Лазерная связь с инопланетянами. Система космической лазерной связи

4 октября 2012 в 15:54

С борта МКС впервые по лазерному каналу была передана широкополосная информация на наземный пункт

  • Беспроводные технологии ,
  • Стандарты связи

2 октября 2012 года с Российского сегмента Международной космической станции впервые по лазерному каналу была передана широкополосная информация на наземный пункт

В рамках космического эксперимента (СЛС) по отработке аппаратуры и демонстрации российской технологии создания космических лазерных систем передачи информации, проводимого ОАО «НПК «СПП» совместно с ОАО «РКК «Энергия», осуществлен сеанс передачи информации с терминала связи, установленного на борту РС МКС, на лазерный терминал наземного пункта станции оптических наблюдений «Архыз» на Северном Кавказе (филиал ОАО «НПК «СПП»).
Была передана информация общим объемом 2,8 Гигабайт со скоростью 125 Мбит/с.
Этот шаг открывает дорогу к широкому внедрению в космическую технику России лазерных линий связи, которые при меньших массогабаритных параметрах бортовой аппаратуры потенциально могут обеспечивать исключительно высокую скорость информационного потока (до десятков гигабит в секунду).

Новости Федерального космического агентства

Интернет на МКС

Хм, подумал я, там же (на МКС) совершенно точно уже есть интернет. Вебкамеры работают, можно дома не телеке смотреть во время ужина. Зачем же нужна лазерная система? Ведь она требует точной наводки, да и погодка у нас тут, на Земле, не всегда радует. Да и когда радует нас, человеков, лазерам-то радости все равно не много. Полез искать.

Интернет таки да, действительно есть на МКС. Им могут пользоваться космонавты, он там на борту даже по вай-фай раздается. Но он там, оказывается, не так давно. Всего с 2010 года . И на диал-апных скоростях . Проблема, говорят, не с плохим линком, а с огромной относительной скоростью движения станции. Данные не успевают. Картинки с котиками прилетают в космос, а космонавтов и след уже простыл.

«Позвонить с борта МКС можно по спутниковому телефону в любую точку Земли. Главное - наличие свободного времени и спутниковой связи. К сожалению не все время есть такая возможность. Также по этому каналу связи (KU-band) мы можем работать с интернетом. Скорость небольшая, но новости просмотреть можно. Для удобства на борту есть еще почтовая программа. Перед стартом мы подаем списки электронных адресов, почту от которых мы будем получать во время полета на специальный адрес NASA. Списки могут быть откорректированы во время миссии. Эту почту нам забрасывают во время так называемой синхронизации, где-то 3-4 раза в день», - отметил Шкаплеров.
www.ria.ru 20/02/2012

Радиосвязь

Неужели все так плохо с радиосвязью?
Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3,65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с - это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.
"Космические радиолинии

Самой высокой скоростью межпланетной передачи данных может сегодня похвастаться аппарат Mars Reconnaissance Orbiter, вышедший на орбиту Марса 10 марта 2006 года. Он оснащен 100-ваттным передатчиком с трехметровой параболической антенной и может передавать информацию на скорости до 6 мегабит в секунду. Доставить к Марсу более крупный и мощный передатчик пока затруднительно.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)

Лазеры

Единственное отличие лазерного излучения от радиоизлучения - частота. Частота света - ~6*10^14Гц, 1,5мкм лазера - 2*10^14Гц. Радиопередатчики на космических аппаратах работают на частоте в единицы ГГц. Радио Ультра в Москве вещало на 100.5Мгц.
Высокая частота и, соответственно, маленькая длина волны - это и дар и проклятье лазерного излучения. Используя электромагнитное излучение такой частоты для связи, мы получаем в нагрузку и все его болезни - низкую проникающую способность, узконаправленность (это, конечно, может быть и не болезнь, если решается задача сокрытия канала связи) и т.д. Лазерный пучок имеет гауссову форму:

Т.е. чем дальше от земли, тем больше будет площадь лазерного пятна и, соответственно меньшая часть фотонов будет принимать участия в, собственно, передаче информации. Т.е. межзвездным средством связи лазер, даже с учетом отсутствия препятствия к распространению излучения в космосе, все равно не станет. А межпланетным?

Впервые лазерная связь в космосе была осуществлена 21 ноября 2002 года. Европейский спутник дистанционного зондирования Земли SPOT 4, находящийся на орбите высотой 832 километра, установил контакт с экспериментальным космическим аппаратом Artemis, обращающимся на высоте 31 000 километров и передал снимки земной поверхности. А недавно Лаборатория Линкольна в Массачусетсском технологическом институте (MIT) совместно с NASA приступила к разработке лазерной системы дальней космической связи. Первый тестовый коммуникационный лазер планируется отправить к Марсу в 2009 году. Ожидается, что этот 5-ваттный передатчик в период сближения планет обеспечит скорость передачи данных до 30 мегабит в секунду.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)
Более свежие новости, правда, говорят о тестировании лазерного канала Марс-Земля в 2012 году .

