Основные принципы объектно ориентированного подхода. Объектно-ориентированное программирование


2. Дайте определение понятию “класс”.
3. Что такое поле/атрибут класса?
4. Как правильно организовать доступ к полям класса?
5. Дайте определение понятию “конструктор”.
6. Чем отличаются конструкторы по-умолчанию, копирования и конструктор с параметрами?
7. Какие модификации уровня доступа вы знаете, расскажите про каждый из них.
8. Расскажите об особенностях класса с единственным закрытым (private) конструктором.
9. О чем говорят ключевые слова “this”, “super”, где и как их можно использовать?
10. Дайте определение понятию “метод”.
11. Что такое сигнатура метода?
12. Какие методы называются перегруженными?
13. Могут ли нестатические методы перегрузить статические?
14. Расскажите про переопределение методов.
15. Может ли метод принимать разное количество параметров (аргументы переменной длины)?
16. Можно ли сузить уровень доступа/тип возвращаемого значения при переопределении метода?
17. Как получить доступ к переопределенным методам родительского класса?
18. Какие преобразования называются нисходящими и восходящими?
19. Чем отличается переопределение от перегрузки?
20. Где можно инициализировать статические/нестатические поля?

21. Зачем нужен оператор instanceof?
22. Зачем нужны и какие бывают блоки инициализации?
23. Каков порядок вызова конструкторов и блоков инициализации двух классов: потомка и его предка?
24. Где и для чего используется модификатор abstract?
25. Можно ли объявить метод абстрактным и статическим одновременно?
26. Что означает ключевое слово static?
27. К каким конструкциям Java применим модификатор static?
28. Что будет, если в static блоке кода возникнет исключительная ситуация?
29. Можно ли перегрузить static метод?
30. Что такое статический класс, какие особенности его использования?
31. Какие особенности инициализации final static переменных?
32. Как влияет модификатор static на класс/метод/поле?
33. О чем говорит ключевое слово final?
34. Дайте определение понятию “интерфейс”.
35. Какие модификаторы по умолчанию имеют поля и методы интерфейсов?
36. Почему нельзя объявить метод интерфейса с модификатором final или static?
37. Какие типы классов бывают в java (вложенные… и.т.д.)
38. Какие особенности создания вложенных классов: простых и статических.
39. Что вы знаете о вложенных классах, зачем они используются? Классификация, варианты использования, о нарушении инкапсуляции.
40. В чем разница вложенных и внутренних классов?
41. Какие классы называются анонимными?
42. Каким образом из вложенного класса получить доступ к полю внешнего класса?

43. Каким образом можно обратиться к локальной переменной метода из анонимного класса, объявленного в теле этого метода? Есть ли какие-нибудь ограничения для такой переменной?
44. Как связан любой пользовательский класс с классом Object?
45. Расскажите про каждый из методов класса Object.
46. Что такое метод equals(). Чем он отличается от операции ==.
47. Если вы хотите переопределить equals(), какие условия должны удовлетворяться для переопределенного метода?
48. Если equals() переопределен, есть ли какие-либо другие методы, которые следует переопределить?
49. В чем особенность работы методов hashCode и equals? Каким образом реализованы методы hashCode и equals в классе Object? Какие правила и соглашения существуют для реализации этих методов? Когда они применяются?
50. Какой метод возвращает строковое представление объекта?
51. Что будет, если переопределить equals не переопределяя hashCode? Какие могут возникнуть проблемы?
52. Есть ли какие-либо рекомендации о том, какие поля следует использовать при подсчете hashCode?
53. Как вы думаете, будут ли какие-то проблемы, если у объекта, который используется в качестве ключа в hashMap изменится поле, которое участвует в определении hashCode?
54. Чем отличается абстрактный класс от интерфейса, в каких случаях что вы будете использовать?
55. Можно ли получить доступ к private переменным класса и если да, то каким образом?
56. Что такое volatile и transient? Для чего и в каких случаях можно было бы использовать default?
57. Расширение модификаторов при наследовании, переопределение и сокрытие методов. Если у класса-родителя есть метод, объявленный как private, может ли наследник расширить его видимость? А если protected? А сузить видимость?
58. Имеет ли смысл объявлять метод private final?
59. Какие особенности инициализации final переменных?
60. Что будет, если единственный конструктор класса объявлен как final?
61. Что такое finalize? Зачем он нужен? Что Вы можете рассказать о сборщике мусора и алгоритмах его работы.
62. Почему метод clone объявлен как protected? Что необходимо для реализации клонирования?

Ответы. Часть 1

1. Назовите принципы ООП и расскажите о каждом.

Объе́ктно-ориенти́рованное программи́рование (ООП) - это методология программирования, основанная на представлении программы в виде совокупности объектов, каждый из которых является экземпляром определенного класса, а классы образуют иерархию наследования.

Основные принципы ООП: абстракция, инкапсуляция, наследование, полиморфизм.

Абстракция — означает выделение значимой информации и исключение из рассмотрения незначимой. С точки зрения программирования это правильное разделение программы на объекты. Абстракция позволяет отобрать главные характеристики и опустить второстепенные.

Пример: описание должностей в компании. Здесь название должности значимая информация, а описание обязанностей у каждой должности это второстепенная информация. К примеру главной характеристикой для «директор» будет то, что это должность чем-то управляет, а чем именно (директор по персоналу, финансовый директор, исполнительный директор) это уже второстепенная информация.

Инкапсуляция — свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Для Java корректно будет говорить, что инкапсуляция это «сокрытие реализации». Пример из жизни — пульт от телевизора. Мы нажимаем кнопочку «увеличить громкость» и она увеличивается, но в этот момент происходят десятки процессов, которые скрыты от нас. Для Java: можно создать класс с 10 методами, например вычисляющие площадь сложной фигуры, но сделать из них 9 private. 10й метод будет называться «вычислитьПлощадь()» и объявлен public, а в нем уже будут вызываться необходимые скрытые от пользователя методы. Именно его и будет вызывать пользователь.

Наследование — свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм — свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта. Пример (чуть переделанный) из Thinking in Java:

public interface Shape { void draw(); void erase(); } public class Circle implements Shape { public void draw() { System.out.println("Circle.draw()"); } } public class Triangle implements Shape { public void draw() { System.out.println("Triangle.draw()"); } } public class TestPol { public static void main(String args) { Shape shape1 = new Circle(); Shape shape2 = new Triangle(); testPoly(shape1); testPoly(shape2); } public static void testPoly(Shape shape) { shape.draw(); } } //Вывод в консоль: //Circle.draw() //Triangle.draw()

public interface Shape {

void draw () ;

void erase () ;

public void draw () {

System . out . println ("Circle.draw()" ) ;

public class Triangle implements Shape {

public void draw () {

System . out . println ("Triangle.draw()" ) ;

public class TestPol {

Shape shape1 = new Circle () ;

Shape shape2 = new Triangle () ;

testPoly (shape1 ) ;

testPoly (shape2 ) ;

public static void testPoly (Shape shape ) {

shape . draw () ;

//Вывод в консоль:

//Circle.draw()

//Triangle.draw()

Есть общий интерфейс «Фигура» и две его реализации «Треугольник» и «Круг». У каждого есть метод «нарисовать». Благодаря полиморфизму нам нет нужды писать отдельный метод для каждой из множества фигур, чтобы вызвать метод «нарисовать». Вызов полиморфного метода позволяет одному типу выразить свое отличие от другого, сходного типа, хотя они и происходят от одного базового типа. Это отличие выражается различным действием методов, вызываемых через базовый класс (или интерфейс).
Здесь приведен пример полиморфизма (также называемый динамическим связыванием, или поздним связыванием, или связыванием во время выполнения), в котором продемонстрировано как во время выполнения программы будет выполнен тот метод, который принадлежит передаваемому объекту.

