Функции активации в нейронных сетях. Представление знаний нейронными сетями

Одной из наиболее распространенных функций активации является нелинейная функция активации с насыщением, так называемая логистическая функция или сигмоид (функция S-бразного вида):

При уменьшении а сигмоид становится более пологим, в пределе при а = 0 вырождаясь в горизонтальную линию на уровне 0,5, при увеличении а сигмоид приближается к виду функции единичного скачка с порогом Т. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне (0, 1). Одно из ценных свойств сигмоидальной функции - простое выражение для ее производной:

Следует отметить, что сигмоидальная функция дифферен­цируема на всей оси абсцисс, что используется в некоторых алго­ритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыще­ние от больших сигналов, так как они соответствуют областям ар­гументов, где сигмоид имеет пологий наклон.

Таблица 7.1 Функции активации нейронов

Название Формула Область значений
Линейная f (s ) = k s (-∞, ∞)
Полулинейная (0, ∞)
Логистическая (сигмоидальная) (0, 1)
Гиперболический тангенс (сигмоидальная) (-1, 1)
Экспоненциальная (0, ∞)
Синусоидальная (-1, 1)
Сигмоидальная (рациональная) (-1, 1)
Шаговая (линейная с насыщением) (-1, 1)
Пороговая (0, 1)
Модульная (0, ∞)
Знаковая (сигнатурная) (-1, 1)
Квадратичная (0, ∞)

Рис. 7.2. Примеры активационных функций:

а - функция единичного скачка; б - линейный порог (гистерезис);

в - сигмоид (логистическая функция);

г - сигмоид (гиперболический тангенс)

Тип функции активации выбирается с учетом конкретной зада­чи, решаемой с применением нейронных сетей. Например, в за­дачах аппроксимации и классификации предпочтение отдают логистической (сигмоидальной) кривой.

Чтобы построить ИНС для решения конкретной задачи, нужно выбрать тип соединения нейронов, опреде­лить вид передаточных функций элементов и подобрать весовые коэффициенты межнейронных связей.

При всем многообразии возможных конфигураций ИНС на практике получили распространение лишь некоторые из них. Классические модели нейронных сетей рассмотрены ниже.

Классификация нейронных сетей и их свойства

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами. В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа:



входные нейроны , на которые подается вектор, кодирующий входное воздействие или образ внешней среды, в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;

выходные нейроны , выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (7.1). Несут важную функцию приведения значения выхода сети в требуемый промежуток (осуществляется это с помощью функции активации);

промежуточные нейроны , составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (7.1).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот – выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей:

Полносвязные (рис.7.3, а);

Многослойные или слоистые (рис. 7.3, б);

Слабосвязные (с локальными связями) (рис. 7.3, в).

Рис. 7.3. Архитектуры нейронных сетей:

а - полносвязная сеть, б - многослойная сеть с последовательными

связями, в - слабосвязные сети

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q +1) называются последовательными. Внутри одного слоя используется одна и та же функция активации.

Лабораторная работа № 1

Модели искусственного нейрона

Цель работы: приобретение навыков исследования функций активации и моделей нейронов с помощью пакета имитационного моделирования Simulink системы MATLAB.

Ключевые слова


■ весовой коэффициент нейрона;

■ взвешенный вход нейрона;

■ входной сигнал (вход) нейрона;

■ выходной сигнал (выход) нейрона;

■ нейрон;

■ слой нейронной сети;

■ смещение нейрона;


■ функция активации (передаточная функция):

■ единичная с жесткими ограничениями;

■ линейная;

■ логистическая;


Простой нейрон

Элементарной ячейкой нейронной сети является нейрон . Структура нейрона с одним скалярным входом представлена на рис. 1.1, а .




Рис. 1.1. Структурная схема нейрона с одним скалярным входом
а ) без смещения, б ) со смещением

Здесь скалярный входной сигнал (вход ) умножается на скалярный весовой коэффициент , и результирующий взвешенный вход является аргументом функции активации нейрона, которая порождает скалярный выходной сигнал (выход ) .

Нейрон, представленный на рис. 3.1, б , дополнен скалярным смещением . Смещение суммируется с взвешенным входом и приводит к сдвигу аргумента функции на величину . Действие смещения можно свести к схеме взвешивания, если представить, что нейрон имеет второй входной сигнал со значением, равным 1. Вход функции активации нейрона по-прежнему остается скалярным и равен сумме взвешенного входа и смещения . Эта сумма является аргументом функции активации , которая на выходе выдает сигнал .

Выходной сигнал нейрона можно представить в виде линейной комбинации входных сигналов и 1:

.

Принцип работы нейронной сети состоит в настройке параметров нейрона таким образом, чтобы функционирование сети соответствовало некоторому желаемому поведению. Регулируя весовые коэффициенты или параметры смещения, можно «обучить» сеть выполнению конкретной работы. Возможно также, что сама сеть будет корректировать свои параметры для достижения требуемого результата.

Функции активации

Функции активации (передаточные функции ) нейрона могут иметь самые различные выражения. Как правило, функция активации принадлежит классу сигмоидных функций с аргументом и выходом .

Рассмотрим три наиболее часто используемые функции активации:

1) единичная функция активации с жесткими ограничениями

график единичной функции активации с жесткими ограничениями и ее условное обозначение представлены на рис. 1.2.

функция активации с жесткими ограничениями реализована в виде М-файла hardlim в пакете расширения Neural Network Toolbox системы MATLAB;

2) линейная функция активации ; она описывается соотношением

а ее график и условное обозначение представлены на рис. 1.3;

в пакете расширения Neural Network Toolbox линейная функция активации реализована в виде М-файла purelin;

3) логистическая функция активации ; она описывается соотношением

а ее график и условное обозначение представлены на рис. 1.4;

эта функция принадлежит классу сигмоидных функций, ее аргумент может принимать любое значение от до , а выход изменяется в диапазоне от 0 до 1;

в пакете расширения Neural Network Toolbox логистическая функция активации реализована в виде М-файла logsig; благодаря свойству дифференцируемости эта функция часто используется в сетях с обучением на основе метода обратного распространения ошибки.