Ту систему, что второго числа совершала обмен данными с Землей с борта МКС, строит ОАО «НПК „СПП“». Совсем чуть-чуть информации о системе (то ли той, что на борту МКС, то ли похожей), можно найти на их сайте . Позволю себе продублировать эту информацию здесь:

Межспутниковые лазерные системы передачи информации со скоростью до 600 Мбит/с и дальностью действия от 1 до 6 тыс. км (линии НКА-НКА) от 30 до 46 тыс. км (линии НКА-ГКА):

Терминал для проведения космических экспериментов по лазерной связи на трассе Борт-Земля для МКС:

Длина трассы - до 2000 км
Масса терминала с транспортной рамой - 80 кг
Энергопотребление - 150 Вт
Скорость передачи данных - до 600 Мбит/с
Длина волны передатчика - 1550 нм
Длина волны маяка - 810 нм
Диаграмма передатчика - 50 угл. сек
Точность наведения - 10 угл. сек

На этом выступление заканчиваю. Простите за большое количество копипаста и ссылок, надеюсь, что информация интересная. И еще, я возмущен: ГЛОНАСС у нас отдельным хабом значится, а вот космонавтика (я так понимаю, это такой хаб-сборная солянка для всего, что к космосу отношение имеет) - хаб-оффтопик. Непорядок, ребят. Я бы местами поменял.

С середины 20 века началось активное исследование микроволн. Американский физик Чарльз Таунс решил усилить интенсивность микроволнового луча. Возбудив молекулы аммиака до высокого энергетического уровня путем нагревания или электрической стимуляции, ученый затем пропускал сквозь них слабый микроволновой луч. В результате получался мощный усилитель микроволнового излучения, который Таунс в 1953 г. назвал «мазером». В 1958 г. Таунс и Артур Шавлов сделали следующий шаг: вместо микроволн они попытались усилить видимый свет. На основе этих экспериментов Майман и создал в I960 г. первый лазер.

Создание лазера позволило решить широкий спектр задач, которые способствовали значительному развитию науки и техники. Что позволило в конце 20-го, начале 21-го веков получить такие разработки как: волоконно-оптические линии связи, медицинские лазеры, лазерную обработку материалов (термообработка, сварка, резка, гравировка и прочее), лазерное наведение и целеуказание, лазерные принтеры, считыватели штрих-кодов и многое другое. Все эти изобретения значительно упростили, как и жизнь обычного человека, так и позволили разрабатывать новые технические решения.

В этой статье будут приведены ответы на следующие вопросы:

1) Что такое беспроводная лазерная связь? Каким образом она осуществлена?

2) Какие условия применения лазерной связи в космосе?

3) Какое оборудование необходимо для осуществления лазерной связи?

Определение беспроводной лазерной связи, способы ее осуществления.

Беспроводная лазерная связь — вид оптической связи, использующий электромагнитные волны оптического диапазона (свет), передаваемые через атмосферу или вакуум.

Лазерная связь двух объектов осуществляется только посредством соединения типа «точка-точка». Технология основывается на передаче данных модулированным излучением в инфракрасной части спектра через атмосферу. Передатчиком служит мощный полупроводниковый лазерный диод. Информация поступает в приемопередающий модуль, в котором кодируется различными помехоустойчивыми кодами, модулируются оптическим лазерным излучателем и фокусируется оптической системой передатчика в узкий коллимированный лазерный луч и передается в атмосферу.

На принимающей стороне оптическая система фокусирует оптический сигнал на высокочувствительный фотодиод (или лавинный фотодиод), который преобразует оптический пучок в электрический сигнал. При этом чем выше частота (до 1,5ГГц), тем больше объём передаваемой информации. Далее сигнал демодулируется и преобразуется в сигналы выходного интерфейса.

Длина волны в большинстве реализованных систем варьируется в пределах 700-950 нм или 1550 нм, в зависимости от применяемого лазерного диода.

Из вышесказанного следует, что ключевыми приборными элементами для осуществления лазерной связи являются полупроводниковый лазерный диод и высокочувствительный фотодиод (лавинный фотодио). Рассмотрим чуть более подробно принцип их действия.

Лазерный диод - полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсной населённостей в области p-n перехода при инжекции носителей заряда. Пример современного лазерного диода предоставлен на рисунке 1.