Если бы не было полиморфизма и позднего связывания, то эта же программа выглядела бы примерно так:

public static void testPolyCircle(Circle circle) { circle.draw(); } public static void testPolyTriangle(Triangle triangle) { triangle.draw(); }

public static void testPolyCircle (Circle circle ) {

circle . draw () ;

public static void testPolyTriangle (Triangle triangle ) {

triangle . draw () ;

Т.е. для каждого класса (фигуры) мы бы писали отдельный метод. Здесь их два, а если фигур (классов) сотни?

2. Дайте определение понятию “класс”.

Класс – это описатель общих свойств группы объектов. Этими свойствами могут быть как характеристики объектов (размер, вес, цвет и т.п.), так и поведения, роли и т.п.

3. Что такое поле/атрибут класса?

Поле (атрибут) класса — это характеристика объекта. Например для фигуры это может быть название, площадь, периметр.

public class Circle implements Shape { private String name; private Double area; private String perimeter; }

public class Circle implements Shape {

private String name ;

private Double area ;

private String perimeter ;

4. Как правильно организовать доступ к полям класса?

Модификатор доступа — private. Доступ через методы get\set.

5. Дайте определение понятию “конструктор”.

Конструктор — это специальный метод, который вызывается при создании нового объекта. Конструктор инициализирует объект непосредственно во время создания. Имя конструктора совпадает с именем класса, включая регистр, а по синтаксису конструктор похож на метод без возвращаемого значения.

public class Circle implements Shape { public Circle() { } }

public class Circle implements Shape {

public Circle () {

6. Чем отличаются конструкторы по-умолчанию, копирования и конструктор с параметрами?

Конструктор по умолчанию не принимает никаких параметров. Конструктор копирования принимает в качестве параметра объект класса. Конструктор с параметрами принимает на вход параметры (обычно необходимые для инициализации полей класса).

//конструктор по умолчанию public Circle() { } //конструктор копирования public Circle(Circle circle) { this(circle.getName(), circle.getArea(), circle.getPerimeter()); //будет вызван конструктор с параметрами ниже } //конструктор с параметрами public Circle(String name, Double area, String perimeter) { this.name = name; this.area = area; this.perimeter = perimeter; }

//конструктор по умолчанию

public Circle () {

//конструктор копирования

public Circle (Circle circle ) {

this (circle . getName () , circle . getArea () , circle . getPerimeter () ) ; //будет вызван конструктор с параметрами ниже

//конструктор с параметрами

public Circle (String name , Double area , String perimeter ) {

this . name = name ;

this . area = area ;

this . perimeter = perimeter ;

Обращаю внимание, что тема копирования (clone()) достаточно глубокая с возможностью возникновения множества неявных проблем. Немного можно почитать здесь http://habrahabr.ru/post/246993/.

7. Какие модификации уровня доступа вы знаете, расскажите про каждый из них.

  • private (закрытый) — доступ к члену класса не предоставляется никому, кроме методов этого класса. Другие классы того же пакета также не могут обращаться к private-членам.
  • default, package, friendly, доступ по умолчанию, когда никакой модификатор не присутствует — член класса считается открытым внутри своего собственного пакета, но не доступен для кода, расположенного вне этого пакета.Т.е. если package2.Class2 extends package1.MainClass , то в Class2 методы без идентификатора из MainClass видны не будут .
  • protected (защищённый) — доступ в пределах пакета и классов наследников. Доступ в классе из другого пакета будет к методам public и protected главного класса. Т.е. если package2.Class2 extends package1.MainClass , то внутри package2.Class2 методы с идентификатором protected из MainClass будут видны.
  • public (открытый) — доступ для всех из любого другого кода проекта

Модификаторы в списке расположены по возрастающей видимости в программе.

8. Расскажите об особенностях класса с единственным закрытым (private) конструктором.

Невозможно создать объект класса у которого единственный private конструктор за пределами класса. Поэтому нельзя унаследоваться от такого класса. При попытке унаследоваться будет выдаваться ошибка: There is no default constructor available in имяКласса . А при попытке создать объект этого класса: ИмяКласса() has private access in ИмяКласса

9. О чем говорят ключевые слова “this”, “super”, где и как их можно использовать?

super — используется для обращения к базовому классу, а this к текущему. Пример:

public class Animal { public void eat() { System.out.println("animal eat"); } } public class Dog extends Animal { public void eat() { System.out.println("Dog eat"); } public void thisEat() { System.out.println("Call Dog.eat()"); this.eat(); } public void superEat() { System.out.println("Call Animal.eat()"); super.eat(); } } public class Test { public static void main(String args) { Dog dog = new Dog(); dog.eat(); dog.thisEat(); dog.superEat(); } } Dog eat Call Dog.eat() Dog eat Call Animal.eat() animal eat

public class Animal {

public void eat () {

System . out . println ("animal eat" ) ;

public class Dog extends Animal {

public void eat () {

System . out . println ("Dog eat" ) ;

public void thisEat () {

System . out . println ("Call Dog.eat()" ) ;

this . eat () ;

public void superEat () {

System . out . println ("Call Animal.eat()" ) ;

super . eat () ;

public class Test {

public static void main (String args ) {

Dog dog = new Dog () ;

dog . eat () ;

dog . thisEat () ;

dog . superEat () ;

Dog eat

Call Dog . eat ()

Dog eat

Call Animal . eat ()

animal eat

Если написать super(), то будет вызван конструктор базового класса, а если this(), то конструктор текущего класса. Это можно использовать, например, при вызове конструктора с параметрами:

public Dog() { System.out.println("Call empty constructor"); } public Dog(String name) { System.out.println("Call constructor with Name"); this.name = name; } public Dog(String name, Double weight) { this(name); this.weight = weight; System.out.println("Call constructor with Name and Weight"); } } .. public static void main(String args) { Dog dog1 = new Dog("name", 25.0); } //Вывод Call constructor with Name Call constructor with Name and Weight

public Dog () {

System . out . println ("Call empty constructor" ) ;

public Dog (String name ) {

System . out . println ("Call constructor with Name" ) ;

this . name = name ;

public Dog (String name , Double weight ) {

this (name ) ;

this . weight = weight ;

System . out . println ("Call constructor with Name and Weight" ) ;

public static void main (String args ) {

Dog dog1 = new Dog ("name" , 25.0 ) ;

//Вывод

Call constructor with Name

Call constructor with Name and Weight

10. Дайте определение понятию “метод”.

Метод — это последовательность команд, которые вызываются по определенному имени. Можно сказать что это функция и процедура (в случае void метода).

11. Что такое сигнатура метода?