Символы, заключенные в квадрат, в правых верхних углах графиков (см. рис. 1.2 – 1.4), характеризуют функции активации. Эти обозначения будут использованы при изображении структурных схем нейронных сетей.

В пакете расширения Neural Network Toolbox есть и другие функции активации. Кроме того, пользователь может создавать свои собственные функции с помощью языка программирования MATLAB.

Нейрон с векторным входом

На рис. 1.5 изображена схема нейрона с одним векторным входом , состоящим из элементов , , …, . Здесь каждый элемент входа умножается на весовые коэффициенты , , …, соответственно, и взвешенные значения подаются на вход сумматора. Их сумма равна скалярному произведению век­тора весовых коэффициентов на вектор входа .

Нейрон имеет смещение , которое суммируется с взвешенной суммой входов. Результирующая сумма определяется в соответствии с выражением

и является аргументом функции активации . В нотации языка программирования MATLAB это выражение записывается следующим образом:

Схема нейрона, изображенная на рис. 1.5, содержит много лишних деталей. При рассмотрении нейронных сетей, состоящих из большого числа нейронов, будет использоваться укрупненная струк­турная схема нейрона (рис. 1.6).

Вход нейрона изображается в виде темной вертикальной черты, под которой указывается количество элементов входа. Размерность входа указывается под стрелкой, исходящей от входа (на рис. 1.6 она обозначена ). Вектор входа умножается на вектор-строку размерности . Как и прежде, константа 1 рассматривается как вход, который умножается на скалярное смещение . Входом функции активации нейрона является сумма скалярного произведения и смещения . Эта сумма преобразуется функцией активации , на выходе которой образуется величина , являющаяся в данном случае скалярной.

OUT = K (NET),

где К - постоянная, пороговой функцией

OUT = 1, если NET > T, OUT = 0 в остальных случаях,

где Т - некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.

Рис. 3.

На рис. 3 блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется «сжимающей» функцией. В качестве «сжимающей» функции часто используется логистическая или «сигмоидальная» (S-образная) функция, показанная на рис.4а. Эта функция математически выражается как

F(x) = 1/(1 + е -x).

Таким образом,

По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.


Рис.

Другой широко используемой активационной функцией является гиперболический тангенс. По форме она сходна с логистической функцией и часто используется биологами в качестве математической модели активации нервной клетки. В качестве активационной функции искусственной нейронной сети она записывается следующим образом:


Рис.

Подобно логистической функции гиперболический тангенс является S-образной функцией, но он симметричен относительно начала координат, и в точке NET = 0 значение выходного сигнала OUT равно нулю (см. рис. 4б). В отличие от логистической функции гиперболический тангенс принимает значения различных знаков, что оказывается выгодным для ряда сетей.

Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника.

Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона.

В главе мы ознакомились с такими понятиями, как искусственный интеллект, машинное обучение и искусственные нейронные сети.

В этой главе я детально опишу модель искусственного нейрона, расскажу о подходах к обучению сети, а также опишу некоторые известные виды искусственных нейронных сетей, которые мы будем изучать в следующих главах.

Упрощение

В прошлой главе я постоянно говорил о каких-то серьезных упрощениях. Причина упрощений заключается в том, что никакие современные компьютеры не могут быстро моделировать такие сложные системы, как наш мозг. К тому же, как я уже говорил, наш мозг переполнен различными биологическими механизмами, не относящиеся к обработке информации.

Нам нужна модель преобразования входного сигнала в нужный нам выходной. Все остальное нас не волнует. Начинаем упрощать.

Биологическая структура → схема

В предыдущей главе вы поняли, насколько сложно устроены биологические нейронные сети и биологические нейроны. Вместо изображения нейронов в виде чудовищ с щупальцами давайте просто будем рисовать схемы.

Вообще говоря, есть несколько способов графического изображения нейронных сетей и нейронов. Здесь мы будем изображать искусственные нейроны в виде кружков.

Вместо сложного переплетения входов и выходов будем использовать стрелки, обозначающие направление движения сигнала.

Таким образом искусственная нейронная сеть может быть представлена в виде совокупности кружков (искусственных нейронов), связанных стрелками.

Электрические сигналы → числа

В реальной биологической нейронной сети от входов сети к выходам передается электрический сигнал. В процессе прохода по нейронной сети он может изменяться.

Электрический сигнал всегда будет электрическим сигналом. Концептуально ничего не изменяется. Но что же тогда меняется? Меняется величина этого электрического сигнала (сильнее/слабее). А любую величину всегда можно выразить числом (больше/меньше).

В нашей модели искусственной нейронной сети нам совершенно не нужно реализовывать поведение электрического сигнала, так как от его реализации все равно ничего зависеть не будет.

На входы сети мы будем подавать какие-то числа, символизирующие величины электрического сигнала, если бы он был. Эти числа будут продвигаться по сети и каким-то образом меняться. На выходе сети мы получим какое-то результирующее число, являющееся откликом сети.

Для удобства все равно будем называть наши числа, циркулирующие в сети, сигналами.

Синапсы → веса связей

Вспомним картинку из первой главы, на которой цветом были изображены связи между нейронами – синапсы. Синапсы могут усиливать или ослаблять проходящий по ним электрический сигнал.

Давайте характеризовать каждую такую связь определенным числом, называемым весом данной связи. Сигнал, прошедший через данную связь, умножается на вес соответствующей связи.