Лавинные фотодиоды - высокочувствительные полупроводниковые приборы, преобразующие свет в электрический сигнал за счёт фотоэффекта. Их можно рассматривать в качестве фотоприёмников, обеспечивающих внутреннее усиление посредством эффекта лавинного умножения. С функциональной точки зрения они являются твердотельными аналогами фотоумножителей. Лавинные фотодиоды обладают большей чувствительностью по сравнению с другими полупроводниковыми фотоприёмниками, что позволяет использовать их для регистрации малых световых мощностей (≲ 1 нВт). Пример современного лавинного фотодиода предоставлен на рисунке 2.


Условия применения лазерной связи в космосе.

Одним из перспективных направлений развития систем космической связи, являются системы, основанные на передачи информации по лазерному каналу, поскольку данные системы могут обеспечить большую пропускную способность, при меньшем энергопотреблении, габаритных размерах и массе приемопередающей аппаратуры, чем использующиеся в данный момент системы радиосвязи.

Потенциально системы космической лазерной связи могут обеспечивать исключительно высокую скорость информационного потока – от 10-100 Мбит/с до 1-10 Гбит/с и выше.

Однако существует ряд технических проблем, которые необходимо решить, для реализации лазерных каналов связи между космическим аппаратом (КА) и Землей:

  • необходима высокая точность наведения и взаимного сопровождения на расстояниях от полутысячи до десятков тысяч километров и при движении носителей с космическими скоростями.
  • Существенно усложняются принципы приема-передачи информации по лазерному каналу.
  • Усложняется оптико-электронная аппаратура: точная оптика, прецизионная механика, полупроводниковые и волоконные лазеры, высокочувствительные приемники.

Эксперименты по осуществлению космической лазерной связи

Эксперименты по реализации систем лазерной связи для передачи больших массивов информации ведут как Россия, так и Соединенные Штаты Америки.

Система лазерной связи (СЛС) РФ

В 2013 году был проведен первый Российский эксперимент по передаче информации с помощью лазерных систем с Земли на Российский сегмент Международной Космической Станции (РС МКС) и обратно.

Космический эксперимент «СЛС» проводился с целью отработки и демонстрации российской технологии и аппаратуры приема-передачи информации по космической лазерной линии связи.

Задачами эксперимента являются:

  • отработка в условиях космического полета на РС МКС основных технологических и конструктивных решений, закладываемых в штатную аппаратуру межспутниковой лазерной системы передачи информации;
  • отработка технологии приема-передачи информации с использованием лазерной линии связи;
  • исследование возможности и условий работоспособности лазерных линий связи «борт КА – наземный пункт» при различном состоянии атмосферы.

Эксперимент планируется проводить в два этапа.

На первом этапе отрабатывается система приема — передачи информационных потоков по линиям «борт РС МКС–Земля» (3, 125, 622 Мбит/с) и «Земля–борт РС МКС» (3 Мбит/с).

На втором этапе планируется отработка высокоточной системы наведения и системы передачи информации по линии «борт РС МКС – спутник-ретранслятор».

Система лазерной связи на первом этапе эксперимента «СЛС» включает в свой состав две основные подсистемы:

  • бортовой терминал лазерной связи (БТЛС), установленный на российском сегменте Международной космической станции (рисунок 3);
  • наземный лазерный терминал (НЛТ), установленный на станции оптических наблюдений «Архыз» на Северном Кавказе (рисунок 4).

Объекты исследования на 1 этапе КЭ:

  • аппаратура бортового терминала лазерной связи (БТЛН);
  • аппаратура наземного терминала лазерной связи (НЛТ);
  • атмосферный канал распространения излучения.


Рисунок 4. Наземный лазерный терминал: астропавильон с оптико-механическим блоком и юстировочным телескопом

Система лазерной связи (СЛС) — 2 этап.

Второй этап эксперимента будет проводиться после успешного выполнения первого этапа и готовности специализированного КА типа «Луч» на ГСО с бортовым терминалом межспутниковой лазерной системы передачи информации. К сожалению, информации о том, был ли проведен второй этап или нет, в открытых источниках не удалось обнаружить. Возможно, результаты эксперимента засекретили, либо второй этап так и не провели. Схема передачи информации предоставлена на рисунке 5.

Проект OPALS США

Практически одновременно американское космическое агентство NASA начинает развертывание лазерной системы OPALS (Optical Payload for Lasercomm Science).