Сигнатура метода в Java - это имя метода плюс параметры (причем порядок параметров имеет значение).
В сигнатуру метода не входит возвращаемое значение, бросаемые им исключения, а также модификаторы.

Ключевые слова public, protected, private, abstract, static, final, synchronized, native, strictfp в т.ч. аннотации для метода - это модификаторы и не являются частью сигнатуры.

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.2

12. Какие методы называются перегруженными?

Java позволяет создавать несколько методов с одинаковыми именами, но разными сигнатурами. Создание метода с тем же именем, но с другим набором параметров называется перегрузкой. Какой из перегруженных методов должен выполняться при вызове, Java определяет на основе фактических параметров.

public void method() { } public void method(int a) { } public void method(String str) { }

public void method () { }

public void method (int a ) { }

Почему объектно-ориентированному программированию отдается предпочтение в большинстве проектов? ООП предлагает эффективный способ борьбы с их сложностью. Вместо того чтобы рассматривать программу как последовательность исполняемых инструкций, оно представляет ее как группу объектов с определенными свойствами и производит с ними определенные действия. Это приводит к созданию более ясных, более надежных и легкосопровождаемых приложений.

Основные принципы сформировались потому, что в существовавших ранее подходах были обнаружены ограничения. Среди них - неограниченный доступ к данным и большое количество связей, которые накладывают ограничения на внесение изменений. Их осознание и причины важны для того, чтобы понять, что такое ООП в программировании и каковы его преимущества.

Процедурные языки

C, Pascal, FORTRAN и подобные языки являются процедурными. То есть каждый их оператор приказывает компьютеру что-то сделать: получить данные, сложить числа, разделить на шесть, отобразить результат. Приложение на процедурном языке представляет собой список инструкций. Если он небольшой, никакого другого организационного принципа (часто называемого парадигмой) не требуется. Программист создает список инструкций, и компьютер выполняет их.

Разделение на функции

Когда приложения становятся больше, список получается громоздким. Немногие могут понять более нескольких сотен инструкций, пока они не будут сгруппированы. По этой причине функция стала способом сделать приложения более понятными для своих создателей. В некоторых языках та же концепция может носить название подпрограммы или процедуры.

Приложение разделено на функции, каждая из которых имеет четко определенную цель и интерфейс.

Идея разделения на процедуры может быть расширена их группированием в больший объект, называемый модулем, но принцип аналогичен: группирование компонентов, которые выполняют списки инструкций.

Разделение на функции и модули - один из краеугольных камней структурного программирования, которое в течение нескольких десятилетий до появления ООП являлось довлеющей парадигмой.

Проблемы структурного программирования

Поскольку приложения становились все более крупными, структурное программирование начало испытывать трудности. Проекты становились слишком сложными. Графики сдвигались. Задействовалось большее число программистов. Сложность росла. Затраты взлетали, график сдвигался дальше, и наступал крах.

Анализ причин этих неудач показал недостатки процедурной парадигмы. Независимо от того, насколько хорошо реализован структурированный подход к программированию, крупные приложения становятся чрезмерно сложными.

Каковы причины этих проблем, связанных с процедурными языками? Во-первых, функции имеют неограниченный доступ к глобальным данным. Во-вторых, не связанные между собой процедуры и значения плохо моделируют реальный мир.

Если рассматривать эти проблемы в контексте программы учета запасов, то одним из важнейших глобальных элементов данных является совокупность учетных единиц. Разные функции могут обращаться к ним для ввода нового значения, его отображения, изменения и т. д.

Неограниченный доступ

В программе, написанной, например, на C, есть два вида данных. Локальные скрыты внутри функции и другими процедурами не используются.

Когда две и более функций должны получить доступ к одним и тем же данным, то последние должны быть глобальными. Такими, например, являются сведения об учитываемых предметах. Глобальные данные могут быть доступны любой процедуре.

В большой программе есть множество функций и много глобальных элементов. Проблема процедурной парадигмы состоит в том, что это приводит к еще большему числу потенциальных связей между ними.

Такое большое количество соединений вызывает несколько затруднений. Во-первых, это осложняет понимание структуры программы. Во-вторых, затрудняет внесение изменений. Изменение в глобальном элементе данных может потребовать корректирования всех функций, имеющих к нему доступ.

Например, в программе учета кто-то решит, что код учитываемого предмета должен состоять не из 5 цифр, а из 12. Это потребует изменить с short на long. Теперь связанные с кодом функции должны быть изменены для работы с новым форматом.

Когда элементы изменяются в большом приложении, трудно сказать, какие процедуры имеют к ним доступ. Но даже если это выяснить, их изменение может привести к неправильной работе с другими глобальными данными. Все связано со всем остальным, поэтому изменение в одном месте аукнется в другом.

Моделирование реального мира

Второй и более важной проблемой процедурной парадигмы является то, что ее расположение отдельных данных и функций плохо моделирует вещи в реальном мире. Здесь мы имеем дело с такими объектами, как люди и автомобили. Они не похожи ни на данные, ни на функции. Сложные реальные объекты обладают атрибутами и поведением.

Атрибуты

Примерами атрибутов (иногда называемых характеристиками) для людей являются цвет глаз и название должности, для автомобилей - мощность и количество дверей. Как оказалось, атрибуты в реальном мире эквивалентны данным в программе. Они имеют конкретные значения, такие как синий (цвет глаз) или четыре (количество дверей).

Поведение

Поведение - это то, что объекты реального мира производят в ответ на какое-то воздействие. Если попросить начальство о повышении зарплаты, ответ будет "да" или "нет". Если нажать на тормоз, то автомобиль остановится. Произнесение и остановка являются примерами поведения. Поведение подобно процедуре: его вызывают, чтобы сделать что-то, и оно делает это. Таким образом, данные и функции сами по себе не моделируют объекты реального мира эффективно.

Решение проблемы

Объект в ООП представляется как совокупность данных и функций. Только процедуры, которые называются функциями-членами в C ++, позволяют получить его значения. Данные скрыты и защищены от изменения. Значения и функции инкапсулированы в одно целое. Инкапсуляция и упрятывание - основные термины в описании ОО-языков.

Если требуется изменить данные, точно известно, какие функции взаимодействуют с ними. Никакие другие процедуры не могут получить к ним доступ. Это упрощает написание, отладку и поддержание программы.

Приложение, как правило, состоит из нескольких объектов, которые взаимодействуют друг с другом, вызывая функции-члены.

Сегодня наиболее широко используемый программирование) - C++ (плюс-плюс). В Java отсутствуют некоторые функции, такие как указатели, шаблоны и множественное наследование, что делает его менее мощным и универсальным, чем C++. C# еще не достиг популярности C++.

Следует отметить, что так называемые функции-члены в C++ называются методами в некоторых других ОО-языках, таких как Smalltalk. Элементы данных называются атрибутами. Вызов метода объекта является посылкой ему сообщения.