Это ключевой момент в концепции искусственных нейронных сетей, я объясню его подробнее. Посмотрите на картинку ниже. Теперь каждой черной стрелке (связи) на этой картинке соответствует некоторое число ​\(w_i \) ​ (вес связи). И когда сигнал проходит по этой связи, его величина умножается на вес этой связи.

На приведенном выше рисунке вес стоит не у каждой связи лишь потому, что там нет места для обозначений. В реальности у каждой ​\(i \) ​-ой связи свой собственный ​\(w_i \) ​-ый вес.

Искусственный нейрон

Теперь мы переходим к рассмотрению внутренней структуры искусственного нейрона и того, как он преобразует поступающий на его входы сигнал.

На рисунке ниже представлена полная модель искусственного нейрона.

Не пугайтесь, ничего сложного здесь нет. Давайте рассмотрим все подробно слева направо.

Входы, веса и сумматор

У каждого нейрона, в том числе и у искусственного, должны быть какие-то входы, через которые он принимает сигнал. Мы уже вводили понятие весов, на которые умножаются сигналы, проходящие по связи. На картинке выше веса изображены кружками.

Поступившие на входы сигналы умножаются на свои веса. Сигнал первого входа ​\(x_1 \) ​ умножается на соответствующий этому входу вес ​\(w_1 \) ​. В итоге получаем ​\(x_1w_1 \) ​. И так до ​\(n \) ​-ого входа. В итоге на последнем входе получаем ​\(x_nw_n \) ​.

Теперь все произведения передаются в сумматор. Уже исходя из его названия можно понять, что он делает. Он просто суммирует все входные сигналы, умноженные на соответствующие веса:

\[ x_1w_1+x_2w_2+\cdots+x_nw_n = \sum\limits^n_{i=1}x_iw_i \]

Математическая справка

Сигма – Википедия

Когда необходимо коротко записать большое выражение, состоящее из суммы повторяющихся/однотипных членов, то используют знак сигмы.

Рассмотрим простейший вариант записи:

\[ \sum\limits^5_{i=1}i=1+2+3+4+5 \]

Таким образом снизу сигмы мы присваиваем переменной-счетчику ​\(i \) ​ стартовое значение, которое будет увеличиваться, пока не дойдет до верхней границы (в примере выше это 5).

Верхняя граница может быть и переменной. Приведу пример такого случая.

Пусть у нас есть ​\(n \) магазинов. У каждого магазина есть свой номер: от 1 до ​\(n \) ​. Каждый магазин приносит прибыль. Возьмем какой-то (неважно, какой) ​\(i \) ​-ый магазин. Прибыль от него равна ​\(p_i \) ​.

\[ P = p_1+p_2+\cdots+p_i+\cdots+p_n \]

Как видно, все члены этой суммы однотипны. Тогда их можно коротко записать следующим образом:

\[ P=\sum\limits^n_{i=1}p_i \]

Словами: «Просуммируй прибыли всех магазинов, начиная с первого и заканчивая ​\(n \) ​-ым». В виде формулы это гораздо проще, удобнее и красивее.

Результатом работы сумматора является число, называемое взвешенной суммой.

Взвешенная сумма (Weighted sum ) (​\(net \) ​) - сумма входных сигналов, умноженных на соответствующие им веса.

\[ net=\sum\limits^n_{i=1}x_iw_i \]

Роль сумматора очевидна – он агрегирует все входные сигналы (которых может быть много) в какое-то одно число – взвешенную сумму, которая характеризует поступивший на нейрон сигнал в целом. Еще взвешенную сумму можно представить как степень общего возбуждения нейрона.

Пример

Для понимания роли последнего компонента искусственного нейрона – функции активации – я приведу аналогию.

Давайте рассмотрим один искусственный нейрон. Его задача – решить, ехать ли отдыхать на море. Для этого на его входы мы подаем различные данные. Пусть у нашего нейрона будет 4 входа:

  1. Стоимость поездки
  2. Какая на море погода
  3. Текущая обстановка с работой
  4. Будет ли на пляже закусочная

Все эти параметры будем характеризовать 0 или 1. Соответственно, если погода на море хорошая, то на этот вход подаем 1. И так со всеми остальными параметрами.

Если у нейрона есть четыре входа, то должно быть и четыре весовых коэффициента. В нашем примере весовые коэффициенты можно представить как показатели важности каждого входа, влияющие на общее решение нейрона. Веса входов распределим следующим образом:

Нетрудно заметить, что очень большую роль играют факторы стоимости и погоды на море (первые два входа). Они же и будут играть решающую роль при принятии нейроном решения.

Пусть на входы нашего нейрона мы подаем следующие сигналы:

Умножаем веса входов на сигналы соответствующих входов:

Взвешенная сумма для такого набора входных сигналов равна 6:

\[ net=\sum\limits^4_{i=1}x_iw_i = 5 + 0 + 0 + 1 =6 \]

Вот на сцену выходит функция активации.

Функция активации

Просто так подавать взвешенную сумму на выход достаточно бессмысленно. Нейрон должен как-то обработать ее и сформировать адекватный выходной сигнал. Именно для этих целей и используют функцию активации.

Она преобразует взвешенную сумму в какое-то число, которое и является выходом нейрона (выход нейрона обозначим переменной ​\(out \) ​).

Для разных типов искусственных нейронов используют самые разные функции активации. В общем случае их обозначают символом ​\(\phi(net) \) ​. Указание взвешенного сигнала в скобках означает, что функция активации принимает взвешенную сумму как параметр.

Функция активации (Activation function )(​\(\phi(net) \) ​) - функция, принимающая взвешенную сумму как аргумент. Значение этой функции и является выходом нейрона (​\(out \) ​).

Функция единичного скачка

Самый простой вид функции активации. Выход нейрона может быть равен только 0 или 1. Если взвешенная сумма больше определенного порога ​\(b \) ​, то выход нейрона равен 1. Если ниже, то 0.