«Система OPALS представляет собой первую экспериментальную площадку для разработки технологий лазерных космических коммуникаций, а Международная космическая станция будет выступать в роли полигона для испытаний системы OPALS» — рассказывает Майкл Кокоровский (Michael Kokorowski), руководитель проекта OPALS и сотрудник Лаборатории НАСА по изучению реактивного движения (Jet Propulsion Laboratory, JPL), — «Будущие лазерные коммуникационные системы, которые будут разработаны на базе технологий OPALS, смогут обеспечить обмен большими объемами информации, что устранит узкое место, которое в некоторых случаях сдерживает научные исследования и коммерческие предприятия».

Система OPALS представляет собой герметичный контейнер, в котором находится электроника, посредством оптического кабеля связанная с лазерным приемно-передающим устройством (рисунок 6). В состав этого устройства входит лазерный коллиматор и камера слежения, установленные на подвижной платформе. Установка OPALS будет отправлена на борт МКС на борту космического корабля Dragon, который отправится в космос в декабре этого года. После доставки контейнер и передатчик будут установлены снаружи станции и начнется 90-дневная программа полевых испытаний системы.

Принцип работы OPALS:

С Земли специалистами лаборатории Optical Communications Telescope Laboratory в сторону космической станции будет послан луч лазерного света, который выступит в качестве маяка. Оборудование системы OPALS, уловив этот сигнал, с помощью специальных приводов нацелит свой передатчик на наземный телескоп, который будет служить в качестве приемника, и передаст ответный сигнал. В случае отсутствия помех на пути распространения лучей лазерного света коммуникационный канал будет установлен и по нему начнется передача видео- и телеметрической информации, которая в первый раз будет продолжаться порядка 100 секунд.

Европейская система передачи данных (European Data Relay System сокр. EDRS).

Система European Data Relay System (EDRS) — запланированный Европейским космическим агентством проект, по созданию группировки современных геостационарных спутников, которые будут осуществлять передачу информации между спутниками, космическими кораблями, беспилотниками (БПЛА) и наземными станциями, обеспечивая более быструю по сравнению с традиционными методами передачи данных скорость, даже в условиях природных и техногенных катастроф.

EDRS будет использовать новую технологию лазерной связи Laser Communication Terminal (LCT). Лазерный терминал позволит передавать информацию со скоростью 1.8 Гбит/с. Технология LCT предоставит возможность спутникам системы EDRS передавать и получать порядка 50 терабайт данных в день практически в режиме реального времени.

Первый спутник связи EDRS должен отправиться на геостационарную орбиту в начале 2016 года с космодрома Байконур на российской ракете-носителе «Протон». Добравшись до геосинхронной орбиты над Европой, спутник проведет лазерные линии связи между четырьмя спутниками «Sentinel-1» и «Sentinel-2», работающими в рамках космической программы по наблюдению за Землей «Коперник», беспилотными летательными аппаратами, а также наземными станциями в Европе, Африке, Латинской Америке, Среднем Востоке и на северо-восточном побережье США.

Второй, аналогичный спутник будет запущен в 2017 году, а запуск третьего спутника запланирован на 2020 год. В сумме эти три спутника смогут покрыть лазерной связью всю планету.

Перспективы развития лазерной связи в космосе.

Преимущества лазерной связи по сравнению с радиосвязью:

  • передача информации на большие расстояния
  • высокая скорость передачи
  • компактность и легкость оборудования для передачи данных
  • энергоэффективность

Недостатки лазерной связи:

  • необходимость точного наведения приёмных и передающих устройств
  • атмосферные проблемы (облачность, пыль и т.д.)

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Затруднения в виде необходимости точного наведения приёмных и передающих устройств можно решить современными техническими средствами. Кроме того, приемные наземные устройства можно располагать в районах Земли, где количество облачных дней минимально.

Помимо представленных выше проблем, существует еще одна проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в том числе и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Таким образом при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот, плохой на первый взгляд, факт мы можем обратить себе на пользу. Поскольку этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать эти самые границы раздела слоев, сред. Мы можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит количество помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время. Зато это позволит удешевить КА за счет экономии на системе наведения. Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса.

На текущий момент, если рассматривать связь «Земля – КА и КА-Земля», оптимальным решением является синергия лазерной и радиосвязи. Достаточно удобным и перспективным является передача данных с КА на Землю с помощью лазерной связи, а с Земли на КА радиосвязью. Связано это с тем, что лазерный приёмный модуль представляет собой достаточно громоздкую систему (чаще всего это телескоп), который улавливает излучение лазера и превращает его в электросигналы, которые затем, известными методами усиливаются и преобразуются в полезную информацию. Такую систему непросто установить на КА, поскольку чаще всего предъявляются требования компактности и малого веса. При этом передатчик лазерного сигнала обладает небольшими габаритами и весом по сравнению с антеннами для передачи радиосигнала.

Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применяемую в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи, передающих не только телефонные, но и телевизионные и компьютерные сигналы.
Оптические системы связи делятся на открытые, где сигнал передается в атмосфере или космосе, и закрытые, то есть использующие световоды . Далее рассматриваются только открытые атмосферные линии связи.
Оптическая атмосферная система связи между двумя пунктами состоит из двух спаренных приемопередающих устройств, расположенных в пределах прямой видимости на обоих концах линии и направленных друг на друга. В передатчике находится генератор-лазер и модулятор его оптического излучения передаваемым сигналом. Модулированный лазерный луч коллимируется оптической системой и направляется в сторону приемника. В приемнике излучение фокусируется на фотоприемник, где производится его детектирование и выделение передаваемой информации. Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Кроме того, в атмосфере наблюдаются турбулентные явления, которые приводят к флуктуации показателя преломления среды, колебаниям луча и искажениям принимаемого сигнала. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней миРаспространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. При этом ни одно из этих явлений не проявляется в отдельности. По чисто качественным признакам указанные явления можно разделить на три основные группы: поглощение и рассеяние молекулами газов воздуха, ослабление на аэрозолях (пыль, дождь, снег, туман) и флуктуации излучения на турбулентностях атмосферы. Главными ограничителями дальности АЛС являются густой снег и густой туман, для которых аэрозольное ослабление максимально. На распространение лазерного луча сильное влияние оказывает также турбулентность атмосферы, то есть случайные пространственно-временные изменения показателя преломления, вызванные перемещением воздуха, флуктуациями его температуры и плотности. Поэтому световые волны, распространяющиеся в атмосфере, испытывают не только поглощение, но и флуктуации передаваемой мощности.
Турбулентность атмосферы приводит к искажениям волнового фронта и, следовательно, к колебаниям и уширению лазерного пучка и перераспределению энергии в его поперечном сечении. В плоскости приемной антенны это проявляется в хаотическом чередовании темных и ярких пятен с частотой от долей герца до нескольких килогерц. При этом иногда возникают замирания сигнала (термин заимствован из радиосвязи) и связь становится неустойчивой. Замирание наиболее сильно проявляется в ясную солнечную погоду, особенно в летние жаркие месяцы, в часы восхода и захода солнца, при сильном ветреСистемы АЛС могут использоваться не только на "последней миле" каналов связи, но также и в качестве вставок в волоконно-оптические линии на отдельных труднопроходимых участках; для связи в горных условиях, в аэропортах, между отдельными зданиями одной организации (органы управления, торговые центры, промышленные предприятия, университетские городки, больничные комплексы, стройплощадки и т. д.); при создании разнесенных в пространстве локальных компьютерных сетей; при организации связи между центрами коммутации и базовыми станциями сотовых сетей; для оперативной прокладки линии при ограниченном времени на монтаж. Поэтому в последнее время возрастает интерес отечественных производителей к этому новому и перспективному сектору



Функциональная схема системы лазерной связи очень проста:

· блок обработки принимает сигналы от различных стандартных устройств (телефона, факса, цифровой АТС, локальной компьютерной сети) и преобразует их в приемлемую для передачи лазерным модемом форму;

· преобразованный сигнал передается электронно-оптическим блоком в виде инфракрасного излучения;

· на приемной стороне собранный оптической системой свет падает на фотоприемник, где преобразуется обратно в электрические сигналы;

· усиленный и обработанный электрический сигнал поступает на блок обработки сигналов, где восстанавливается в первоначальном виде.

Передача и прием осуществляются каждым из парных модемов одновременно и независимо друг от друга. Лазерные модемы устанавливаются таким образом, чтобы оптические оси приемопередатчиков совпадали. Основную сложность представляет собой юстировка направления оптических осей приемопередатчиков. Угол расходимости луча передатчика составляет у разных моделей от нескольких угловых минут до 0,5°, и точность юстировки должна соответствовать этим значениям.

После установки приемопередающих блоков необходимо подключить их к кабельным сетям в обоих зданиях. Существует множество моделей устройств с самыми разнообразными интерфейсами, однако, в отличие от поставщиков оборудования для радиосвязи, производители систем беспроводной оптики придерживаются следующей общей идеологии подключения: линия лазерной связи представляет собой эмуляцию отрезка кабеля (две витые пары или две жилы оптического кабеля). Связанные при помощи беспроводной оптики локальные сети функционируют так, как если бы их соединили выделенным кабелем. Некоторые модели лазерных модемов имеют совмещенные интерфейсы к сети Ethernet и потокам Е1. В результате одна атмосферная линия связи может соединить LAN и телефонные сети зданий без использования мультиплексора.

