Сети с коммутацией пакетов Х.25 и frame relay. Сетевой уровень сети X.25

Сети имеют глобальный характер и реализованы на коммутации пакетов между последними узлами. Сети х.25 работают на трех нижних уровнях модели OSI. Структура сети показана на рис.1, где видно:

  • DCE — телекоммуникационное оборудование (модемы), реализующие доступ к сети
  • DTE — аппаратура транспортировки данных
  • PSE — коммутаторы пакетов, реализующие облако глобальной сети

Для терминалов, которые не поддерживают X.25 полностью, есть простые устройства PAD — сборщики разборщики пакетов. Они содержат один или более асинхронных портов, к которые присоединяются обычные терминалы и один синхронный порт х.25. Весь трафик их асинхронных портов собирается в буфер памяти PAD и по заполнению пакета он отправляется в сеть. Разборка реализована таким же образом.

Физический уровень определяет использование любого родственного последовательного синхронного интерфейса: и G.703. Для реализации таких интерфейсов нужно что бы цепи, DTR,RTS,DSR,CTS были в положении включено , иначе работать не будут. На физическом уровне нету контроля управления и достоверности потоком — эти задачи реализуются сетевым и канальным уровнем.

Канальный уровень реализует гарантированную доставку, контроль потока и целостность данных, при этом задержка всего лишь сотни миллисекунд. Протокол LAP-B реализует канальный уровень. Связь реализуется между парой устройств DTE по запросу инициатора. После установки соединения пара может вести полнодуплексный обмен данными. Логическое соединение, которое поддерживает надежных двухсторонний обмен между парой устройств называют виртуальной цепью . Физическая виртуальная цепь может проходить через несколько PSE. Виртуальные цепи могут быть постоянные и коммутируемые. Коммутируемые виртуальные цепи SVC — используются для нерегулярного обмена информацией и нуждаются в поддержании, установки и завершении сеанса каждый раз при нужды в сеансе. Постоянные виртуальные цепи PVC — не нуждаются в установки сеанса, и DTE может обмениваться данными в любой момент.

Сетевой уровень Х.25 реализуется с помощью протокола PLP. Этот протокол управляет обменом кадрами через виртуальные цепи. Пакеты PLP ложатся в поле данных кадра LAPB. Протокол PLP может работать и через LLC2, ISDN (LAPD) и он определяет 5 режимов:

  • Call setup — установка соединения, реализуется для организации коммутируемой виртуальной цепи между DTEб реализуя адресацию х.121. Режим относится к каждой виртуальное цепи, которое подключено через физическое соединение
  • Data-transfer mode — Режим транспортировки информации реализуется при обмене информацией через виртуальные сети. Этот режим выполняет сегментацию, заполнение недостающих бит, управление потоком и контроль ошибок. Используется и PVC и SVC
  • Idle mode — режим паузы, нужен тогда, когда виртуальная коммутируемая цепь уже установлена, но обмен информацией не происходит. Для PVC не нужен
  • Call-clearing mode — сброс соединения, нужен для разрыва сеанса
  • Restarting mode — режим рестарта, нужен для синхронизации транспортировки между локальным DCE и DTE.

Поле данных в пакете может иметь длину до 4096 байт (стандарт — 128). Адресация узлов DTE реализуется относительно х.121, что дает единое пространство адресов на земле. Есть 3 варианта адресации:

  • Полный международный телефонный номер: адрес начинается с префикса 9, за которым идет трехзначный код страны, а затем телефонный номер в стране (11 цифр)
  • Полный международный сетевой адрес: начинается с префикса 0, после которого идет трехзначный код страны а затем номер сети в стране и номер узла
  • Внутренний сетевой адрес: начинается с номера сети в стране, а потом идет номер узла

Сети х.25 отлично применяются для обмена данными между пользователями, подключения терминальных узлов, построение систем клиент-сервер. Протокол х.25 поддерживают разные маршрутизаторы и мосты. Протокол стандартизирован и четко вписывается в модель OSI. Недостатком такой сети является то, что присутствует значительная задержка передачи пакетов.

Фраза, вынесенная в заголовок данной статьи, в двух словах отображает сегодняшнюю ситуацию с технологией X.25. В западной прессе теперь очень трудно встретить рассмотрение проблем, связанных с использованием протокола X.25; более горячими темами сегодня в области территориальных сетей являются, например, технологии frame relay и ATM. Несмотря на это, даже в странах Запада самые передовые компании, выпускавшие ранее только высокоскоростное оборудование, дополняют свой спектр устройств оборудованием X.25. Пример тому - появление в нынешнем году в ассортименте оборудования фирмы StrataCom узлов X.25.

Особенно актуально рассмотрение решений технологий X.25 для России и сопредельных стран с аналогичной инфраструктурой каналов.

В этой статье мы обсудим протокол X.25 и связанный с ним стек протоколов, а также сети, базирующиеся на данной технологии. Наша задача показать, что представляют собой сети X.25 и почему широкому кругу пользователей выгодно использовать уже функционирующие магистральные сети X.25, а некоторым из них, представляющим крупные организации, даже строить свои собственные сети.

Мы будем называть сетями X.25, или сетями пакетной коммутации сети, доступ к которым производится в соответствии с рекомендациями МККТТ X.25 (в соответствии с X.3/X.28 в случае асинхронного доступа).

Итак, почему именно сети X.25? Дело в том, что на сегодняшний день, несмотря на появление новых, интегральных технологий сетей передачи данных/сетей связи, рассчитанных на высокоскоростные каналы связи, сети X.25 по-прежнему наиболее распространены.