Как ее можно использовать? Предположим, что мы поедем на море только тогда, когда взвешенная сумма больше или равна 5. Значит наш порог равен 5:

В нашем примере взвешенная сумма равнялась 6, а значит выходной сигнал нашего нейрона равен 1. Итак, мы едем на море.

Однако если бы погода на море была бы плохой, а также поездка была бы очень дорогой, но имелась бы закусочная и обстановка с работой нормальная (входы: 0011), то взвешенная сумма равнялась бы 2, а значит выход нейрона равнялся бы 0. Итак, мы никуда не едем.

В общем, нейрон смотрит на взвешенную сумму и если она получается больше его порога, то нейрон выдает выходной сигнал, равный 1.

Графически эту функцию активации можно изобразить следующим образом.

На горизонтальной оси расположены величины взвешенной суммы. На вертикальной оси - значения выходного сигнала. Как легко видеть, возможны только два значения выходного сигнала: 0 или 1. Причем 0 будет выдаваться всегда от минус бесконечности и вплоть до некоторого значения взвешенной суммы, называемого порогом. Если взвешенная сумма равна порогу или больше него, то функция выдает 1. Все предельно просто.

Теперь запишем эту функцию активации математически. Почти наверняка вы сталкивались с таким понятием, как составная функция. Это когда мы под одной функцией объединяем несколько правил, по которым рассчитывается ее значение. В виде составной функции функция единичного скачка будет выглядеть следующим образом:

\[ out(net) = \begin{cases} 0, net < b \\ 1, net \geq b \end{cases} \]

В этой записи нет ничего сложного. Выход нейрона (​\(out \) ​) зависит от взвешенной суммы (​\(net \) ​) следующим образом: если ​\(net \) ​ (взвешенная сумма) меньше какого-то порога (​\(b \) ​), то ​\(out \) ​ (выход нейрона) равен 0. А если ​\(net \) ​ больше или равен порогу ​\(b \) ​, то ​\(out \) ​ равен 1.

Сигмоидальная функция

На самом деле существует целое семейство сигмоидальных функций, некоторые из которых применяют в качестве функции активации в искусственных нейронах.

Все эти функции обладают некоторыми очень полезными свойствами, ради которых их и применяют в нейронных сетях. Эти свойства станут очевидными после того, как вы увидите графики этих функций.

Итак… самая часто используемая в нейронных сетях сигмоида - логистическая функция .

График этой функции выглядит достаточно просто. Если присмотреться, то можно увидеть некоторое подобие английской буквы ​\(S \) ​, откуда и пошло название семейства этих функций.

А вот так она записывается аналитически:

\[ out(net)=\frac{1}{1+\exp(-a \cdot net)} \]

Что за параметр ​\(a \) ​? Это какое-то число, которое характеризует степень крутизны функции. Ниже представлены логистические функции с разным параметром ​\(a \) ​.

Вспомним наш искусственный нейрон, определяющий, надо ли ехать на море. В случае с функцией единичного скачка все было очевидно. Мы либо едем на море (1), либо нет (0).

Здесь же случай более приближенный к реальности. Мы до конца полностью не уверены (в особенности, если вы параноик) – стоит ли ехать? Тогда использование логистической функции в качестве функции активации приведет к тому, что вы будете получать цифру между 0 и 1. Причем чем больше взвешенная сумма, тем ближе выход будет к 1 (но никогда не будет точно ей равен). И наоборот, чем меньше взвешенная сумма, тем ближе выход нейрона будет к 0.

Например, выход нашего нейрона равен 0.8. Это значит, что он считает, что поехать на море все-таки стоит. Если бы его выход был бы равен 0.2, то это означает, что он почти наверняка против поездки на море.

Какие же замечательные свойства имеет логистическая функция?

  • она является «сжимающей» функцией, то есть вне зависимости от аргумента (взвешенной суммы), выходной сигнал всегда будет в пределах от 0 до 1
  • она более гибкая, чем функция единичного скачка – ее результатом может быть не только 0 и 1, но и любое число между ними
  • во всех точках она имеет производную, и эта производная может быть выражена через эту же функцию

Именно из-за этих свойств логистическая функция чаще всего используются в качестве функции активации в искусственных нейронах.

Гиперболический тангенс

Однако есть и еще одна сигмоида – гиперболический тангенс. Он применяется в качестве функции активации биологами для более реалистичной модели нервной клетки.

Такая функция позволяет получить на выходе значения разных знаков (например, от -1 до 1), что может быть полезным для ряда сетей.

Функция записывается следующим образом:

\[ out(net) = \tanh\left(\frac{net}{a}\right) \]

В данной выше формуле параметр ​\(a \) ​ также определяет степень крутизны графика этой функции.

А вот так выглядит график этой функции.

Как видите, он похож на график логистической функции. Гиперболический тангенс обладает всеми полезными свойствами, которые имеет и логистическая функция.

Что мы узнали?

Теперь вы получили полное представление о внутренней структуре искусственного нейрона. Я еще раз приведу краткое описание его работы.

У нейрона есть входы. На них подаются сигналы в виде чисел. Каждый вход имеет свой вес (тоже число). Сигналы на входе умножаются на соответствующие веса. Получаем набор «взвешенных» входных сигналов.

Затем взвешенная сумма преобразуется функцией активации и мы получаем выход нейрона .

Сформулируем теперь самое короткое описание работы нейрона – его математическую модель:

Математическая модель искусственного нейрона с ​\(n \) ​ входами:

где
​\(\phi \) ​ – функция активации
\(\sum\limits^n_{i=1}x_iw_i \) ​ – взвешенная сумма, как сумма ​\(n \) ​ произведений входных сигналов на соответствующие веса.

Виды ИНС

Мы разобрались со структурой искусственного нейрона. Искусственные нейронные сети состоят из совокупности искусственных нейронов. Возникает логичный вопрос – а как располагать/соединять друг с другом эти самые искусственные нейроны?

