкам автотрансформатора, позволяет менять плавно или ступенчато напряжение на первичной и, следовательно, на вторичной обмотке главного трансформатора. Ток накала рентгеновской трубки устанавливается с помощью реостата, включенного в цепь первичной обмотки трансформатора накала. Анодный ток трубки зависит от величины тока накала, который обусловлен напряжением электрической сети: изменение напряжения сети, например, на 5% меняет анодный ток в 2 раза. Напряжение электрической сети падает при включении рентгеновского аппарата, в связи с чем для стабилизации накала трубки приходится устанавливать трансформатор (компенсатор) или специальный ферро-резонансный стабилизатор. Автотрансформатор с коммутаторами, реостат регулировки тока накала, контрольные приборы, системы стабилизации напряжения и защиты от перегрузки и короткого замыкания составляют низковольтную часть рентгеновского аппарата и размещаются в специальном пульте управления. Включение аппарата обычно осуществляется ступенями: сначала включается сетевое напряжение, затем накал рентгеновской трубки и кенотрона и, наконец, высокое напряжение. Отключение производится в обратном порядке. В состав рентгеновского аппарата входят также штатив (или группа штативов) для крепления рентгеновской трубки, приспособления для фиксации больных в процессе исследования или лечения, рентгеновские экраны (см. ) и средства обследуемого и врача. Рентгеновские аппараты снабжаются специальными устройствами (реле времени) для автоматического отключения высокого напряжения по истечении заданной экспозиции. В терапевтических рентгеновских аппаратах применяются электромеханические реле с максимальной выдержкой 10-30 мин., которые приводятся в действие небольшим электродвигателем. В переносных и передвижных диагностических рентгеновских аппаратах используются ручные реле, приводимые в действие пружиной, а в стационарных - конденсаторные реле с минимальной выдержкой около 0,01 сек.

Страницы: 1

Рентгенографией называют процедуру обследования структур внутренних органов, которое производится с использованием рентгеновского излучения. Оно может быть двух видов – рентгеноскопия, когда наблюдение ведется в реальном времени, и рентгенография, при которой происходит запечатление изображения на чувствительных материалах (специальная пленка или бумага). Несмотря на кажущееся различие, принцип их действия очень схож, нужно лишь знать, как работает рентген и как он устроен внутри. Данный аппарат состоит из двух основных блоков оборудования. Один из них отвечает за визуализацию картинки, а другой – за ее запись или отображение.

Современный рентгеновский аппарат

Рентгеновские лучи занимают область, находящуюся в электромагнитном спектре между гамма- и ультрафиолетовыми волнами. Они представляет собой потоки квантов (или фотонов), которые распространяются в пространстве со скоростью света. Они не несут на себе никакого заряда. Их энергия измеряется в джоулях, а масса частиц ничтожно мала, даже по сравнению с массами атомов.

Галоидные соединения серебра, которые находятся в фотоэмульсиях, разлагаются под действием рентгеновских лучей. На этом принципе базируется устройство воспринимающего оборудования.

Появление рентгеновских лучей происходит в результате торможения быстрых электронов внутри аппарата об электрические поля других атомов.

Такое излучение называется тормозным. Существует характеристическая форма излучения. Она появляется при перестановках на внутренних оболочках атомов. От напряжения, которое подается на анодную трубку, зависит непрерывный спектр тормозного излучения.

Источник невидимых лучей

Рентгеновская трубка — это устройство, которое состоит из вакуумного стеклянного сосуда, в противоположные концы которого впаяны катод и анод, сделанные в форме спирали из вольфрама. При ее нагревании вокруг создается высокая концентрация свободных электронов. При подаче тока высокого напряжения, которое прикладывается к рентгеновской трубке, частицы приобретают большое ускорение и фокусируются вокруг анода. Он вращается со скоростью около 10 тысяч оборотов в минуту, чтобы поток не фокусировался в одной точке, и не вызывал перегрева, от которого устройство может расплавиться.

Поэтому рентгеновский аппарат относят к тормозным излучателям. Существуют и другие виды ионизирующего излучения, однако, их применение в медицине ограничено, так как они более вредны и опасны, а оборудование для их использования слишком дорогое и громоздкое.

Например, к ним относится аппарат ускорения частиц. Принцип его действия основан на том, что при движении частиц в вакуумной камере под действием сверхмощных магнитных или электрических полей происходит их ускорение и выброс энергии. Такое оборудование применяется для лучевой терапии, и, реже, для радионуклидной диагностики. Конечно, это лишь упрощенное описание строения аппарата, но именно такой принцип строения лежит в основе всей рентгеновской диагностики.

Механизмы, необходимые для нормального функционирования кабинета лучевой диагностики

Современный аппарат — это куда более сложное техническое устройство, включающее в себя элементы электроники, телеавтоматики, компьютерной техники и средств защиты.