Если рассматривать все имеющиеся сегодня сети передачи данных общего пользования, то окажется, что именно сети X.25 с наибольшим основанием могут быть уподоблены телефонным сетям. Точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, вы можете связаться с абонентом практически в любой точке мира, так и установив соединение вашего компьютера с ближайшим узлом сети X.25, вы сможете осуществить связь с любым из миллиона пользователей сетей X.25 по всему миру. Для этого вам надо лишь знать его сетевой адрес.

Что же такое сети X.25? Для чего они нужны? На базе какого оборудования и какой теории они строятся?

ПРОТОКОЛЫ СЕТЕЙ X.25

Сети X.25 получили свое название по имени рекомендации - "X.25", выпущенной МККТТ (Международный консультативный комитет по телефонии и телеграфии). Данная рекомендация описывает интерфейс доступа пользователя в сеть передачи данных и интерфейс взаимодействия с удаленным пользователем через сеть передачи данных.

Внутри же самой сети передача данных может происходить в соответствии с другими правилами. Ядро сети может быть построено и на более скоростных протоколах frame relay. Мы, однако, рассматривая вопросы построения сетей X.25 в рамках этой статьи, будем иметь в виду сети, передача данных внутри которых производится также по протоколам, описанным в рекомендации X.25. Именно таким образом и строится в настоящее время большинство корпоративных сетей X.25 в России.

Сегодня достигнут достаточно высокий уровень совместимости оборудования, выпускаемого различными фирмами, как в рамках одной сети, так и разнообразных сетей X.25. Наибольшие проблемы в области совместимости возникают в тех случаях, когда надо управлять из одного центра узлами сети, построенными на базе оборудования разных фирм. Однако, благодаря установке на оборудовании X.25 агентов SNMP, и эта проблема в ближайшем будущем будет, видимо, решена. Одновременно ведется работа по расширению возможностей протокола SNMP в части его соответствия задачам управления большими территориально-распределенными сетями.

Первый описывает уровни сигналов и логику взаимодействия в терминах физического интерфейса. (Те из читателей, которым приходилось, например, подключать модем к последовательному порту персонального компьютера через интерфейс RS-232/V.24, имеют представление об этом уровне.)

Второй (протокол доступа к каналу/процедура сбалансированного доступа к каналу, LAP/LAPB), с теми или иными модификациями, достаточно широко представлен сейчас в оборудовании массового спроса - например в модемах - протоколами типа сетевого протокола MNP компании Microcom, отвечающими за коррекцию ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне управления логическим каналом LLC.

Этот уровень протоколов отвечает за эффективную и надежную передачу данных по соединению "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается коррекция ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова к получению данных, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, он определяет параметры, меняя значения которых, режим передачи можно оптимизировать по скорости в зависимости от протяженности канала между двумя точками (времени задержки в канале) и его качества (вероятности искажения информации при передаче).

Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" (frame). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которое в случае двухточечного соединения представляет собой адрес А или адрес B. Далее следует поле типа кадра, указывающее на то, несет ли кадр в себе информацию или является чисто служебным (например тормозит поток информации или извещает передающую сторону о приеме/неприеме предыдущего кадра). В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении заданного порогового значения нумерация опять начинается с нуля. И наконец, заканчивается кадр контрольной последовательностью, подсчитываемой при передаче кадра по определенным правилам. По этой последовательности на приеме происходит проверка на предмет искажения информации при передаче кадра.

Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать с более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, число кадров, посылаемое передающей стороне без подтверждения от принимающей стороны, тоже можно менять. Данный параметр связан с так называемым "модулем нумерации", т.е. со значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть задано равным в пределах от 8 (для тех каналов, задержка передачи информации в которых не слишком велика) до 128 (для спутниковых каналов, например, когда задержка при передаче информации по каналу велика).

И, наконец, третий уровень протоколов - сетевой. Он наиболее интересен в контексте обсуждения сетей X.25, так как их специфику, в первую очередь, определяет именно он.

Функционально данный протокол отвечает прежде всего за маршрутизацию в сети передачи данных X.25, т. е. за доведение информации от "точки входа" в сеть до "точки выхода" из нее. Со своей стороны протокол третьего уровня также структурирует информацию, иными словами, разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" (packet). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, собственные поля адреса, тип пакета, контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. Главным образом это касается поля адреса, которое в пакете состоит из 15 цифр; поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру. Структуру сетевого адреса определяет рекомендация X.121.

Введя термин "пакет", мы можем перейти к следующему вопросу, а именно: как же происходит доставка информации от одного абонента до другого через сеть X.25? Для этого используется так называемый метод "коммутации пакетов" (packet switching), в связи с чем сети X.25 еще именуют сетями пакетной коммутации. Данный метод реализуется посредством установления между абонентами виртуальных, т.е. логических (в отличие от физических) соединений (virtual circuits). Для того чтобы передать информацию от абонента A к абоненту B, между ними прежде устанавливается виртуальное соединение, иначе - происходит обмен пакетами "запрос вызова" ("call request") - "вызов принят" ("call accept"). Только после этого между двумя абонентами может производиться обмен информацией.

Виртуальные соединения могут быть как постоянными (permanent), так и коммутируемыми (switched). Коммутируемое соединение, в отличие от постоянного виртуального соединения, устанавливается в каждом сеансе обмена информацией. Тут можно привести прямые аналогии из области телефонии. Действительно, если вы имеете выделенный ("постоянный") телефонный канал между двумя абонентами, то не надо каждый раз набирать номер вашего абонента, - достаточно лишь снять трубку телефона. Количество виртуальных соединений, одновременно поддерживаемых на базе одного физического канала, зависит от конкретного типа оборудования, используемого для обеспечения таких соединений. Что вполне понятно, т.к. для поддержки каждого соединения на этом оборудовании должен резервироваться определенный ресурс (например оперативная память).