Как правило, в большинстве нейронных сетей есть так называемый входной слой , который выполняет только одну задачу – распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений.

Однослойные нейронные сети

В однослойных нейронных сетях сигналы с входного слоя сразу подаются на выходной слой. Он производит необходимые вычисления, результаты которых сразу подаются на выходы.

Выглядит однослойная нейронная сеть следующим образом:

На этой картинке входной слой обозначен кружками (он не считается за слой нейронной сети), а справа расположен слой обычных нейронов.

Нейроны соединены друг с другом стрелками. Над стрелками расположены веса соответствующих связей (весовые коэффициенты).

Однослойная нейронная сеть (Single-layer neural network ) - сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.

Многослойные нейронные сети

Такие сети, помимо входного и выходного слоев нейронов, характеризуются еще и скрытым слоем (слоями). Понять их расположение просто – эти слои находятся между входным и выходным слоями.

Такая структура нейронных сетей копирует многослойную структуру определенных отделов мозга.

Название скрытый слой получил неслучайно. Дело в том, что только относительно недавно были разработаны методы обучения нейронов скрытого слоя. До этого обходились только однослойными нейросетями.

Многослойные нейронные сети обладают гораздо большими возможностями, чем однослойные.

Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.

Многослойная нейронная сеть (Multilayer neural network ) - нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.

Сети прямого распространения

Можно заметить одну очень интересную деталь на картинках нейросетей в примерах выше.

Во всех примерах стрелки строго идут слева направо, то есть сигнал в таких сетях идет строго от входного слоя к выходному.

Сети прямого распространения (Feedforward neural network ) (feedforward сети) - искусственные нейронные сети, в которых сигнал распространяется строго от входного слоя к выходному. В обратном направлении сигнал не распространяется.

Такие сети широко используются и вполне успешно решают определенный класс задач: прогнозирование, кластеризация и распознавание.

Однако никто не запрещает сигналу идти и в обратную сторону.

Сети с обратными связями

В сетях такого типа сигнал может идти и в обратную сторону. В чем преимущество?

Дело в том, что в сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах.

А в сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Возможность сигналов циркулировать в сети открывает новые, удивительные возможности нейронных сетей. С помощью таких сетей можно создавать нейросети, восстанавливающие или дополняющие сигналы. Другими словами такие нейросети имеют свойства кратковременной памяти (как у человека).

Сети с обратными связями (Recurrent neural network ) - искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.

Обучение нейронной сети

Теперь давайте чуть более подробно рассмотрим вопрос обучения нейронной сети. Что это такое? И каким образом это происходит?

Что такое обучение сети?

Искусственная нейронная сеть – это совокупность искусственных нейронов. Теперь давайте возьмем, например, 100 нейронов и соединим их друг с другом. Ясно, что при подаче сигнала на вход, мы получим что-то бессмысленное на выходе.

Значит нам надо менять какие-то параметры сети до тех пор, пока входной сигнал не преобразуется в нужный нам выходной.

Что мы можем менять в нейронной сети?

Изменять общее количество искусственных нейронов бессмысленно по двум причинам. Во-первых, увеличение количества вычислительных элементов в целом лишь делает систему тяжеловеснее и избыточнее. Во-вторых, если вы соберете 1000 дураков вместо 100, то они все-равно не смогут правильно ответить на вопрос.

Сумматор изменить не получится, так как он выполняет одну жестко заданную функцию – складывать. Если мы его заменим на что-то или вообще уберем, то это вообще уже не будет искусственным нейроном.

Если менять у каждого нейрона функцию активации, то мы получим слишком разношерстную и неконтролируемую нейронную сеть. К тому же, в большинстве случаев нейроны в нейронных сетях одного типа. То есть они все имеют одну и ту же функцию активации.

Остается только один вариант – менять веса связей .

Обучение нейронной сети (Training) - поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный нам выходной.

Такой подход к термину «обучение нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей. Каждая из них в отдельности состоит из нейронов одного типа (функция активации одинаковая). Мы обучаемся благодаря изменению синапсов – элементов, которые усиливают/ослабляют входной сигнал.

Однако есть еще один важный момент. Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ». Со стороны будет казаться, что она очень быстро «обучилась». И как только вы подадите немного измененный сигнал, ожидая увидеть правильный ответ, то сеть выдаст бессмыслицу.

В самом деле, зачем нам сеть, определяющая лицо только на одном фото. Мы ждем от сети способности обобщать какие-то признаки и узнавать лица и на других фотографиях тоже.

Именно с этой целью и создаются обучающие выборки .

Обучающая выборка (Training set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит обучение сети.

После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике.

Однако прежде чем пускать свежеиспеченную нейросеть в бой, часто производят оценку качества ее работы на так называемой тестовой выборке .

Тестовая выборка (Testing set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.

Мы поняли, что такое «обучение сети» – подбор правильного набора весов. Теперь возникает вопрос – а как можно обучать сеть? В самом общем случае есть два подхода, приводящие к разным результатам: обучение с учителем и обучение без учителя.

Обучение с учителем

Суть данного подхода заключается в том, что вы даете на вход сигнал, смотрите на ответ сети, а затем сравниваете его с уже готовым, правильным ответом.

Важный момент. Не путайте правильные ответы и известный алгоритм решения! Вы можете обвести пальцем лицо на фото (правильный ответ), но не сможете сказать, как это сделали (известный алгоритм). Тут такая же ситуация.

Затем, с помощью специальных алгоритмов, вы меняете веса связей нейронной сети и снова даете ей входной сигнал. Сравниваете ее ответ с правильным и повторяете этот процесс до тех пор, пока сеть не начнет отвечать с приемлемой точностью (как я говорил в 1 главе, однозначно точных ответов сеть давать не может).

Обучение с учителем (Supervised learning ) - вид обучения сети, при котором ее веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов.