Вот так выглядит установленная система атмосферной лазерной связи. Пропускная способность системы - 100Mbit/sec на расстояние до 3! километров. фото:

Некоторые беспроводные удаленные мосты применяют для передачи данных инфракрасное излучение лазера. Обычно такое устройство содержит традиционный проводной Ethernet-мост и лазерный модем, обеспечивающий физическую связь. Другими словами, лазерное устройство только посылает биты данных, а всю остальную работу выполняет обычный мост. Лазерные модемы генерируют излучение с длиной волны 820 нм, которое не может быть обнаружено без специальных приборов. Очевидно, что для лазерных мостов излучатель и приемник должны располагаться на линии прямой видимости. Типичное расстояние между мостами составляет немногим больше 1 км и ограничивается мощностью лазера.
Одним из основных преимуществ таких систем является их большая пропускная способность. Второе
преимущество - достаточная помехозащищенность, поскольку инфракрасное излучение не взаимодействует с радиоволнами. Подобно оптоволоконным системам лазерные мосты обеспечивают высокий уровень безопасности. Для перехвата информации необходимо поместить соответствующий прибор на линии луча, что, во-первых, легко может быть обнаружено, а во-вторых, это весьма сложно осуществить, так как такие системы устанавливаются на крышах высотных зданий. Недостатками лазер-базированных систем является влияние на устойчивость связи погодных условий. Сильный дождь, снег или туман приводят к значительному рассеянию луча и ослаблению сигнала. На связь может повлиять также солнечный восход или заход, если канал ориентирован с востока на запад.
Беспроводные мосты используются для постоянного соединения сетей, в качестве запасного канала или как временное средство. Их производством занимаются множество компаний. Цены в зависимости от пропускной способности и расстояния связи составляют от 5 до 75 тыс. долл. за канал. Дорого, однако со временем такое решение может окупиться.

2,5 Гбит/с по лазерному лучу

Компания fSONA Communications представила новую систему беспроводной оптической связи SONAbeam 2500-M, позволяющую достичь скорости передачи данных порядка 2,5 Гбит/с. Основа системы – четыре избыточных передатчика, работающих на длине волны 1550 нм с выходной мощностью лазерного сигнала 560 мВт. На пятикилометровом испытательном полигоне в ясную погоду, система отработала на максимальной скорости и практически без ошибок.

Контрольные вопросы

1. Какие технологии применяются для создания беспроводных сетей?

2. Перечислить основные технологии радиосетей.

3. Что такое точка доступа (access point)?

4. Охарактеризовать технологию 802.11.Что такое направленная и всенаправленная антенна?

5. Что такое роумингом (roaming).?

6. Перечислить технологии, альтернативные стандарту IEEE 802.11;

7. Охарактеризовать технологию Bluetooth .

8. Охарактеризовать технологию HiperLAN .

9. Что такое оптические сети?

10. Что такое микроволновые системы?

11. Охарактеризовать стандарт IEEE 802.16 (WiMAX)?

12. Что такое беспроводные сети на базе низкоорбитальных спутников Земли?

13. Какие устройства входят в состав инфракрасной системы?

14. Что такое ИК-излучение?

15. Что такое атмосферная лазерная связь?

16. Как происходит прием и передача при атмосферной лазерной связи?

30 января на орбиту был запущен спутник Eutelsat 9B. Он стал первым спутником, оснащённым системой EDRS (Европейская система передачи данных). Желая узнать подробности о новой технологии, корреспондент Mediasat отправился в офис разработчика модуля EDRS – компании Tesat, которая расположена в небольшом немецком городке Бакнанг. Руководитель отдела лазерных технологий Матиас Моцигемба провёл для нас экскурсию по предприятию и рассказал о технологии лазерной связи, которая пока ещё мало известна в мире.

При поддержке Космического агентства Германии компания Tesat разработала Терминал лазерной связи (LCT), который обеспечивает поддержку передачи данных на высокой скорости между низкоорбитальными (LEO) и геостационарными (GEO) спутниками. Терминал делает возможной передачу данных на скорости 1,8 гбит/сек на расстояние до 45 000 километров. Эти LCT-терминалы и должны стать основой магистральных каналов передачи данных в системе EDRS, которая должна обеспечить передачу данных между LEO и GEO спутниками.

Матиас Моцигемба: «Теперь у нас есть возможность предоставления услуг высокого качества в режиме, приближённом к режиму реального времени. Это имеет огромное значение! LEO-спутник делает снимок и отправляет его на GEO-спутник, который, в свою очередь, отправляет его на землю в радиочастотном диапазоне. Лазерный луч отличное решение в вакууме, однако, в условиях атмосферы это не самый лучший выбор, поскольку облака могут создавать помехи. Для защиты телевизионного сигнала вы можете использовать высокие скорости передачи данных и защищённую от помех оптическую технологию в фидерной линии. Появление технологии лазерных коммуникаций можно сравнить с началом использования оптического волокна вместо медного».