Аналогия

Можно представить объекты отделами компании. В большинстве организаций сотрудники не работают один день с кадрами, на следующий начисляя зарплату, а затем неделю занимаясь розничной торговлей. У каждого отдела есть свой персонал с четко возложенными на него обязанностями. Есть и собственные данные: показатели заработной платы, продаж, учет сотрудников и т. д. Люди в отделах работают со своей информацией. Разделение компании, таким образом, облегчает контроль за ее деятельностью и поддерживает целостность данных. Бухгалтерия отвечает за Если необходимо знать общую сумму заработной платы, выплачиваемой в южном филиале в июле, не нужно рыться в архиве. Достаточно направить записку ответственному лицу, подождать, пока этот человек получит доступ к данным и отправит ответ с требуемой информацией. Это гарантирует соответствие регламенту и отсутствие постороннего вмешательства. Таким же образом объект в ООП обеспечивает организацию приложения.

Следует помнить, что ориентация на объекты не касается подробностей работы программы. Большинство инструкций C++ соответствует операторам процедурных языков, таких как С. Действительно, функции-члены в C++ очень похожи на функции в С. Только более широкий контекст позволит установить, является ли инструкция процедурной или объектно-ориентированной.

Объект в ООП: определение

При рассмотрении задачи программирования на ОО-языке вместо вопросов о ее разделении на отдельные функции возникает проблема разделения на объекты. ООП-мышление намного облегчает разработку приложений. Это происходит в результате сходства программных и реальных объектов.

Какие вещи становятся объектами в ООП? Ниже представлены типичные категории.

Физический объект в ООП - это:

  • транспорт в моделях движения потока;
  • электрические элементы в программах схемотехники;
  • страны в модели экономики;
  • самолет в системе управления воздушным движением.

Элементы среды компьютера пользователя:

  • меню;
  • окна;
  • графика (линия, прямоугольник, круг);
  • клавиатура, мышь, принтер, дисковые накопители.
  • работники;
  • студенты;
  • клиенты;
  • продавцы.
  • книга учета;
  • личное дело;
  • словарь;
  • таблица широт и долгот населенных пунктов.

Связь объектов реального мира и ООП стало результатом сочетания функций и данных: они произвели переворот в программировании. Такого близкого соответствия в процедурных языках нет.

Класс

Объекты в ООП - это члены классов. Что это значит? Языки программирования имеют встроенные типы данных. Тип int, т. е. целое число, предопределен в C++. Можно объявлять сколько угодно переменных int.

Аналогично определяется множество объектов одного класса. Он определяет функции и данные, включаемые в его объекты, не создавая их, так же как int не создает переменные.

Класс в ООП - это описание ряда похожих объектов. Принц, Стинг и Мадонна являются певцами. Нет ни одного человека с таким именем, но люди могут так называться, если они обладают соответствующими характеристиками. Объект ООП - это экземпляр класса.

Наследование

В жизни классы разделены на подклассы. Например, животные делятся на земноводных, млекопитающих, птиц, насекомых и т. д.

Принцип такого рода деления состоит в том, что каждый подкласс имеет общие характеристики с классом, от которого происходит. Все автомобили имеют колеса и двигатель. Это определяющие характеристики транспортных средств. В дополнение к общим характеристикам каждый подкласс обладает своими особенностями. У автобусов много посадочных мест, а грузовики имеют пространство для перевозки тяжелых грузов.

Аналогично базовый класс может стать родителем нескольких производных подклассов, которые могут быть определены так, что они будут разделять его характеристики с добавлением собственных. Наследование подобно функции, упрощающей процедурную программу. Если несколько частей кода делают почти то же, можно извлечь общие элементы и поместить их в одну процедуру. Три участка приложения могут вызвать функцию, чтобы выполнить общие действия, но они могут производить и свои собственные операции. Подобно этому базовый класс содержит данные, общие для группы производных. Подобно функциям наследование сокращает ОО-программу и проясняет взаимосвязь ее элементов.

Повторное использование

После того как класс создан и отлажен, он может быть передан другим программистам для повторного использования в собственных приложениях. Это похоже на библиотеку функций, которая может входить в разные приложения.

В ООП наследование является расширением идеи многократного использования. Из существующего класса, не изменяя его, можно образовать новый с добавлением других функций. Легкость повторного использования существующего ПО - важное преимущество ООП. Считается, что это обеспечивает рост доходности от первоначальных инвестиций.

Создание новых типов данных

Объекты удобны для создания новых типов данных. Предположим, в программе используются двумерные значения (например, координаты или широта и долгота), и есть желание выразить действия с ними арифметическими операциями:

position1 = position + origin,

где и origin - пары независимых численных величин. Создание класса, включающего в себя эти два значения, и объявление переменных его объектами создает новый тип данных.

Полиморфизм, перегрузка

Операторы = (равно) и + (плюс), используемые в позиционной арифметике выше, не действуют так же, как с встроенными типами, такими как int. Объекты position и др. не предопределены, а заданы программным путем. Каким образом эти операторы знают, как с ними обращаться? Ответ заключается в том, что для них можно задать новые модели поведения. Эти операции будут функциями-членами класса Position.

Использование операторов или процедур в зависимости от того, с чем они работают, называется полиморфизмом. Когда существующий оператор, такой как + или =, получает возможность работать с новым типом данных, говорят, что он перегружен. Перегрузка в ООП - это вид полиморфизма. Она является его важной чертой.

Книга об ООП «Объектно-ориентированное программирование для чайников» позволит всем желающим ознакомиться с данной темой подробнее.

Класс (classes ) является типом данных, определяемых пользователем. В классе задаются свойства и поведение какого-либо предмета или процесса в виде полей данных и функций для работы с ними.

Существенным свойством класса является то, что детали его реализации скрыты от пользователей класса за интерфейсом. Таким образом, класс как модель объекта реального мира является черным ящиком, замкнутым по отношению к внешнему миру.

Идея классов является основной объектно-ориентированного программирования (ООП). Основные принципы ООП были разработаны еще в языках Simula-67 иSmallTalk, но в то время не получили широкого распространения из-за трудностей освоения и низкой эффективности реализации.

Конкретные величины типа данных «класс» называют экземплярами класса илиобъектами (objects ) .

Подпрограммы, определяющие операции над объектами класса, называются методами (methods ). Вызовы методов называютсясообщениями (messages ). Весь набор методов объекта называется протоколом сообщений (messageprotocol), илиинтерфейсом сообщений (message interface ) объекта. Сообщение должно иметь, по крайней мере, две части: конкретный объект, которому оно должно быть послано, и имя метода, определяющего необходимое действие над объектом. Таким образом, вычисления в объектно-ориентированной программе определяются сообщениями, передаваемыми от одного объекта к другому.

Объекты взаимодействуют между собой, посылая и получая сообщения. Сообщение – это запрос на выполнение действия, содержащий набор необходимых параметров. Механизм сообщения реализуется с помощью вызова соответствующих функций. С помощью ООП легко реализуется так называемая событийно-управляемая модель, когда данные активны и управляют вызовом того или иного фрагмента программного кода.

ООП - это метод программирования, развивающий принципы структурного программирования и основанный на следующих абстракциях данных:

I. Инкапсуляция : объединение данных с процедурами и функциями в единый блок программного кода (данные и методы работы с ними рассматриваются как поля объекта).

II. Наследование – передача методов и свойств от предка к потомку, без необходимости написания дополнительного программного кода (наличие экземпляров класса; потомки, прародители, иерархия).