ПРЕИМУЩЕСТВА СЕТЕЙ X.25

Метод коммутации пакетов, лежащий в основе сетей X.25, определяет основные преимущества таких сетей или, другими словами, их область применения. В чем же это преимущество? Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам, в отличие, например, от случая использования пары модемов, соединенных через канал того или иного типа. На самом деле, если у вас и вашего абонента на компьютерах установлены модемы, вы можете обмениваться с ним информацией. Однако используемой телефонной линией одновременно с вами не сможет воспользоваться уже никто другой.

Благодаря реализованному в сетях X.25 механизму разделения канала сразу между несколькими пользователями, во многих случаях оказывается экономически выгодней производить оплату за каждый байт переданной или полученной информации, а не оплачивать время применения телефонной линии при передаче данных по сети X.25. Особенно ощутимо такое преимущество в случае международных соединений.

Метод разделения физического канала между абонентами в сетях X.25 называют еще мультиплексированием канала, точнее, "логическим" или "статистическим" мультиплексированием (Рис. 1). Термин "логическое мультиплексирование" вводится, чтобы отличить этот метод, например, от временного разделения канала. При временном разделении канала каждому из разделяющих его абонентов выделяется в каждую секунду строго определенное количество миллисекунд для передачи информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в данный момент времени.

Рисунок 1.
Мультиплексирование канала в сетях X.25.

Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Означает ли это, что вам, прежде чем подключаться к уже действующей сети X.25 или начинать создавать свою сеть, необходимо проводить детальный анализ вероятностных характеристик потоков информации, циркулирующих в вашей системе? Конечно, нет. Такие расчеты уже проведены. Накоплен большой опыт использования сетей X.25. Известно, что использование сети X.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных, а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Иными словами, все приложения, в которых трафик в сети не является равномерным во времени.

Какие еще преимущества дает сеть X.25? Может быть, одно из самых важных достоинств сетей, построенных на протоколах, описанных в рекомендации X.25, состоит в том, что они позволяют передавать данные по каналам телефонной сети общего пользования (выделенным и коммутируемым) оптимальным образом. Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

Эффективный механизм оптимизации процесса передачи информации через сети X.25 - это механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных, имеется в оборудовании X.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются алгоритмами перехода к альтернативному маршруту, а также допустимым количеством таких маршрутов. В некоторых типах оборудования, например, переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других же переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов, и решение принимается на основании многопараметрической формулы (оборудование фирмы Motorola ISG, например). За счет альтернативной маршрутизации может быть значительно увеличена надежность работы сети, а это значит, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута. В связи с этим построение сети по звездообразной схеме можно считать вырожденным случаем. Правда, там, где есть только один узел сети X.25, установленный в рамках той или иной сети общего пользования, такая топология сети все еще используется довольно часто.

ДОСТУП ПОЛЬЗОВАТЕЛЕЙ К СЕТЯМ X.25. СБОРЩИКИ-РАЗБОРЩИКИ ПАКЕТОВ

Рассмотрим теперь, каким образом на практике реализуется доступ разных типов пользователей к сети X.25. Прежде всего, возможна организация доступа в пакетном режиме (рекомендации X.25). Для осуществления доступа с компьютера в сеть в пакетном режиме можно, например, установить в компьютер специальную плату, обеспечивающую обмен данными в соответствии со стандартом X.25.

Для подключения локальной сети через сеть X.25 используются также платы компаний Microdyne, Newport Systems Solutions и др. Кроме того, доступ из локальной сети в сеть X.25 может быть организован еще и при помощи мостов/маршрутизаторов удаленного доступа, поддерживающих протокол X.25 и выполненных в виде автономных устройств. Преимущества таких устройств над встраиваемыми в компьютер платами, помимо большей производительности, заключается в том, что они не требуют установки специального программного обеспечения, а сопрягаются с локальной сетью по стандартному интерфейсу, что позволяет реализовать более гибкие и универсальные решения.

Вообще, подключение пользовательского оборудования к сети в пакетном режиме очень удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Если же вам надо подключить компьютер к сети в монопольном режиме, то тогда подключение производится по другим стандартам. Это стандарты X.3, X.28, X.29, определяющие функционирование специальных устройств доступа в сеть - сборщиков/разборщиков пакетов - СРП (packet assembler/dissasembler-PAD). На практике термин "СРП" малоупотребим, поэтому и мы в качестве русскоязычного воспользуемся термином "ПАД".

ПАДы используются для доступа в сеть абонентов при асинхронном режиме обмена информацией, т.е. через, например, последовательный порт компьютера (непосредственно или c применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный (порт X.25). ПАД накапливает поступающие через асинхронные порты данные, упаковывает их в пакеты и передает через порт X.25 (Рис. 2).

(1x1)

Рисунок 2.
Пример сложной сети X.25 с подключением устройств различного типа: от компьютеров до банковского терминального оборудования.

Конфигурируемые параметры ПАДа определяются выполняемыми задачами. Эти параметры описываются стандартом X.3. Совокупность параметров носит название "профайла" (profile); стандартный набор состоит из 22 параметров. Функциональное назначение данных параметров одинаково для всех ПАДов. В профайл входят параметры, задающие скорость обмена по асинхронному порту, параметры, характерные для текстовых редакторов (символ удаления знака и строки, символ вывода на экран предыдущей строки и т.п.), параметры, включающие режим автоматической добивки строки незначащими символами (для синхронизации с медленными терминалами), а также параметр, определяющий условие, при выполнении которого формирование пакета заканчивается.