Телепорт системы наблюдения за Землёй может быть иностранным сервисом, использующим наземные незащищённые линии.
Служба оптической передачи данных (с LEO на GEO и с GEO на наземную станцию передачи).
Наземная станция может располагаться в своей стране в зоне прямой видимости GEO-спутника.
S/C – суверенитет ваших информационных активов.

Необходимость разработки этой технологии была продиктована растущим спросом на ёмкости передачи данных для гражданских и военных спутников наблюдения, HALE миссий. Идея создания системы EDRS была выдвинута Еврокомиссией, которая уже занимается группировкой спутников Sentinel, программой Copernicus. Следующим шагом должно стать создание межспутниковых каналов связи. Компания Eutelsat предложила ёмкости для модуля связи на спутнике Eutelsat 9B. После семи лет разработки первого и второго поколения LCT в июле 2013 года была запущена система LCT на Alphasat. Система LCT на спутнике Sentinel-1A была успешно интегрирована в декабре 2013. В декабре 2014 года был запущен и введён в эксплуатацию спутник Sentinel 1A. В ноябре 2014 Европейское космическое агентство и Tesat провели совместную презентацию в прямом эфире, во время которой в режиме, приближённом к режиму реального времени было отправлено изображение с радара на спутнике Sentinel-1A через Alphasat на расстояние 41 700 километров на наземную станцию.

«Технически нет никакой разницы между оборудованием для лазерной связи, установленным на Alphаsat, и аналогичным оборудованием на Eutelsat 9B. Alphasat продемонстрировал технические возможности проекта, в то время как система EDRS на спутнике Eutelsat 9 B – это коммерческий сервис, предложенный Airbus Defense and Space. Обычно у спутника наблюдения за Землёй есть 10 минут для контакта с наземной станцией и 90 минут на оборот вокруг Земли. Это значит, что вы можете использовать космический актив лишь на 10%, и в случае чрезвычайной ситуации или стихийного бедствия слишком много времени уходит на ожидание контакта с наземной станцией наблюдения. Теперь же, во время наблюдений за морскими судами, к примеру, вы сможете обнаружить неполадку в течение 15 минут» , — говорит Матиас Моцигемба.

Ключевым элементом линейки продуктов является LCT-135 (телескоп с лучом диметром 135 мм) для межспутникового канала GEO/LEO. Как и в случае с предыдущей моделью, LCT-125, устройство объединяет в одном блоке все оптические, механические и электрические подмодули терминала, такие как система распределения электроэнергии, бортовой процессор, модули слежения и сбора данных, а также система обработки данных. Данные с AOCS-датчиков спутника с лёгкостью передаются на LCT через стандартный интерфейс – LIAU (Блок адаптации лазерного интерфейса).

Параметры LCT:

  • Радиус действия – 45 000 км.
  • Вес: 53 кг.
  • Скорость передачи данных (полный дуплекс):
    для EDRS – 1,8 гбит/сек, для других миссий – 5,65 гбит/сек.
  • Мощность передачи: 2,2 Вт
  • Максимальная потребляемая мощность: 160Вт
  • Габариты: 0.6 x 0.6 x 0.7 м.


П осмотрите на ваш радиоприемник. Вы увидите, что в диапазоне длинных волн «умещаются» передачи двух-трех радиостанций, на более коротких волнах (их называют средними) уже можно услышать их пять -десять. И наконец, в области коротких волн звучит буквально каждый миллиметр шкалы радиоприемника: вращая ручку настройки, вы слышите писк морзянки, сигналы радиомаяков, разноязычную речь и музыку. Станций так много, что приходится шкалу коротких волн растягивать, она делается в несколько раз длиннее, чем все остальные диапазоны приемника. Это не случайность, а закономерность: чем короче электромагнитные волны, тем больше их может уместиться, не мешая друг другу, на одном отрезке шкалы.

Но свет - такие же электромагнитные колебания, как и радиоволны, только гораздо короче. Поэтому оптический диапазон в пятьдесят тысяч раз шире радиодиапазона. Значит, если использовать свет для связи так, как мы это делаем с радио, можно добиться невиданной плотности передаваемых сообщений! Для этого нужно, чтобы передатчики друг другу не мешали. Этого можно добиться, если каждую передачу вести на строго определенной длине волн.

С радиоволнами все просто: передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах.