III. Полиморфизм – возможность изменения одинаковых по смыслу свойств и поведения объектов в зависимости от их типа (единое имя для некого действия, которое по-разному осуществляется для объектов иерархии).

Инкапсуляция

Впервые понятие инкапсуляции было использовано в языках, поддерживающих так называемый абстрактный подход к программированию (например, Модула-2). Основная идея абстрактного подхода заключается в том, чтобы, скрыв от пользователя структуру информации об объекте, дать ему возможность получать необходимые для работы с объектом данные только через процедуры, относящиеся к этому объекту. Такой прием позволяет значительно повысить надежность и мобильность разработанного программного обеспечения. Надежность повышается вследствие того, что все процедуры для работы с данными об объекте относительно просты и прозрачны, а значит, могут быть разработаны более качественно. При изменении структуры данных достаточно переработать только программы, непосредственно связанные с объектом, а более сложные программы, использующие данный объект, изменять не нужно. Данное обстоятельство повышает как надежность, так и мобильности созданных программ.

Наследование

Во второй половине 1980-х годов для многих разработчиков программного обеспечения стало очевидным, что одной из наилучших возможностей для повышения производительности их труда является повторное использование программ. Вполне очевидно, что абстрактные типы данных с их инкапсуляцией и управлением доступом должны использоваться многократно. Проблема, связанная с повторным использованием абстрактных типов данных, почти во всех случаях заключается в том, что свойства и возможности существующих типов не вполне подходят для нового использования. Старые типы необходимо, по крайней мере минимально, модифицировать. Такие модификации могут быть трудновыполнимыми и требовать от человека понимания части, если не всего целиком, существующего кода. Кроме того, во многих случаях модификации влекут за собой изменения во всех программах-клиентах.

Вторая проблема, связанная с программированием, ориентированным на данные, заключается в том, что все определения абстрактных типов данных являются независимыми и находятся на одном и том же уровне иерархии. Это часто не позволяет так структурировать программу, чтобы она соответствовала своей проблемной области. Во многих случаях исходная задача содержит категории связанных между собой объектов, являющихся как наследниками одних и тех же предков (т.е. находящихся на одном и том же уровне иерархии), так и предками и наследниками (т.е. состоящих в отношении некоторой субординации друг с другом).

Наследование позволяет решить как проблемы модификации, возникающие в результате повторного использования абстрактного типа данных, так и проблемы организации программ. Если новый абстрактный тип данных может наследовать данные и функциональные свойства некоторого существующего типа, а также модифицировать некоторые из этих сущностей и добавлять новые сущности, то повторное использование значительно облегчается без необходимости вносить изменения в повторно используемый абстрактный тип данных. Программисты могут брать существующий абстрактный тип данных и создавать по его образцу новый тип, соответствующий новым требованиям задачи. Предположим, что в программе есть абстрактный тип данных для массивов целых чисел, включающий в себя операцию сортировки. После некоторого периода использования программа модифицируется и требует наличия не только абстрактного типа данных для массивов целых чисел с операцией сортировки, но и операции вычисления арифметического среднего для элементов объектов, представляющих собой массивы. Поскольку структура массива скрыта в абстрактном типе данных, без наследования этот тип должен быть модифицирован путем добавления новой операции в эту структуру. При наличии наследования нет необходимости в модификации существующего типа; можно описать подкласс существующего типа, поддерживающий не только операцию сортировки, но и операцию для вычисления среднего арифметического.

Класс, который определяется через наследование от другого класса, называется производным классом (derived class ) , илиподклассом (subclass ) . Класс, от которого производится новый класс, называетсяродительским классом (parent class ) , илисуперклассом (superclass ) .

В простейшем случае класс наследует все сущности (переменные и методы) родительского класса. Это наследование можно усложнить, введя управление доступом к сущностям родительского класса.

Это управление доступом позволяет программисту скрыть части абстрактного типа данных от клиентов. Такое управление доступом обычно есть в классах объектно-ориентированных языков. Производные классы представляют собой другой вид клиентов, которым доступ может быть либо предоставлен, либо запрещен. Чтобы это учесть, некоторые объектно-ориентированные языки включают в себя третью категорию управления доступом, часто называемую защищенной (protected), которая используется для предоставления доступа производным классам и запрещения доступа другим классам.

В дополнение к наследуемым сущностям производный класс может добавлять новые сущности и модифицировать методы. Модифицированный метод имеет то же самое имя и часто тот же самый протокол, что и метод, модификацией которого он является. Говорят, что новый метод замещает (override) наследуемую версию метода, который поэтому называется замещаемым (overriden) методом. Наиболее общее предназначение замещающего метода - выполнение операции, специфической для объектов производного класса и не свойственной для объектов родительского класса.

Разработка программы для объектно-ориентированной системы начинается с определения иерархии классов, описывающей отношения между объектами, которые войдут в программу, решающую поставленную задачу. Чем лучше эта иерархия классов соответствует проблемной части, тем более естественным будет полное решение.

Недостаток наследования как средства, облегчающего повторное использование кода, заключается в том, что оно создает зависимость между классами в иерархии наследования. Это умаляет одно из преимуществ абстрактных типов данных, заключающееся в их взаимной независимости. Конечно, не все абстрактные типы данных должны быть полностью независимыми, но в общем случае независимость абстрактных типов данных является одним из их самых сильных положительных свойств. Однако увеличение возможности повторного использования абстрактных типов данных без создания зависимостей между некоторыми из них может оказаться трудной задачей, если не совсем безнадежной.

Полиморфизм

Третьим свойством объектно-ориентированных языков программирования является вид полиморфизма, обеспечиваемый динамическим связыванием сообщений с определениями методов. Это свойство поддерживается путем разрешения определения полиморфных переменных типа родительского класса, которые также могут ссылаться на объекты любых подклассов данного класса. Родительский класс может определять метод, замещаемый в его подклассах. Операции, определяемые этими методами, похожи, но должны уточняться для каждого класса в иерархии. Когда такой метод вызывается через полиморфную переменную, этот вызов динамически связывается с методом в соответствующем классе. Одна из целей динамического связывания - обеспечить более легкое расширение программных систем при их разработке и поддержке. Такие программы можно писать для операций над объектами настраиваемых классов. Эти операции являются настраиваемыми в том смысле, что их можно применять к объектам любого класса, производного от одного и того же базового класса.

Вычисления в объектно-ориентированных языках

Все вычисления в полностью объектно-ориентированном языке выполняются с помощью передачи сообщения объекту для вызова одного из его методов. Ответом на сообщение является объект, возвращающий результат вычислений, выполненных этим методом. Выполнение программы на объектно-ориентированном языке можно описать как моделирование набора компьютеров (объектов), взаимодействующих друг с другом с помощью обмена сообщениями. Каждый объект - абстракция компьютера в том смысле, что он хранит данные и обеспечивает выполнение процессов для манипуляции этими данными. Кроме того, объекты могут передавать и получать сообщения. В сущности, это основные свойства компьютера - хранить и обрабатывать данные, а также передавать и получать сообщения.

Суть объектно-ориентированного программирования состоит в решении задач с помощью идентификации соответствующих реальных объектов и обработки, требуемой для этих объектов; и последующем моделировании этих объектов, их процессов и необходимых связей между ними.