Где взять правильные ответы?

Если мы хотим, чтобы сеть узнавала лица, мы можем создать обучающую выборку на 1000 фотографий (входные сигналы) и самостоятельно выделить на ней лица (правильные ответы).

Если мы хотим, чтобы сеть прогнозировала рост/падение цен, то обучающую выборку надо делать, основываясь на прошлых данных. В качестве входных сигналов можно брать определенные дни, общее состояние рынка и другие параметры. А в качестве правильных ответов – рост и падение цены в те дни.

Стоит отметить, что учитель, конечно же, не обязательно человек. Дело в том, что порой сеть приходится тренировать часами и днями, совершая тысячи и десятки тысяч попыток. В 99% случаев эту роль выполняет компьютер, а точнее, специальная компьютерная программа.

Обучение без учителя

Обучение без учителя применяют тогда, когда у нас нет правильных ответов на входные сигналы. В этом случае вся обучающая выборка состоит из набора входных сигналов.

Что же происходит при таком обучении сети? Оказывается, что при таком «обучении» сеть начинает выделять классы подаваемых на вход сигналов. Короче говоря – сеть начинает кластеризацию.

Например, вы демонстрируете сети конфеты, пирожные и торты. Вы никак не регулируете работу сети. Вы просто подаете на ее входы данные о данном объекте. Со временем сеть начнет выдавать сигналы трех разных типов, которые и отвечают за объекты на входе.

Обучение без учителя (Unsupervised learning ) - вид обучения сети, при котором сеть самостоятельно классифицирует входные сигналы. Правильные (эталонные) выходные сигналы не демонстрируются.

Выводы

В этой главе вы узнали все о структуре искусственного нейрона, а также получили полное представление о том, как он работает (и о его математической модели).

Более того, вы теперь знаете о различных видах искусственных нейронных сетей: однослойные, многослойные, а также feedforward сети и сети с обратными связями.

Вы также ознакомились с тем, что представляет собой обучение сети с учителем и без учителя.

Вы уже знаете необходимую теорию. Последующие главы – рассмотрение конкретных видов нейронных сетей, конкретные алгоритмы их обучения и практика программирования.

Вопросы и задачи

Материал этой главы надо знать очень хорошо, так как в ней содержатся основные теоретические сведения по искусственным нейронным сетям. Обязательно добейтесь уверенных и правильных ответов на все нижеприведенные вопросы и задачи.

Опишите упрощения ИНС по сравнению с биологическими нейросетями.

1. Сложную и запутанную структуру биологических нейронных сетей упрощают и представляют в виде схем. Оставляют только модель обработки сигнала.

2. Природа электрических сигналов в нейронных сетях одна и та же. Разница только в их величине. Убираем электрические сигналы, а вместо них используем числа, обозначающие величину проходящего сигнала.

Функцию активации часто обозначают за ​\(\phi(net) \) ​.

Запишите математическую модель искусственного нейрона.

Искусственный нейрон c ​\(n \) ​ входами преобразовывает входной сигнал (число) в выходной сигнал (число) следующим образом:

\[ out=\phi\left(\sum\limits^n_{i=1}x_iw_i\right) \]

Чем отличаются однослойные и многослойные нейронные сети?

Однослойные нейронные сети состоят из одного вычислительного слоя нейронов. Входной слой подает сигналы сразу на выходной слой, который и преобразует сигнал, и сразу выдает результат.

Многослойные нейронные сети, помимо входного и выходного слоев, имеют еще и скрытые слои. Эти скрытые слои проводят какие-то внутренние промежуточные преобразования, наподобие этапов производства продуктов на заводе.

В чем отличие feedforward сетей от сетей с обратными связями?

Сети прямого распространения (feedforward сети) допускают прохождение сигнала только в одном направлении – от входов к выходам. Сети с обратными связями данных ограничений не имеют, и выходы нейронов могут вновь подаваться на входы.

Что такое обучающая выборка? В чем ее смысл?

Перед тем, как использовать сеть на практике (например, для решения текущих задач, ответов на которые у вас нет), необходимо собрать коллекцию задач с готовыми ответами, на которой и тренировать сеть. Это коллекция и называется обучающей выборкой.

Если собрать слишком маленький набор входных и выходных сигналов, то сеть просто запомнит ответы и цель обучения не будет достигнута.

Что понимают под обучением сети?

Под обучением сети понимают процесс изменения весовых коэффициентов искусственных нейронов сети с целью подобрать такую их комбинацию, которая преобразует входной сигнал в корректный выходной.

Что такое обучение с учителем и без него?

При обучении сети с учителем ей на входы подают сигналы, а затем сравнивают ее выход с заранее известным правильным выходом. Этот процесс повторяют до тех пор, пока не будет достигнута необходимая точность ответов.

Если сети только подают входные сигналы, без сравнения их с готовыми выходами, то сеть начинает самостоятельную классификацию этих входных сигналов. Другими словами она выполняет кластеризацию входных сигналов. Такое обучение называют обучением без учителя.

Теория нейронных сетей (НС) включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемо­тех­ники и технологии. Поэтому понятие «нейронные сети» детально определить сложно. Приведем несколько определений.

Нейронные сети - самообучающиеся системы, имитирующие дея­тель­ность человеческого мозга.

Искусственные нейронные сети - устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров (обрабатывающих элементов).

Искусственная нейронная сеть (ИНС) может рассматриваться как направленный граф с взвешенными связями, в котором искусственные нейроны являются узлами.

Матрицу весов связей обученной нейронной сети можно отнести к эвристическим моделям представления знаний.

По архитектуре связей ИНС могут быть сгруппированы в два класса: сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями.

Нейронные сети различают по структуре сети (связей между нейронами), особенностям модели нейрона, особенностям обучения сети.