УЗЛЫ СЕТИ X.25. ЦЕНТРЫ КОММУТАЦИИ ПАКЕТОВ

Параметры, описывающие канал X.25, являются немаловажными и для узловых элементов собственно сети X.25, называемых Центрами Коммутации Пакетов - ЦКП (или коммутатор пакетов, packet switch), однако ими список параметров ЦКП, конечно, не исчерпывается. В процессе конфигурации ЦКП обязательно требуется заполнить таблицу маршрутизации (routing table), позволяющую определить, на какой из портов ЦКП направляются поступившие в них пакеты в зависимости от адресов, содержащихся в этих пакетах. В таблице задаются как основные, так и альтернативные маршруты. Кроме того, важная функция некоторых ЦКП - это функция стыковки сетей (шлюза между сетями).

Действительно, в мире существует великое множество сетей X.25 и общего пользования, и частных, или иначе - корпоративных, ведомственных. Естественно, в различных сетях могут быть установлены разные значения параметров передачи по каналам X.25 (длина кадра и пакета, величины пакетов, система адресования и т.д.). Для того чтобы все эти сети могли стыковаться друг с другом, была разработана рекомендация X.75, определяющая правила согласования параметров при переходе из сети в сеть. Сопряжение вашей и соседних сетей рекомендуется производить через ЦКП, в котором с достаточной полнотой реализована поддержка шлюзовых функций, - такой ЦКП, например, должен уметь "транслировать" адреса при переходе из одной сети в другую. Эта функция обычно реализуется с помощью конфигурации специальной таблицы трансляции адресов в шлюзовом ЦКП. Для ЦКП, несопрягающихся с узлами другой сети пакетной коммутации, наличие шлюзовых функций не является обязательным.

Первой разработанной сетью с коммутацией пакетов является сеть X.25, которая описана в одноименной рекомендации МСЭ-Т. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий КТЧ) благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровня и обеспечивают передачу данных со скоростью до 64 Кбит/с .

Стандарт Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

DTE (data terminal equipment) – аппаратура передачи данных (кассовые аппараты, банкоматы, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).

DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети на стороне оператора связи).

PSE (packet switching exchange) – коммутаторы пакетов.

Рисунок – Структурная схема сети X.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль сигнализации.

Физический уровень

На физическом уровне Х.25 используются аналоговые выделенные линии КТЧ. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis, который формирует данные в виде потока данных .

Канальный уровень

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры . Контроль ошибок производится во всех узлах сети и в случае выявления ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B , который работает только с двухточечными каналами связи, поэтому адресация не требуется .



Сетевой уровень

Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, который разбивается на пакеты . Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации.

Пример кабелей DTE и DCE в сетях с коммутацией пакетов V.35*

- DTE

DCE -

* Примечание. Протоколы семейства V.xx – это дальнейшее развитие передачи пакетных данных поверх телефонных сетей, главным образом за счет увеличения количества симметричных линий связи. Максимальная скорость в сетях V.35 – до 8 Мбит/с.


Компьютерная пакетная сеть IP

Internet Protocol (IP, досл. «межсетевой протокол») –маршрутизируемый протокол сетевого уровня стека TCP/IP. Именно IP стал тем протоколом, который объединил отдельные компьютерные сети во всемирную сеть Интернет (WAN). Неотъемлемой частью протокола является адресация сети.


Рисунок – Принцип передачи IP-пакетов

1) Без установления соединения: перед отправкой пакетов данных соединение с узлом назначения не устанавливается (т.е. не известно, присутствует ли получатель, доставлено или прочитано письмо).

2) Доставка с максимальными усилиями (ненадёжная) : доставка пакетов не гарантируется.

3) Независимость от среды: функционирует независимо от среды, в которой передаются данные.


Инкапсуляция в IP-сети (создание пакетов)

Рисунок – Процесс формирования IP– пакетов

Заголовок IP-пакета всегда должен содержатьполе адреса отправителя и узла назначения!!!

IP-адрес (от англ. Internet Protocol Address) – уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети.

Существует две рабочие версии IP протокола: IPv4 и IPv6 .

В версии протокола IPv4 IP-адрес имеет длину 4 байта (октета) и представляет собой 32-битовое число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками,

например, 192.168.0.3.

В 6-й версии IP-адрес (IPv6 ) является 128-битовым. Внутри адреса в качестве разделителей используются двоеточия (напр. 2001:0db8:85a3:0000:0000:8a2e:0370:7334). Ведущие нули допускается в записи опускать. Нулевые группы, идущие подряд, могут быть опущены, вместо них ставится двойное двоеточие (fe80:0:0:0:0:0:0:1 можно записать как fe80::1). Более одного такого пропуска в адресе не допускается.


IP-адрес состоит из двух частей: номера сети и номера узла (хоста) , которые разделяются маской. Маска может быть представлена в виде 4-байтного слова (например, 255.255.255.0 ) или быть представлена компактной записью через наклонную черту – «слеш» (например, /24 ).

Примечание : значения 255.255.255.0 и /24 – есть суть разного представления одного и того же двоичного числа (4-октетов): 11111111.11111111.11111111.00000000. В первом случае двоичные числа переводятся в десятичные внутри своих октетов, во втором случае /24 – есть количество идущих подряд единиц – слева на право.

Маска представляет собой фильтр с помощью которого определяют («отсекают») сетевую часть IP-сети и часть IP-адресов оконечных узлов (хостов). Осуществляется это по логической операции «И».

Пример:

Есть IP-адрес 62.76.34.36 и маска 255.255.255.224, определить адрес сети и хостов?