Библиотека визуальных компонентов (Visual Component Library, VCL)

Delphi содержит большое количество классов, предназначенных для быстрой разработки приложений. Библиотека написана на Object Pascal и имеет непосредственную связь с интегрированной средой разработки приложений Delphi.

Все классы VCL расположены на определенном уровне иерархии и образуют дерево (иерархию) классов .

Знание происхождения объекта оказывает значительную помощь при его изучении, так как потомок наследует все элементы объекта-родителя. Так, если свойство Caption принадлежит классу TControl, то это свойство будет и у его потомков, например, у классов TButton и TCheckBox и у компонентов - кнопки Button и независимого переключателя CheckBox соответственно. Фрагмент иерархии классов с важнейшими классами показан на рис.

Кроме иерархии классов, большим подспорьем в изучении системы программирования являются исходные тексты модулей, которые находятся в каталоге SOURCE главного каталога Delphi.

Java является объектно-ориентированным языком. Это означает, что писать программы на Java нужно с применением объектно-ориентированного стиля. И стиль этот основан на использовании в программе объектов и классов. Попробуем с помощью примеров разобраться, что такое классы и объекты, а также с тем, как применять на практике основные принципы ООП: абстракцию, наследование, полиморфизм и инкапсуляцию.

Что такое объект?

Мир, в котором мы живем, состоит из объектов. Если мы посмотрим вокруг, то увидим, что нас окружают дома, деревья, автомобили, мебель, посуда, компьютеры. Все эти предметы являются объектами, и каждый из них обладает набором определенных характеристик, поведением и назначением. Мы привыкли к объектам, и мы их используем всегда для вполне конкретных целей. Например, если нам необходимо доехать до работы, мы пользуемся автомобилем, если захотим поесть – посудой, а если отдохнуть – нам понадобится удобный диван. Человек привык мыслить объектно для решения задач в повседневной жизни. Это послужило одной из причин использования объектов в программировании, а такой подход к созданию программ назвали объектно-ориентированным. Приведём пример. Представьте, что вы разработали новую модель телефона и хотите наладить её серийное производство. Как разработчик телефона, вы знаете для чего он нужен, как он будет функционировать, и из каких деталей он будет состоять (корпус, микрофон, динамик, провода, кнопки и т.д.). При этом только вы знаете, как соединить эти детали. Однако вы не планируете выпускать телефоны лично, для этого у вас есть целый штат работников. Чтобы вам не пришлось каждый раз объяснять, как соединить детали телефона, и чтобы все телефоны при производстве получались одинаковыми, прежде чем начать их выпуск, вам понадобиться сделать чертеж в виде описания устройства телефона. В ООП такое описание, чертеж, схема или шаблон называется классом, из которого при выполнении программы создается объект. Класс - это описание еще не созданного объекта, как бы общий шаблон, состоящий из полей, методов и конструктора, а объект – экземпляр класса, созданный на основе этого описания.

Абстракция

Давайте теперь подумаем, как нам перейти от объекта из реального мира к объекту в программе на примере телефона. История этого средства связи превышает 100 лет и современный телефон, в отличие от своего предшественника из 19 века, представляет собой куда более сложное устройство. Когда мы пользуемся телефоном, то не задумываемся о его устройстве и процессах, происходящих внутри него. Мы просто используем функции, предоставленные разработчиками телефона - кнопки или сенсорный экран для выбора номера и совершения вызовов. Одним из первых интерфейсов телефона была рукоятка, которую нужно было вращать, чтобы сделать вызов. Разумеется, это было не очень удобно. Тем не менее, свою функцию рукоять исправно выполняла. Если посмотреть на самый современный и на самый первый телефон, можно сразу выделить самые важные детали, которые важны и для устройства конца 19-го века, и для суперсовременного смартфона. Это совершение вызова (набор номера) и приём вызова. По сути это то, что делает телефон телефоном, а не чем-то другим. Сейчас мы применили принцип в ООП - выделение наиболее важных характеристик и информации об объекте. Этот принцип называется абстракцией. Абстракцию в ООП можно также определить, как способ представления элементов задачи из реального мира в виде объектов в программе. Абстракция всегда связана с обобщением некоторой информации о свойствах предметов или объектов, поэтому главное - это отделить значимую информацию от незначимой в контексте решаемой задачи. При этом уровней абстракции может быть несколько. Попробуем применить принцип абстракции к нашим телефонам. Для начала выделим наиболее распространённые типы телефонов от самых первых и до наших дней. Например, их можно представить в виде диаграммы, приведенной на рисунке 1. Теперь с помощью абстракции мы можем выделить в этой иерархии объектов общую информацию: общий абстрактный тип объектов - телефон, общую характеристику телефона - год его создания, и общий интерфейс - все телефоны способны принимать и посылать вызовы. Вот как это выглядит на Java: public abstract class AbstractPhone { private int year; public AbstractPhone (int year) { this . year = year; } public abstract void call (int outputNumber) ; public abstract void ring (int inputNumber) ; } На основании этого абстрактного класса мы сможем создавать в программе новые типы телефонов с использованием других базовых принципов ООП Java, которые рассмотрим ниже.

Инкапсуляция

С помощью абстракции мы выделяем общее для всех объектов. Однако каждая модель телефона - индивидуальна и чем-то отличается от других. Как же нам в программе провести границы и обозначить эту индивидуальность? Как сделать так, чтоб никто из пользователей случайно или преднамеренно не смог сломать наш телефон, или попытаться переделать одну модель в другую? Для мира реальных объектов ответ очевиден: нужно поместить все детали в корпус телефона. Ведь если этого не сделать и оставить все внутренности телефона и провода, соединяющие их снаружи, обязательно найдется любознательный экспериментатор, который захочет “улучшить” работу нашего телефона. Для исключения подобного вмешательства в конструкцию и работу объекта в ООП используют принцип инкапсуляции – еще один базовый принцип ООП, при котором атрибуты и поведение объекта объединяются в одном классе, внутренняя реализация объекта скрывается от пользователя, а для работы с объектом предоставляется открытый интерфейс. Задача программиста - определить, какие атрибуты и методы будут доступны для открытого доступа, а какие являются внутренней реализацией объекта и должны быть недоступны для изменений.

Инкапсуляция и управление доступом

Допустим, при производстве на тыльной стороне телефона гравируется информация о нем: год его выпуска или логотип компании производителя. Эта информация вполне конкретно характеризует данную модель - его состояние. Можно сказать, разработчик телефона позаботился о неизменности этой информации - вряд ли кому-то придет в голову удалять гравировку. В мире Java состояние будущих объектов описывается в классе с помощью полей, а их поведение – с помощью методов. Возможность же изменения состояния и поведения осуществляется с помощью модификаторов доступа к полям и методам – private, protected, public , а также default (доступ по умолчанию). Например, мы решили, что год создания, название производителя телефона и один из методов относятся к внутренней реализации класса и не подлежат изменению другими объектами в программе. С помощью кода класс можно описать так: public class SomePhone { private int year; private String company; public SomePhone (int year, String company) { this . year = year; this . company = company; } private void openConnection () { //findComutator //openNewConnection... } public void call () { openConnection () ; System. out. println ("Вызываю номер" ) ; } public void ring () { System. out. println ("Дзынь-дзынь" ) ; } } Модификатор private делает доступными поля и методы класса только внутри данного класса. Это означает, что получить доступ к private полям из вне невозможно, как и нет возможности вызвать private методы. Сокрытие доступа к методу openConnection , оставляет нам также возможность к свободному изменению внутренней реализации этого метода, так как этот метод гарантированно не используется другими объектами и не нарушит их работу. Для работы с нашим объектом мы оставляем открытыми методы call и ring с помощью модификатора public . Предоставление открытых методов для работы с объектом также является частью механизма инкапсуляции, тат как если полностью закрыть доступ к объекту – он станет бесполезным.