По структуре нейронные сети можно разделить на неполносвязные (или слоистые) и полносвязные, со случайными и регулярными связями, с симметричными и несимметричными связями.

По используемым на входах и выходах сигналам нейронные сети можно разделить на аналоговые и бинарные.

По моделированию времени нейронные сети подразделяются на сети с непрерывным и дискретным временем.

По организации обучения разделяют обучение нейронных сетей с учителем (supervised neural networks), без учителя (nonsupervised).

По особенностям модели нейрона различают нейроны с разными нелинейными функциями: пороговой, экспоненциальной сигмоидой, рациональной сигмоидой, гиперболическим тангенсом.

В настоящее время нейронные сети применяются для решения многих неформализуемых или трудно формализуемых задач:

  • распознавания и синтеза речи;
  • распознавания аэрокосмических изображений;
  • прогнозирования котировки ценных бумаг и курса валют;
  • предупреждения мошенничества с кредитными карточками;
  • оценки стоимости недвижимости;
  • оценки финансового состояния предприятий и риска невозврата кредитов;
  • обработки радиолокационных сигналов;
  • контроля движения на скоростных автомагистралях и железных дорогах;
  • диагностики в медицине;
  • добычи знаний из больших объемов данных в бизнесе, финансах и научных исследованиях.

Нейронные сети можно использовать при следующих условиях:

  1. Если задачу может решать человек.
  2. Если при решении задачи можно выделить множество входных факторов (сигналов, признаков, данных и т.п.) и множество выходных факторов.
  3. Если изменения входных факторов приводит к изменению выходных.

При применении нейронных сетей необходимо решить следующие задачи:

  1. Постановка задачи, пригодной для решения с помощью нейронной сети.
  2. Выбор модели ИНС.
  3. Подготовка исходных данных для обучения ИНС.
  4. Обучение ИНС.
  5. Собственно решение задачи с помощью обученной ИНС

Кроме того, иногда нужен еще один этап – интерпретация решения, полученного нейронной сетью.

Структура нейронной сети

Несмотря на большое разнообразие вариантов нейронных сетей , все они име­ют общие черты. Так, все они, как и мозг человека, состоят из боль­шого числа однотипных элементов - нейронов, которые имитируют ней­роны головного мозга, связанных между собой.

Рис. 8. Биологический нейрон

Биологический нейрон моделируется как устройство, имеющее несколько входов и один выход. Каждому входу ставится в соответствие некоторый весовой коэффициент (w ), характеризующий пропускную способность канала и оценивающий степень влияния сигнала с этого входа на сигнал на выходе. Обрабатываемые нейроном сигналы могут быть аналоговыми или цифровыми (1 или 0). В теле нейрона происходит взвешенное суммирование входных возбуждений, и далее это значение является аргументом активационной функции нейрона.

На рис. 9 показана схема искусственного нейрона.

Рис. 7.1. Схема искусственного нейрона

Состояние нейрона определяется по формуле

, (7.1)

n - число входов нейрона,

x i - значение i-го входа нейрона,

w i - вес i-го синапса.

Затем определяется значение аксона нейрона по формуле

Y = f (S ), (7.2)

Где f - некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сигмоид, который имеет следующий вид:

. (7.3)

Основное достоинство этой функции в том, что она дифференцируема на всей оси абсцисс и имеет очень простую производную:

При уменьшении параметра a сигмоид становится более пологим, вырож­даясь в горизонтальную линию на уровне 0,5 при a =0. При увеличении a сигмоид все больше приближается к функции единичного скачка.

Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Среди различных структур нейронных сетей одной из наиболее известных является многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми аксонами нейронов предыдущего слоя или, в случае первого слоя, со всеми входами НС. Такие нейронные сети называются полносвязными.

Обучение нейронной сети

Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы «А», мы спрашиваем его: «Какая это буква?» Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: «Это буква А». Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют «обучение с учителем».

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы «А» на вход сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе с меткой «А» уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой «А», а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса сети стабилизируются, причем сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что «нейронная сеть выучила все примеры», «нейронная сеть обучена», или «нейронная сеть натренирована». В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную сеть считают натренированной и готовой к применению на новых данных.

Итак, под обучением понимается процесс адаптации сети к предъявляемым эталонным образцам путем модификации (в соответствии с тем или иным алгоритмом) весовых коэффициентов связей между нейронами.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейросеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки требуется хотя бы несколько десятков (а лучше сотен) примеров.

Активационная функция нейрона

Активационная функция нейрона определяет нелинейное преобразование, осуществляемое нейроном.

Существует множество видов активационных функций, но более всего распространены следующие четыре:

1. Пороговая функция. На рис. 7.2, а приведен ее график.

. (7.5)

Первая из введенных активационных функций, она была описана в ра­боте Мак-Каллока и Питтса. В честь этого модель нейрона с пороговой акти­ва­ционной функцией называется моделью Мак-Каллока-Питтса.

2. Кусочно-линейная функция. Она изображена на рис. 7.2, б и опи­сы­ва­ется следующей зависимостью:

. (7.6)

В данном случае a =1, и коэффициент наклона линейного участ­ка выбран еди­ничным, а вся функция может интерпретироваться как аппроксимация нели­ней­ного усилителя. При бесконечно большом ко­эф­фициенте наклона линейного участка функция вырождается в пороговую.

В большинстве типов искусственных нейронных сетей ис­поль­зуются ней­ро­ны с линейной активационной функцией , пред­ставляющей собой част­­ный случай (7.6) с неограниченным ли­ней­ным участком.

Рис. 7.2. Типы активационных функций
а), г) пороговая; б) линейная; в) сигмоидальная;
д) тангенциальная; е) радиально-базисная активационные функции

3. Сигмоидальная функция. Это наиболее широко используемый тип акти­ва­ционной функции. Она была введена по аналогии с пороговой функцией, но вез­де является строго монотонно возрастающей, непрерывной и диф­фе­рен­ци­ру­е­мой (рис. 7.2, в ). Дифференцируемость является важным свой­ством для анализа нейронной сети и некоторых методов их обучения.