В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не передатчик может излучать электромагнитные волны любой длины. На них очень легко «нагрузить» сообщение. Волна, несущая какой-то сигнал -речь, музыку,- называется модулированной. Модуляция бывает двух видов: частотная (когда меняется длина волны излучения) и амплитудная (когда меняется его интенсивность). Так же модулировать можно было бы и свет, не будь он смесью разных электромагнитных волн, а будь одной волной достаточной интенсивности. Короче, нужен был лазер. И как только он появился, за него тут же ухватились связисты. Уже в 1962 году заработала лазерная линия связи между Калининским районом столицы и подмосковным городом Красногорском. Связь шла по открытому лучу: лазер стоял на одной из башен высотного здания Московского государственного университета на Ленинских горах. В то время это была самая высокая точка Москвы, Останкинская башня только проектировалась. Линия исправно работала в холод и в жару, днем и ночью. Хотелось бы добавить: в дождь и снег, но нельзя -в туман и непогоду световая линия работать переставала, и связь переключалась на обычную, электрическую. А плотных туманов в Москве бывает до восьмидесяти часов в год; на севере во много раз больше. Не сидеть же, ожидая погоды, без связи?

Конечно, нет, нужно исключить все вредные погодные воздействия, пустив свет по волоконному световоду.

Лазерный луч попадает в модулятор - устройство, которое «накладывает» на него передаваемый сигнал (речь, музыку, телевизионное изображение) - и уходит в волоконный кабель. Бесчисленное число раз отразившись от его стенок и пройдя в нем сотни и сотни метров, модулированный луч попадает в устройство, которое снова превращает его в привычный нам электрический сигнал.

По этому же световоду можно направить излучение второго лазера, с другой длиной волны, третьего, четвертого. Каждый из них может нести свой сигнал. По одному волокну, по стеклянной нити чуть тоньше волоса, можно одновременно передавать 32 ООО телефонных разговоров или 60 цветных телевизионных программ! Сейчас уже созданы световоды, способные работать в тех же условиях, что и обычные провода. Они выдерживают большие колебания температуры, обледенение, порывы ветра. Их можно прокладывать в земле и натягивать на столбах. Огромная пропускная способность световодов позволит создать сеть кабельного телевидения, работающего без помех и искажений, как сегодня работает радиотрансляция. Часто в одном жгуте комбинируют волоконные световоды и обычные электрические провода.

Есть и еще одно очень важное соображение, которое имеют в виду, создавая волоконно-оптическую связь. Два электрических провода, лежащие рядом, могут мешать друг другу. Переменный ток, текущий в одном проводе, вызывает такой же ток, только послабее, в другом. Возникает ложный сигнал -шум, треск, а то и музыка или речь, мешающие передаче по другому проводу. Такие сигналы-помехи называются наводками. Электрические искры и молнии дают наводки, принимаемые радиоприемником.

Особенно опасны наводки для работы электронно-вычислительных машин. В США был случай, когда огромную космическую ракету пришлось взорвать через несколько секунд после старта: из-за одной-единственной ошибки в вычислениях она сошла с траектории и грозила упасть на город. Расследование показало, что виновато маленькое реле: его неисправный контакт искрил, искра вызывала наводку, а та, в свою очередь,-сбой в работе машины. Крошечная искра стоила американцам нескольких миллионов долларов...

Для того чтобы избежать по-мех, провод одевают в «экран», или «броню» - плетеный чулок из медных нитей. Все высокочастотные кабели обязательно делаются в броне, именно так устроен кабель, идущий от антенны к телевизору. Но и это, как мы уже видели, не всегда помогает.

С волоконным световодом таких неприятностей не произойдет, слой непрозрачной краски на его поверхности - вот и вся изоляция. Поэтому считают, что миниатюрные полупроводниковые лазеры и оптическое волокно скоро вытеснят электронные приборы и кабели из вычислительной техники.

Лазеры уже можно гасить, зажигать и менять их яркость при помощи другого лазера, так, как включают, выключают и усиливают электрический ток электронные лампы и транзисторы. Свет заменяет электричество!

И вот что интересно: природа умудрилась создать даже такое сложное устройство, как волоконный световод, да еще настроенный на определенную длину волны. «Автор» конструкции и хозяин этого устройства -белый медведь. Американским ученым удалось установить, что каждая шерстинка его шкуры работает как оптическое волокно. Солнечный свет нагревает шерсть, а тепловые лучи идут по шерстинкам к коже и согревают зверя.

Волоконно-оптические кабели оказались настолько удобными добавлениями к лазерному лучу, что их сразу же решили приспособить к передаче мощных пучков света, вроде тех, что используются в промышленности. Это было нелегко, но, в конце концов, не так давно был создан световод, по которому можно «перекачивать» энергию от мощного импульсного или непрерывного лазера, например, такого, какой стоит в цехе завода имени Лихачева.