Наследование

Давайте посмотрим еще раз на диаграмму телефонов. Можно заметить, что она представляет собой иерархию, в которой модель, расположенная ниже обладает всеми признаками моделей, расположенных выше по ветке, плюс своими собственными. Например, смартфон, использует сотовую сеть для связи (обладает свойствами сотового телефона), является беспроводным и переносным (обладает свойствами беспроводного телефона) и может принимать и делать вызовы (свойствами телефона). В этом случае мы можем говорить о наследовании свойств объекта. В программировании наследование заключается в использовании уже существующих классов для описания новых. Рассмотрим пример создания класса смартфон с помощью наследования. Все беспроводные телефоны работают от аккумуляторных батарей, которые имеют определенный ресурс работы в часах. Поэтому добавим это свойство в класс беспроводных телефонов: public abstract class WirelessPhone extends AbstractPhone { private int hour; public WirelessPhone (int year, int hour) { super (year) ; this . hour = hour; } } Сотовые телефоны наследуют свойства беспроводного телефона, мы также добавили в этот класс реализацию методов call и ring: public class CellPhone extends WirelessPhone { public CellPhone (int year, int hour) { super (year, hour) ; } @Override public void call (int outputNumber) { System. out. println ("Вызываю номер " + outputNumber) ; } @Override public void ring (int inputNumber) { System. out. println ("Вам звонит абонент " + inputNumber) ; } } И, наконец, класс смартфон, который в отличие от классических сотовых телефонов имеет полноценную операционную систему. В смартфон можно добавлять новые программы, поддерживаемые данной операционной системой, расширяя, таким образом, его функциональность. С помощью кода класс можно описать так: public class Smartphone extends CellPhone { private String operationSystem; public Smartphone (int year, int hour, String operationSystem) { super (year, hour) ; this . operationSystem = operationSystem; } public void install (String program) { System. out. println ("Устанавливаю " + program + "для" + operationSystem) ; } } Как видите, для описания класса Smartphone мы создали совсем немного нового кода, но получили новый класс с новой функциональностью. Использование этого принципа ООП java позволяет значительно уменьшить объем кода, а значит, и облегчить работу программисту.

Полиморфизм

Если мы посмотрим на все модели телефонов, то, несмотря на различия во внешнем облике и устройстве моделей, мы можем выделить у них некое общее поведение – все они могут принимать и совершать звонки и имеют достаточно понятный и простой набор кнопок управления. Применяя известный нам уже один из основных принципов ООП абстракцию в терминах программирования можно сказать, что объект телефон имеет один общий интерфейс. Поэтому пользователи телефонов могут вполне комфортно пользоваться различными моделями, используя одни и те же кнопки управления (механические или сенсорные), не вдаваясь в технические тонкости устройства. Так, вы постоянно пользуетесь сотовым телефоном, и без труда сможете совершить звонок с его стационарного собрата. Принцип в ООП, когда программа может использовать объекты с одинаковым интерфейсом без информации о внутреннем устройстве объекта, называется полиморфизмом . Давайте представим, что нам в программе нужно описать пользователя, который может пользоваться любыми моделями телефона, чтобы позвонить другому пользователю. Вот как можно это сделать: public class User { private String name; public User (String name) { this . name = name; } public void callAnotherUser (int number, AbstractPhone phone) { // вот он полиморфизм - использование в коде абстактного типа AbstractPhone phone! phone. call (number) ; } } } Теперь опишем различные модели телефонов. Одна из первых моделей телефонов: public class ThomasEdisonPhone extends AbstractPhone { public ThomasEdisonPhone (int year) { super (year) ; } @Override public void call (int outputNumber) { System. out. println ("Вращайте ручку" ) ; System. out. println ("Сообщите номер абонента, сэр" ) ; } @Override public void ring (int inputNumber) { System. out. println ("Телефон звонит" ) ; } } Обычный стационарный телефон: public class Phone extends AbstractPhone { public Phone (int year) { super (year) ; } @Override public void call (int outputNumber) { System. out. println ("Вызываю номер" + outputNumber) ; } @Override public void ring (int inputNumber) { System. out. println ("Телефон звонит" ) ; } } И, наконец, крутой видеотелефон: public class VideoPhone extends AbstractPhone { public VideoPhone (int year) { super (year) ; } @Override public void call (int outputNumber) { System. out. println ("Подключаю видеоканал для абонента " + outputNumber ) ; } @Override public void ring (int inputNumber) { System. out. println ("У вас входящий видеовызов..." + inputNumber) ; } } Создадим объекты в методе main() и протестируем метод callAnotherUser: AbstractPhone firstPhone = new ThomasEdisonPhone (1879 ) ; AbstractPhone phone = new Phone (1984 ) ; AbstractPhone videoPhone= new VideoPhone (2018 ) ; User user = new User ("Андрей" ) ; user. callAnotherUser (224466 , firstPhone) ; // Вращайте ручку //Сообщите номер абонента, сэр user. callAnotherUser (224466 , phone) ; //Вызываю номер 224466 user. callAnotherUser (224466 , videoPhone) ; //Подключаю видеоканал для абонента 224466 Используя вызов одного и того же метода объекта user , мы получили различные результаты. Выбор конкретной реализации метода call внутри метода callAnotherUser производился динамически на основании конкретного типа вызывающего его объекта в процессе выполнения программы. В этом и заключается основное преимущество полиморфизма – выбор реализации в процессе выполнения программы. В примерах классов телефонов, приведенных выше, мы использовали переопределение методов – прием, при котором изменяется реализация метода, определенная в базовом классе, без изменения сигнатуры метода. По сути это является заменой метода, и именно новый метод, определенный в подклассе, вызывается при выполнении программы. Обычно, при переопределении метода, используется аннотация @Override , которая подсказывает компилятору о необходимости проверить сигнатуры переопределяемого и переопределяющего методов. В итоге , чтобы стиль вашей программы соответствовал концепции ООП и принципам ООП java следуйте следующим советам:
  • выделяйте главные характеристики объекта;
  • выделяйте общие свойства и поведение и используйте наследование при создании объектов;
  • используйте абстрактные типы для описания объектов;
  • старайтесь всегда скрывать методы и поля, относящиеся к внутренней реализации класса.

Отличительные особенности ООП

1) ОО подход сосредотачивается на данных, как наиболее стабильных элементах выч.системы

2) ОО подход позволяет разрабатывать программный код, нацеленный на повторение использования

3) ОО подход обеспечивает лучшую масштабируемость в программных проектах, т.е. создание программ разной степени сложности, поэтому большинство современных технологий проектирования предполагает применение ООп.