Кроме этого, аппарат должен быть оснащен питающим устройством достаточной мощности, которое преобразовывает переменный ток городских сетей в ток высокого напряжения, рентгеноэкспонометр и оборудование, принимающее излучение.

Устройство рентген-аппарата

Также, важной составной частью является аппарат для коллимации рентгеновского пучка. Он обеспечивает его фокусировку и позволяет управлять им, просвечивая именно нужные места. Плюс, это уменьшает рассеивание рентгеновского излучения, и, как следствие, снижает уровень облучения пациента и персонала.

Дополнительной составной частью аппаратов является стол-штатив, на котором размещают больного в процессе обследования. Устройство для рентгенографии может быть оснащено усиливающими экранами, содержащими люминофор, который светится под действием рентгеновских лучей, усиливая тем самым их фотохимическое действие. Благодаря этому удается снизить экспозиционное время, а значит и лучевую нагрузку. Плюс, это увеличивает четкость и резкость получаемого изображения. Виды люминофоров бывают разные, наиболее распространены такие виды:

  • Мелкозернистый.
  • Крупнозернистый.

Оборудование с мелкозернистым люминофором имеет меньшую отражающую способность, но это компенсируется высоким пространственным разрешением. Они используются в остеологии, где нет необходимости радикально уменьшать экспозицию.

Второй тип усилителей также называют скоростными, из-за того, что они имеют высокий уровень светоотражения и меньшее разрешение. Их используют в тех случаях, когда нужно снять быстродвижущиеся объекты, такие как сердце, крупные сосуды, а также, если аппарат предназначен для рентгена детей.

Компьютерная техника, применяемая для улучшения качества изображений

Цифровой дистанционно управляемый рентгеновский аппарат

В последнее время началось применение аппаратов с компьютерными системами обработки и хранения изображений. Выделяют такие варианты строения воспринимающего элемента:

  • Электронно-оптическая.
  • Сканирующая цифровая.
  • Люминесцентная цифровая.
  • Селеновая цифровая запись.

В первом случае изображение, сфокусированное в телевизионной камере, поступает на аналоговый цифровой преобразователь после усиления. При сканировании объекта принцип еще проще. Через него пропускают пучок лучей, последовательно сканируя его. Те из них, которые прошли через вещество, попадают на датчик и обсчитываются компьютером, который преобразует сигнал в компьютерное изображение.

Высокую точность дают люминесцентные установки. Они записывают излучение на специальную пластинку, которая хранит данные в течение нескольких минут. Затем производится ее лазерное сканирование и оцифровка результатов.

Наиболее многообещающими являются системы, основанные на использовании селена. При прохождении через него, энергия фотонов преобразовывается в свободные электроны.

Стоит отметить, что все эти методы значительно снижают время экспозиции и лучевую нагрузку на пациента. Также с их помощью можно добиться более резких и четких изображений, которые можно без труда увеличивать и рассматривать по частям.

Цифровой детектор

После этого изображение сохраняется на цифровых носителях, и заносится в базу данных компьютерной системы.

Неоспоримым преимуществом компьютерных систем является то, что при их использовании можно сразу просмотреть изображение, не ожидая его проявки. Также один файл можно копировать и передавать бесконечное количество раз, и распечатывать в разных местах. Это облегчает оперирование данными и их передачу между врачами и медицинскими учреждениями.

Другие виды устройств, работающих по этому принципу

Было разработано оборудование с узкой специализацией, использующееся для выполнения нетривиальных задач. Поэтому классификация делит все виды рентгеновских установок на такие виды:

  • Устройства общего назначения (универсальные).
  • Специальные установки.

Если с помощью первых можно проводить обследование всех частей тела, то вторые предназначены для осмотра конкретных органов и систем, например, для:

  • Неврологических исследований.
  • Урологической диагностики.
  • Стоматологические аппараты.
  • Устройства для проведения ангиографии.
  • Для проведения маммографии.
  • Оборудование для массовых исследований (флюорографы).

Малодозовый цифровой флюорограф

Существует целая ветка приборов, которые применяют для наблюдения за состоянием внутренних органов в реальном времени. Такой вид исследований называется рентгеноскопией.

Изначально для отображения картинки использовался специальный экран, покрытый специальными химикатами, которые светились под действием падающих на них лучей, пропорционально их количеству и энергии. Свечение было довольно слабым, и поэтому раньше процедуру проводили в темных помещениях.

Кроме того, такой вид осмотра приводил к куда большей радиационной нагрузке на больного.

Поэтому со временем был разработан рентгенотелевизионный усилитель. Он представляет из себя герметичную систему, на противоположных концах которой расположены флюоресцирующий и катодно-люминисцентный экраны. А между ними – электрическое поле. Слабое изображение, которое возникает на первом, преобразовывается в поток электронов, воспринимаемых вторым экраном, и выводится в компьютерную систему.