Решение:
224
Сетевая часть Хостовая часть

Таким образом, сетевая часть есть 62.76.34.32/27, а хосты в диапазоне.33 – .62,

NUMBEREDHEADINGS__

Принцип установления виртуальных каналов в сети Х.25

Третий (сетевой ) уровень выполняет функцию коммутации пакетов сети передачи данных стандарта МСЭ-Т Х.25 . Описание принципа коммутации пакетов приведено в статье «Стек протоколов сети пакетной коммутации X.25 ».

Сетевой уровень Х.25 соответствует функции третьего уровня эталонной модели OSI – коммутация (маршрутизация) блока данных (в случае Х.25 – пакета данных “Д”). На сетевом уровне протокол Х.25/3 обеспечивает для уровней, расположенных выше в иерархии сервис с установлением соединений. Поэтому на этом уровне определены процедуры установления виртуальных соединений, передачи данных по виртуальным соединениям и разрыва виртуальных соединений. При использовании сервиса, ориентированного на соединение, каждый пакет данных вместо физического адреса включает в свой заголовок виртуального канала уникальный на узле коммутации номер, соответствующий логическому каналу. Протокол виртуального соединения стандарта Х.25 является мультиплексируемым протоколом, т.е. через один канал связи второго уровня может быть установлено много виртуальных соединений. Виртуальные соединения отличаются друг от друга уникальными логическими канальными номерами (LCN Logical Channel Number ). В качестве примера покажем передачу по одному и тому же каналу второго уровня пакетов двух разных виртуальных соединений (рис. 1).

Рис. 1. Пример виртуальных соединений по одному каналу второго уровня

На рис. 1 показана маршрутизация двух виртуальных соединений (каналов): одного между оконечными станциями Н1- Н2, другого между оконечными станциями Н3 – Н4. Центр коммутации пакетов Х.25 ЦКП (А) может отличить пакеты, поступающие от Н1 и Н3 (номера LCN у них одинаковые и равны 1), так как эти пакеты поступают в ЦКП(А) по разным физическим линиям. Следующий за ним ЦКП(С) различить эти пакеты не может. Поэтому, для того, чтобы различить виртуальные соединения Н3 - Н4 и Н1 - Н2 в заголовке пакета первого соединения устанавливается уникальное для этого центра LCN, а в заголовке пакета второго соединения другое уникальное LCN, На рис 1 эти значения равны соответственно 19 и 144. Эти пакеты поступают на основании физических адресов оконечных станций в соответствии с таблицей маршрутизации в ЦКП(С). В ЦКП(С) на выходе в заголовке пакета первого соединения устанавливается уникальное для этого центра LCN(73), а в заголовке пакета второго виртуального соединения другое уникальное LCN(75). Аналогичная процедура выполняется в последнем ЦКП(Е). Таким образом на одних и тех же участках сети ЦКП(А)-ЦКП(С)-ЦКП(Е) передаются пакеты двух разных виртуальных каналов (ВК).

Сеть Х.25 обеспечивает два вида сервиса установления соединения: постоянный виртуальный канал ПВК (PVC Permanent Virtual Circuit ) и коммутируемый виртуальный канал КВК (SVC Switched Virtual Circuit ).

Логические канальные номера LCN в таблицах маршрутизации ПВК устанавливаются оператором сети, т.е. отсутствует обмен служебными пакетами по установлению виртуального канала. Необходимость в таких каналах возникает у пользователей, которые нуждаются в постоянном соединении между ними. При большой интенсивности потоков предпочтительно использовать ПВК, который является более дешевой альтернативой арендованному каналу.

Основным недостатком ПВК является его низкая надежность, так как сеть не позволяет быстро и безошибочно восстановить соединение между пользователями при неисправности звена данных (канала связи) между ЦКП. КВК устанавливается автоматически с помощью служебных пакетов. Описание установления КВК приводится позже.

Режим коммутируемого виртуального канала КВК используется в тех случаях, когда информация передается между многими пользователями, а сеансы связи не частые или кратковременные. Применение в этих случаях ПВК означало бы установление соединений между всеми пользователями и необходимость производить оплату бездействующих соединений. Мультиплексирование в режиме КВК позволяет экономично использовать пропускную способность каналов связи и выгодно для пользователей сети.

На рис. 2 приведена иллюстрация мультиплексирования нескольких виртуальных каналов в один канал связи между ЦКП. Здесь через ВК1 обозначен виртуальный канал, соединяющий абонентов 1 и 1*, через ВК2 обозначен виртуальный канал, соединяющий абонентов 2 и 2*, через ВК3 обозначен виртуальный канал, соединяющий абонентов 3 и 3*, через ВК4 обозначен виртуальный канал, соединяющий абонентов 4 и 4*. На участке между ЦКП4 и ЦКП5 проходят все эти виртуальные каналы.

Рис. 2. Мультиплексирование виртуальных каналов

На рис. 3 приведены два виртуальных канала (КВК или ПВК), проходящие через три ЦКП. В первом виртуальном канале (КВК1 или ПВК1), изображенном сплошными линиями:

  • логический канальный номер LCN в заголовке входящего пакета в ЦКП1 –равен 5, в заголовке исходящего пакета – 3503;
  • в ЦКП2 соответственно 3503 и 1510;
  • в ЦКП3 соответственно 1510 и 2301.

Во втором виртуальном канале (изображенном пунктирными линиями) в ЦКП1 - 2020 и 1500; в ЦКП2 - 1500 и 835; в ЦКП3 - 835 и 4001.

Рис. 3. Прохождение пакетов двух виртуальных каналов через несколько ЦКП

Для того чтобы обеспечить индивидуальность виртуального канала, номер LCN в заголовке исходящего из ЦКП пакета должен быть уникальным. Это обеспечивается программным способом при установлении ВК с использованием свободного номера, не задействованного в этом ЦКП никаким другим соединением.