В теории программирования ОО подход определен как технология создания сложного ПО, кот. Основано на представлении программы в виде совокупности программных объектов. Основное достоинство ООП - сокращение количества межмодульных вызовов и уменьшение объемов информации, передаваемой между модулями, по сравнению с модульным программированием. Это достигается за счет более полной локализации данных и интегрирования их с подпрограммами обработки, что позволяет вести практически независимую разработку отдельных частей (объектов) программы.

Кроме этого, объектный подход предлагает новые технологические средства разработки, такие как, наследование, полиморфизм, композиция, наполнение, позволяющие конструировать более сложные объекты из более простых. В результате существенно увеличивается показатель повторного использования кодов, появляется возможность создания библиотек объектов для различных применений, и разработчикам предоставляются дополнительные возможности создания систем повышенной сложности.

В основу ООП положены следующие принципы :

1) абстрагирование;

2) ограничение доступа;

3) модульность;

4) иерархичность;

5) типизация;

6) параллелизм;

7) устойчивость.

Уточним, что представляет собой каждый принцип.

Абстрагирование - процесс выделения абстракций в предметной области задачи. Абстракция - это совокупность существенных характеристик некоторого объекта, которые отличают его от всех других видов объектов и, таким образом, четко определяют особенности данного объекта с точки зрения дальнейшего рассмотрения и анализа. В соответствии с определением применяемая абстракция реального предмета существенно зависит от решаемой задачи: в одном случае нас будет интересовать форма предмета, в другом вес, в третьем - материалы, из которых он сделан, в четвертом - закон движения предмета и т.д. Современный уровень абстракции предполагает объединение всех свойств абстракции (как касающихся состояния анализируемого объекта, так и определяющих его поведение) в единую программную единицу некий абстрактный тип (класс).

Ограничение доступа (Инкапсуляция — это принцип, согласно которому любой класс должен рассматриваться как чёрный ящик — пользователь класса должен видеть и использовать только интерфейсную часть класса (т. е. список декларируемых свойств и методов класса) и не вникать в его внутреннюю реализацию. Поэтому данные принято инкапсулировать в классе таким образом, чтобы доступ к ним по чтению или записи осуществлялся не напрямую, а с помощью методов. Принцип инкапсуляции (теоретически) позволяет минимизировать число связей между классами и, соответственно, упростить независимую реализацию и модификацию классов.) Это сокрытие отдельных элементов реализации абстракции, не затрагивающих существенных характеристик ее как целого.


Необходимость ограничения доступа предполагает разграничение двух частей в описании абстракции:

а) интерфейс - совокупность доступных извне элементов реализации абстракции (основные характеристики состояния и поведения);

б) реализация - совокупность недоступных извне элементов реализации абстракции (внутренняя организация абстракции и механизмы реализации ее поведения).

Ограничение доступа в ООП позволяет разработчику:

1) выполнять конструирование системы поэтапно, не отвлекаясь на особенности реализации используемых абстракций;

2) легко модифицировать реализацию отдельных объектов, что в правильно организованной системе не потребует изменения других объектов.

Сочетание объединения всех свойств предмета (составляющих его состояния и поведения) в единую абстракцию и ограничения доступа к реализации этих свойств получило название инкапсуляции .

Модульность - это принцип разработки программной системы, предполагающий реализацию ее в виде отдельных частей (модулей). При выполнении декомпозиции системы на модули желательно объединять логически связанные части, по возможности обеспечивая сокращение количества внешних связей между модулями. Принцип унаследован от модульного программирования, следование ему упрощает проектирование и отладку программы.

Иерархия - это ранжированная или упорядоченная система абстракций. Принцип иерархичности предполагает использование иерархий при разработке программных систем.

В ООП используются два вида иерархии.

1. Иерархия «целое/часть» - показывает, что некоторые абстракции включены в рассматриваемую абстракцию, как ее части, например, лампа состоит из цоколя, нити накаливания и колбы. Этот вариант иерархии используется в процессе разбиения системы на разных этапах проектирования (на логическом уровне - при декомпозиции предметной области на объекты, на физическом уровне - при декомпозиции системы на модули и при выделении отдельных процессов в мультипроцессной системе).

2. Иерархия «общее/частное» - показывает, что некоторая абстракция является частным случаем другой абстракции, например, «обеденный стол - конкретный вид стола», а «столы - конкретный вид мебели». Используется при разработке структуры классов, когда сложные классы строятся на базе более простых путем добавления к ним новых характеристик и, возможно, уточнения имеющихся.

Один из важнейших механизмов ООП - наследование свойств в иерархии общее/частное. Наследование - это такое соотношение между абстракциями, когда одна из них использует структурную или функциональную часть другой или нескольких других абстракций (соответственно простое и множественное наследование).

Типизация - это ограничение, накладываемое на свойства объектов и препятствующее взаимозаменяемости абстракций различных типов (или сильно сужающее возможность такой замены). В языках с жесткой типизацией для каждого программного объекта (переменной, подпрограммы, параметра и т. д.) объявляется тип, который определяет множество операций над соответствующим программным объектом. Рассматриваемые далее языки программирования на основе Паскаля используют строгую, а на основе С - среднюю степень типизации.

Использование принципа типизации обеспечивает:

1) раннее обнаружение ошибок, связанных с недопустимыми операциями над программными объектами (ошибки обнаруживаются на этапе компиляции программы при проверке допустимости выполнения данной операции над программным объектом);

2) упрощение документирования;

3) возможность генерации более эффективного кода.

Тип может связываться с программным объектом статически (тип объекта определен на этапе компиляции - раннее связывание ) и динамически (тип объекта определяется только во время выполнения программы - позднее связывание ). Реализация позднего связывания в языке программирования позволяет создавать переменные - указатели на объекты, принадлежащие различным классам (полиморфные объекты ), что существенно расширяет возможности языка.

Параллелизм - свойство нескольких абстракций одновременно находиться в активном состоянии, т.е. выполнять некоторые операции.

Существует целый ряд задач, решение которых требует наличия одновременного выполнения некоторых последовательностей действий. К таким задачам, например, относятся задачи автоматического управления несколькими процессами.

Реальный параллелизм достигается только при реализации задач такого типа на многопроцессорных системах, когда имеется возможность выполнения каждого процесса отдельным процессором. Системы с одним процессором имитируют параллелизм за счет разделения времени процессора между задачами управления различными процессами. В зависимости от типа используемой операционной системы (одно- или мультипрограммной) разделение времени может выполняться либо разрабатываемой системой (как в MS DOS), либо используемой ОС (как в системах Windows).

Устойчивость - свойство абстракции существовать во времени независимо от процесса, породившего данный программный объект, и/или в пространстве, перемещаясь из адресного пространства, в котором он был создан.

Различают:

1) временные объекты, хранящие промежуточные результаты некоторых действий, например, вычислений;

2) локальные объекты, существующие внутри подпрограмм, время жизни которых исчисляется от вызова подпрограммы до ее завершения;

3) глобальные объекты, существующие пока программа загружена в память;

4) сохраняемые объекты, данные которых хранятся в файлах внешней памяти между сеансами работы программы.

Все указанные выше принципы в той или иной степени реализованы в различных версиях объектно-ориентированных языков.