В общем виде сигмоидальная активационная функция описывается зависимостью:

, (7.7)

где a - параметр, определяющий наклон функции.

Варьированием его могут быть получены разные виды сигмоида. Наи­бо­лее часто используется a = 1. В случае бесконечно большого a сигмоидальная функция вырождается в пороговую.

Помимо перечисленных функций, изменяющихся в диапазоне , вводятся также их аналоги с областью значений [–1, 1]. Так, например (рис. 7.2, г ), пороговая функция может быть переопределена как

. (7.8)

Вместо сигмоидальной активационной функции широко применяется гиперболический тангенс, обладающий аналогичными свойствами (рис. 11, д )

. (7.10)

Нечетность этой функции делает ее удобной для решения задач уп­рав­ле­ния.

4. Во введенных Брумхеадом и Лоуе нейронных сетях в качестве активационной применяется функция Гаусса (рис. 7.2, е )

Ее аргумент рассчитывается по формуле:

, (7.12)
где

z - вектор входных сигналов нейрона,

c - вектор координат центра окна активационной функции ,

s - ширина окна,

|| || - евклидово расстояние.

В теории нейронных сетей активационные функции типа

(7.13)

называются радиально-базисными функциями (РБФ), а основанные на них сети - РБФ-сетями (RBF - radial basis function).

Представление входных данных

Особенность нейронной сети в том, что в них все входные и выходные па­ра­метры представлены в виде чисел с плавающей точкой обычно в диапазоне . В то же время данные предметной области часто имеют другое коди­ро­ва­ние. Так, это могут быть числа в произвольном диапазоне, даты, сим­воль­ные стро­ки. Таким образом, данные о проблеме могут быть как количественными, так и качественными. Рассмотрим сначала преобразование качественных данных в числовые, а затем способ преобразования входных дан­ных в требуемый диа­па­зон.

Качественные данные мы можем разделить на две группы: упо­ря­до­чен­ные (ординальные) и неупорядоченные. Для определения способов ко­ди­рования этих данных рассмотрим задачу о прогнозировании ус­пеш­нос­ти лечения какого-либо заболевания. Примером упорядоченных данных мо­гут, например, являться данные о дополнительных факторах риска при данном заболевании.

А также возможным примером может быть возраст больного.

Опасность каждого фактора возрастает в таблицах при движении слева направо.

В первом случае видим, что у больного может быть несколько фак­то­ров рис­­ка одновременно. В этом случае нам необходимо использовать такое ко­ди­ро­вание, при котором отсутствует ситуация, когда разным комбинациям фак­торов со­от­ветствует одно и то же значение. Наиболее распространен способ ко­ди­ро­вания, когда каждому фактору ставится в соответствие разряд двоичного числа. Число 1 в этом разряде говорит о наличии фактора, а число 0 - о его отсутствии. Параметру нет можно поставить в соответствие число 0. Таким образом, для представления всех факторов достаточно четырех разрядного двоичного числа. Таким образом, число 1010 2 = 10 10 означает наличие у больного гипертонии и употребления алкоголя, а числу 0000 2 соответствует отсутствие у больного факторов риска. Таким образом, факторы риска будут представлены числами в диапазоне .

Во втором случае мы также можем кодировать все значения двоичными ве­сами, но это будет нецелесообразно, так как набор возможных значений будет слиш­ком неравномерным. В этом случае более правильным будет установка в со­от­ветствие каждому значению сво­его веса, отличающегося на единицу от веса со­седнего значения. Так число 3 будет соответствовать возрасту 50-59 лет. Таким образом, возраст будет закодирован числами в диапазоне .

Аналогично можно поступать и для неупо­рядоченных данных, поставив в соответствие каждому значению ка­кое-либо число. Однако, это вво­дит нежелательную упорядоченность, которая может исказить данные и сильно затруднить процесс обу­чения. В качестве одного из способов решения этой про­блемы мож­но предложить поставить в соответствие каждому значению одного из входов нейронной сети. В данном случае при наличии этого значения со­от­ветству­ющий ему вход устанавливается в 1 или в 0 при противном слу­чае. Дан­ный способ не является панацеей, ибо при боль­шом количестве вариантов вход­ного значения число входов ней­рон­ной сети раз­растается до огромного количества. Это резко увеличит затраты вре­мени на обучение. В качестве ва­ри­ан­та обхода этой проблемы мож­но использовать несколько другое решение. В со­ответствие каждому зна­чению входного параметра ставится бинарный вектор, каждый раз­ряд которого соответствует отдельному входу нейронной сети. Например, если чис­ло возможных значений параметра 128, то можно ис­поль­зовать семиразрядный вектор. Тогда первому значению будет соот­ветствовать вектор 0000000, 128-му - 1111111, а, например, значению 26 - 0011011. Тогда число требуемых для кодирования параметров входов можно определить как

N = Log 2 (n ) , (7.14)
где

n - количество значений параметра,

N - количество входов.

Преобразование числовых входных данных

Для нейронной сети необходимо чтобы входные данные лежали в диа­па­зо­не , в то время как данные проблемной области могут лежать в любом ди­а­пазоне. Пред­положим, что данные по одному из параметров лежат в диапазоне . Тогда простым способом нормирования будет

, (7.15)
где

x - исходное значение параметра,

Значение, подаваемое на вход нейронной сети.

Этот способ кодирования не лишен недостатков. Так в случае если , то распределение данных на входе может принять вид

Рис. 11. Распределение входных параметров

Распределение входных параметров будет крайне неравномерным, что приведет к ухудшению качества обучения. Поэтому в подобных ситуациях, а также в случае, когда значение входа лежит в диапазоне }