Рассмотрим информационные процессы в коммутируемом виртуальном канале . На рис. 4 приведен пример сети Х.25 с вычислительными средствами ЦКП1 и ЦКП2. Каждый из этих ЦКП состоит из центрального процессора (Ц пр), выполняющего функции сетевого уровня и канальных процессоров, выполняющих функции канального уровня (K пр).

Как видно из рисунка, канальные процессоры K пр 1, K пр 2, K пр 3 ЦКП1 и ЦКП2 взаимодействуют с центральным процессором Ц пр своего ЦКП и процессорами оконечных станций (Пр). Канальные процессоры K пр 4, K пр 5, K пр 6 взаимодействуют с центральным процессором Ц пр своего ЦКП и канальными процессорами смежных ЦКП.

Рис. 4. Вычислительные средства двух ЦКП сети X.25

Процессоры оконечных пунктов выполняют функции всех уровней модели OSI.

Диаграмма установления коммутируемого виртуального канала

На рис. 5 приведена упрощенная диаграмма установления КВК между оконечными пунктами А и Б и передача пакета данных «Д» по этому КВК от А в Б. Обработка пакетов «Запрос вызова» и «Вызов принят» выполняет одновременно функции составления таблицы маршрутизации по логическим канальным номерам LCN и установление коммутируемого виртуального канала.

Приведем краткое описание этих информационных процессов:

  1. с транспортного уровня оконечной станции А на сетевой уровень поступает примитив «Запрос» на установление КВК между А и Б;
  2. с сетевого уровня на канальный уровень станции А поступает пакет «Запрос вызова» («ЗВ»), в заголовке которого размещены физические адреса оконечных станций А и Б (адресация по рекомендации Х.121) и логический канальный номер LCN=1. Адреса Х.121 имеют максимальную длину, равную 14 цифрам, из которых одна цифра - код зоны. МСЭ-Т разделил мир на 7 зон, три цифры - идентификатор сети в зоне, десять цифр - номер сетевого терминала;
  3. с канального уровня станции А в ЦКП1 поступает кадр «I» с вложенным (инкапсулированным) в него пакетом «ЗВ». Кадр передается в канал связи;
  4. кадр «I» с входящим в него пакетом «3В» поступает на канальный процессор K пр 1 ЦКП1; На выходе K пр 1 этот кадр освобождается от заголовка и вложенный в него пакет «3В» поступает на центральный процессор Ц пр.
  5. центральный процессор Ц пр выполняет функции сетевого уровня и производит коммутацию этого пакета на K пр 4, установив при этом в заголовке новое значение LCN=123. Коммутация производится с помощью таблицы маршрутизации на основании физических адресов А и Б в заголовке пакета;
  6. кадр «I» с пакетом «3В» (c заголовком LCN=123) поступает на K пр 4 ЦКП2. На выходе K пр 4 кадр освобождается от заголовка;
  7. пакет с LCN=123 в заголовке поступает на Ц пр ЦКП2, где производится его коммутация на K пр 2 и установка нового значения LCN=4001;
  8. на выходе K пр 2 ЦКП2 формируется кадр «I» с вложенным в него пакетом «3В» (LCN=4001);
  9. этот кадр передается в канал и затем поступает на процессор оконечной станции Б;
  10. на оконечной станции Б кадр освобождается от заголовка после его обработки, и входящий в него пакет под измененным названием («Входящий вызов» – «ВВ») с LCN = 4001 поступает на сетевой уровень;
  11. после обработки заголовка поступившего пакета «ВВ» Ц Пр оконечной станции Б направляет примитив «индикация соединения» на транспортный уровень с указанием адресов А и Б;
  12. с транспортного уровня поступает примитив «ответ»;
  13. при положительном решении сетевой уровень оконечной станции Б формирует пакет «Вызов принят» («ВП») с LCN = 4001;
  14. процессор Пр отправляет «I» кадр с вложенным в него пакетом «ВП».

Рис. 5. Установление КВК и передача по нему пакета данных

Далее в обратном направлении по тому же пути до оконечной станции А пересылается информационный кадр, и на сетевой уровень А поступает пакет под названием «Соединение установлено» с LCN = 1. С сетевого уровня на транспортный уровень поступает примитив «подтверждение соединения». На этом завершается фаза установления КВК между оконечными пунктами А и Б. Следующая строка на диаграмме иллюстрирует прохождение от А в Б пакета «Данные» («Д») по установленному КВК.

Примитив с транспортного уровня сообщает сетевому уровню о необходимости передачи пакета «Д» по КВК между А и Б. Сетевой уровень пункта А формирует пакет «Д» c LCN = 1. Физические адреса А и Б в пакетах с данными «Д» отсутствуют, так как все пакеты с данными, принадлежащие информационному потоку А ↔ {\displaystyle \leftrightarrow } Б, будут пересылаться через сеть по одному и тому же маршруту, установленному КВК. Как видно из диаграммы, пакет «Д» проходит через ЦКП1 и ЦКП2 в оконечный пункт Б по тому же маршруту (через те же канальные процессоры) и с теми же логическими канальными номерами LCN, которые были во входящем и исходящем пакетах «Запрос вызова» и «Вызов принят».

В обратном направлении пакет «Д» (из Б в А) будет проходить по тому же маршруту и логические канальные номера LCN будут устанавливаться, как в выше приведенных пакетах «Вызов принят» и «Соединение установлено».

Установление КВК и передача пакетов «Д» между другими оконечными пунктами, подключенными к ЦКП1 и ЦКП2 (например, С-Д, Г-Е) производится через соответствующие канальные процессоры абонентского доступа (С - через K пр 2 ЦКП1, Г - через K пр 3 ЦКП1), но через одни и те же канальные процессоры K пр 4, подключенные к каналу связи между ЦКП1 и ЦКП2.

Логические канальные номера LCN в пакетах, передаваемых между ЦКП1 и ЦКП2, должны быть индивидуальными для каждого КВК. На этом участке могут проходить пакеты «Д» по всем КВК, максимальное число которых определяется в Х.25 полем в 12 бит. Максимальное число виртуальных каналов, обслуживаемых центральным процессором одного ЦКП, составляет 4094.

Перечислим некоторые из основных полей заголовка пакета сетевого уровня Х.25:

  • логический канальный номер LCN;
  • тип пакета (пакеты установления и сброса виртуального соединения, пакеты данных «Д» верхних уровней, пакеты управления потоком, пакеты прерываний, пакеты подтверждения прерываний). Длина поля данных пользователя в пакете дана по умолчанию равной 128 байт, но доступны также и другие значения: 16, 32, 64, 256, 512, 1024, 2048 и 4096 байт;
  • биты специальных операций (D – бит, М – бит, Q – бит).

Пакеты прерываний обеспечивают механизм, при помощи которого могут быть отправлены срочные данные. Большинство производителей оборудования поддерживают две очереди пакетов «Д» для каждого выходного порта – одна для обычных данных, а другая для данных прерываний (т.е с приоритетом). Прежде чем обслуживать обычную очередь производится проверка того, что очередь пакетов прерываний пуста.

Управление потоком данных является важным аспектом сервиса Х25/3 по причине природы операций виртуального соединения, требующих гарантированной доставки данных. Для гарантии того, что пакеты не потеряются, важно ограничить количество неподтвержденных пакетов, т.е. размер окна виртуального канала сетевого протокола.

На сетевом уровне Х25/3 предусмотрена возможность остановить отправку пакетов «Д» при получении пакета RNR - receive not ready (неготовность к приему ) по определенному виртуальному каналу. Этот механизм используется для снятия перегрузки.

Особенности протокола сетевого уровня Х.25

При сравнении с сетевым уровнем модели OSI других технологий сетей протокол сетевого уровня Х25/3 имеет несколько отличий. Этот стандарт не содержит протокола маршрутизации . Под протоколом маршрутизации понимается автоматическая коррекция таблиц маршрутизации при отказах каналов связи, перегрузке и других изменениях в сети. Эти функции в сети Х.25 (относительно таблицы маршрутизации по физическим адресам) отнесены к специфике реализации. Следует отметить, что протоколы маршрутизации разработаны в стандартах других сетей связи, (например, в системе сигнализации ОКС№7 , в IP-сети). Эти протоколы учитывают коррекцию таблицы маршрутизации при отказах каналов связи и узлов коммутации, при перегрузках.

Х.25 является протоколом интерфейса абонентского доступа .

На абонентском доступе сети Х.25 располагается два вида оборудования:

  • оконечное оборудование данных OOД (DTE , Data Terminal Equipment ), машина конечного пользователя, в качестве которой может быть терминал или компьютер;
  • оборудование окончания канала данных АКД (DCE , Data Circuit-terminating Equipment ). Функция канала данных состоит в подключении ООД к каналу передачи данных. АКД преобразует цифровой сигнал ООД в сигналы, согласованные с характеристиками существующих каналов связи (аналоговых или цифровых). Примером АКД является модем.

Протокол сетевого уровня Х25/3 выполняет несколько функций, которые обычно относятся к функциям транспортного уровня. Операции включают использование нескольких специальных битов в заголовках пакетов. Пакеты данных Х.25 содержит D – бит, Q – бит и М – бит.

Сквозное подтверждение (D – бит)

Когда бит D установлен в 1, то предусмотрено сквозное подтверждение приема пакета, т.е. от одного оконечного оборудования данных (ООД ) до другого ООД. Если пакет с D=1 достигает ООД получателя, то это оборудование отвечает за обеспечение подтверждения. Это подтверждение направляется обратно к ООД отправителя, таким образом, реализуя сквозное подтверждение. В этом случае с транспортного уровня снимается функция гарантии правильной последовательности принятых пакетов, которая обычно имеет место в сетях других технологий.

В сети Х.25 в большинстве случаев используется локальное подтверждение правильного приема пакетов, т.е. на участке между ООД и аппаратурой канала данных АКД. В этом случае за проверку правильной последовательности пакетов во входящем потоке отвечает транспортный уровень (четвертый уровень OSI).

Формирование и сборка пакетов данных (М – бит)

В соответствии с моделью OSI, транспортный уровень отвечает за сегментацию сообщений таким образом, чтобы размер сегмента не превышал максимального размера пакета, требуемого сетевым уровнем. Транспортный уровень получателя выполняет процесс обратный сегментации, чтобы восстановить сообщение. Посредством М – бита в заголовке пакета «Д» протокол сетевого уровня Х25/3 забирает у транспортного уровня функцию сегментации сообщений и их сборки. Результатом является последовательность связанных пакетов, которые после сборки образуют исходное сообщение. Для этого отправитель устанавливает М – бит всех пакетов за исключением последнего в последовательности пакетов в 1. В последнем пакете последовательности М – бит устанавливается в 0. На основании значений М – бита, получатель может собрать пакеты в исходное сообщение, прежде чем оно будет передано на транспортный уровень.

Отправка данных специального назначения (Q – бит)

Q – бит, находящийся в заголовке пакета данных, используется для указания альтернативного места назначения для содержимого поля пользовательских данных определенного пакета. В обычных условиях Q – бит в пакете «Д» установлен в 0. Это значит, что содержащиеся в пакете данные предназначены для конечного пользователя. Если Q – бит установлен в 1, это значит, что получатель содержимого поля является не «типичным» конечным пользователем, а некоторым другим объектом в местоположении получателя. Например, можно управлять конфигурацией удаленного конечного пользовательского устройства во время установленного виртуального соединения. Допустим, мы хотим изменить значение параметра канального уровня (такого как размер окна) во время обмена пакетами «Д». Для этого, используя Q - бит, можно отправить команду с новыми параметрами настройки в поле данных пакета Х.25. Когда этот пакет достигнет получателя, его содержимое будет направлено не на сетевой уровень, а на канальный уровень. Таким образом, Q – бит позволяет выбрать одно их двух мест назначения для содержимого каждого пакета «Д». Так как Q – бит занимает поле в 1 бит, то поддерживается один «нетипичный» конечный пользователь, который определяется во время установления соединения.

Услуга информационной безопасности «Замкнутая группа абонентов»

В рекомендации Х.25 предусмотрены дополнительные услуги. Замкнутая группа пользователей CUG (Closed User Group ) является одной из таких услуг и служит средством обеспечения безопасности в отношении защиты от несанкционированного доступа. Членом CUG назначается с помощью идентификатора, который включается в заголовок пакетов установления соединения коммутируемого виртуального канала. Без идентификатора CUG виртуальные соединения не будут устанавливаться с другими членами CUG. Это средство обеспечения безопасности имеет несколько режимов. В одном из них только члены CUG могут устанавливать виртуальные соединения друг с другом. Доступ за пределы группы CUG запрещен. Более того, доступ кого-либо извне также воспрещен. В другом режиме члены CUG могут устанавливать соединение с любым другим пользователем сети вне зависимости от того, является он или нет членом CUG. Однако установка соединений с членами группы CUG извне её запрещена. Хотя концепция группы CUG менее сложная и отличается от современных виртуальных частных сетей VPN (Virtual Private Network ), между ними можно провести тесную параллель. Для классической VPN характерно обеспечение не только защиты от несанкционированного доступа, но и выполнение требований по качеству обслуживания.

Глобальные сети с коммутацией пакетов

Лекция №11.

Сети X.25 являются самыми первыми сетями с коммутацией пакетов, использованных для объединения корпоративных сетей. Первоначально сети разрабатывались для низкоскоростной передачи данных по линиям связи с большим уровнем помех, и использовались для подключения банкоматов, кассовых терминалов, принимающих кредитные карточки, и для соединения сетей предприятий между собой.

Долгое время сеть X.25 была единственной широко распространенной коммерческой сетью (сеть Internet, как коммерческая стала эксплуатироваться совсем недавно), поэтому для корпоративных пользователей выбора не было.

В настоящее время, сеть X.25 продолжает успешно эксплуатироваться, используя высокоскоростные цифровые линии связи для соединения своих коммутаторов. Так, в частности, большинство банков и промышленных предприятий запада используют сеть X.25 для организации удаленного доступа к своим сетям.

Сеть X.25 состоит из коммутаторов, соединенных между собой по схеме «точка-точка», и работающих с установлением виртуального канала. Для связи коммутаторов могут использоваться цифровые линии PDH/SDH или аналоговые модемы, работающие по выделенной линии.

Компьютеры (маршрутизаторы), поддерживающие интерфейс X.25, могут подключаться к коммутатору непосредственно, а менее интеллектуальные терминалы (банкоматы, кассовые аппараты) – при помощи специального устройства PAD (Packet Assembler Disassembler). PAD может быть встроенным в коммутатор или удаленным. Терминалы получают доступ ко встроенному PAD по телефонной сети с помощью модемов (встроенный PAD также подключается к телефонной сети с помощью нескольких модемов). Удаленный PAD представляет собой небольшое автономное устройство, находящиеся в помещении клиента и подключенное к коммутатору через выделенную линию. К удаленному PAD терминалы подключаются через COM-порт (интерфейс RS-232C).

Один PAD обычно обеспечивает доступ для 8, 16 и 24 терминалов .

Терминалы не имеют конечных адресов в сети X.25 – адрес присваивается только порту PAD.

Адресация в сетях X.25 строиться по следующему принципу : в адресе используются десятичные цифры, длина адреса не может превышать 16 цифр . Если сеть X.25 не связана с внешним миром, то она может использовать любой адрес. Если же сеть X.25 планирует связаться с другими сетями, то необходимо придерживаться международного стандарта адресации (стандарт X.121 – International Data Numbers, IDN).

Формат адреса в сети X.25 представляет собой следующее:

4 цифры – код идентификации сети (Data Network Identification Code, DNIC), 3 цифры – определяют страну, в которой находится сеть X.25, 1 цифра – номер сети X.25 в данной стране, остальные цифры – номер национального терминала (National Terminal Number, NTN) (соответствуют адресу компьютера в сети).

Из приведенного формата, очевидно, что в одной стране может быть только 10 сетей X.25. Если требуется пронумеровать больше чем 10 сетей, то одной стране дается несколько кодов. Например, Россия имела до 1995 года один код – 250, а в 1995 году ей был выделен еще один код – 251.

В адресе могут использоваться не только цифры, но и произвольные символы (для этого к адресу нужно добавить специальный префикс), что позволяет универсальным коммутаторам, например коммутаторам сети ISDN, работать с пакетами сети X.25.

Основным недостатком сети X.25 является то, что она не дает гарантийной пропускной способности сети. Максимум на что она способна – это устанавливать приоритеты для отдельных виртуальных каналов. Поэтому сеть X.25 используется только для передачи трафика, чувствительного к задержкам (например, голоса). Решением этой проблемы занимаются сети Frame Relay и ATM.