Единицы измерения информации

Всё, что находится на Вашем компьютере — это информация . Но как же её измерить?
Согласитесь, трудно работать с информацией не зная её количества. Попробуем с эти разобраться.

Единицей измерения компьютерной информации принято считать БАЙТ . Но, это не совсем верно, если принять во внимание, что компьютер — это вычислительная машина. А вычисляет компьютер, оперируя «машинным языком», ещё более мелкой единицей, которая называется БИТ .

Бит может быть выражен лишь единицей, либо нолём, и такая система вычисления называется двоичной. Один байт содержит в себе 8 битов. Справедливости ради, стоит заметить, что компьютер использует в своих операциях ещё восьмиричную и шестнадцатиричную системы вычислений. Но, на машинном языке компьютера мы больше останавливаться не будем.

Продолжим с языком пользователей. Если всё упростить, то одним байтом можно представить только один символ. Этот символ может выражаться буквой, цифрой, или каким-то иным значком. Если представить себе, сколько байт содержит одна страница текста обычной книги, а это около 2000 символов, и умножить полученное число на количество страниц, то станет понятна необходимость использования производных единиц измерения. Рассмотрим их:

Кб — килобайт — 1024 байта
Мб — мегабайт — 1024 килобайта
Гб — гигабайт — 1024 мегабайта
Тр — терабайт — 1024 гигабайта

Возникает резонный вопрос, почему не целая тысяча, вроде бы удобней считать, но тут ничего не поделаешь, таков алгоритм вычислений компьютера. Каждая следующая единица измерения порядком выше равна два в десятой степени от предыдущей, математика — наука точная.

Если следовать верхнему списку, то, как уже говорилось, условно можно предположить, что 1байт — один символ, 1кб — 1024 символа, и далее. Как же оценить данные числа, как понять и представить, какое количество информации кроется за их значениями.

Проще это понять имея дело с текстом. Я уже упоминал, что размер одной странички машинописного текста равен в среднем около 2000 символов. Легко подсчитать, что 1мб уместит в себе примерно страниц 500.
Разбавим нашу книгу несколькими десятками оптимизированных картинок ещё на 1мб. И получим книженцию, которая весит 2мб. Возьмём флэшку, или микро-CD карту памяти на 1гб. Вы уже подсчитали, и правильно — туда поместится 500 таких книг. А ведь флэшку, а уж тем более карту памяти, можно свободно положить в пистон брючного кармана. Попробуйте положить в карман хотя бы одну книгу в 500 страниц!

Безусловно, все эти рассуждения очень условны. К изображениям, фильмам, или играм такая оценка вряд ли подходит, но это и информация совсем другого рода. Хотя, может кто и помнит, или видел в кино, бабины со старыми кинофильмами(односерийный фильм по несколько частей и килограммов), прибавьте ещё и магнитофонные бабины, да и старые пластинки были совсем немаленькими — и Вы ощутите разницу между объёмами цифровой информации и информацией на других носителях старшего поколения.


Ещё о картинках. Одна хорошая фотография, или другое изображение может занимать от 2мб и много более. Но, всё красивое всегда требует многого!!!

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 бит [б] = 0,125 байт [Б]

Исходная величина

Преобразованная величина

бит ниббл байт символ машинное слово Машинное слово MAPM учетверенное слово блок кибибит кибибайт килобайт (10³байт) мебибит мебибайт мегабайт (10⁶ байт) гибибит гибибайт гигабайт (10⁹ байт) тебибит тебибайт терабайт (10¹² байт) пебибит пебибайт петабайт (10¹⁵ байт) эксбибит эксбибайт эксабайт (10¹⁸ байт) дискета (3.5, дв. плотности) дискета (3.5, выс. пл.) дискета (3.5, расшир. пл.) дискета (5,25, дв. пл.) дискета (5,25, выс. пл.) Zip 100 Zip 250 Jaz 1GB Jaz 2GB CD (74 минуты) CD (80 минут) DVD (1 слой, 1 сторона) DVD (2 слоя, 1 сторона) DVD (1 слой, 1 сторона) DVD (2 слоя, 2 стороны) Однослойный диск Blu-ray Двухслойный диск Blu-ray

Термическое сопротивление

Подробнее о единицах измерения количества информации

Общие сведения

Данные и их хранение необходимы для работы компьютеров и цифровой техники. Данные - это любая информация, от команд до файлов, созданных пользователями, например текст или видео. Данные могут храниться в разных форматах, но чаще всего их сохраняют как двоичный код. Некоторые данные хранятся временно и используются только во время исполнения определенных операций, а потом удаляются. Их записывают на устройствах временного хранения информации, например, в оперативной памяти, известной под названием запоминающего устройства с произвольным доступом (по-английски, RAM - Random Access Memory) или ОЗУ - оперативное запоминающее устройство. Некоторую информацию хранят дольше. Устройства, обеспечивающие более длительное хранение - это жесткие диски, твердотельные накопители, и различные внешние накопители.

Подробнее о данных

Данные представляют собой информацию, которая хранится в символьной форме и может быть считана компьютером или человеком. Бо́льшая часть данных, предназначенных для компьютерного доступа, хранится в файлах. Некоторые из этих файлов - исполняемые, то есть они содержат программы. Файлы с программами обычно не считают данными.

Избыточность

Во избежание потери данных при поломках используют принцип избыточности, то есть хранят копии данных в разных местах. Если эти данные перестанут читаться в одном месте, то их можно будет считать в другом. На этом принципе основывается работа избыточного массива независимых дисков RAID (от английского reduntant array of independent discs). В нем копии данных хранятся на двух или более дисках, объединенных в один логический блок. В некоторых случаях для большей надежности копируют сам RAID-массив. Копии иногда хранят отдельно от основного массива, иногда в другом городе или даже в другой стране, на случай уничтожения массива во время катаклизмов, катастроф, или войн.

Форматы хранения данных

Иерархия хранения данных

Данные обрабатываются в центральном процессоре, и чем ближе к процессору устройство, которое их хранит, тем быстрее их можно обработать. Скорость обработки данных также зависит от вида устройства, на котором они хранятся. Пространство внутри компьютера рядом с микропроцессором, где можно установить такие устройства, ограничено, и обычно самые быстрые, но маленькие устройства находятся ближе всего к микропроцессору, а те, что больше но медленнее - дальше от него. Например, регистр внутри процессора очень мал, но позволяет считывать данные со скоростью одного цикла процессора, то есть, в течение нескольких миллиардных долей секунды. Эти скорости с каждым годом улучшаются.

Первичная память

Первичная память включает память внутри процессора - кэш и регистры. Это - самая быстрая память, то есть время доступа к ней - самое низкое. Оперативная память также считается первичной памятью. Она намного медленнее регистров, но ее емкость гораздо больше. Процессор имеет к ней прямой доступ. В оперативную память записываются текущие данные, постоянно используемые для работы выполняемых программ.

Вторичная память

Устройства вторичной памяти, например накопитель на жестких магнитных дисках (НЖМД) или винчестер, находятся внутри компьютера. На них хранятся данные, которые не так часто используются. Они хранятся дольше, и не удаляются автоматически. В основном их удаляют сами пользователи или программы. Доступ к этим данным происходит медленнее, чем к данным в первичной памяти.

Внешняя память

Внешнюю память иногда включают во вторичную память, а иногда - относят в отдельную категорию памяти. Внешняя память - это сменные носители, например оптические (CD, DVD и Blu-ray), Flash-память, магнитные ленты и бумажные носители информации, такие как перфокарты и перфоленты. Оператору необходимо вручную вставлять такие носители в считывающие устройства. Эти носители сравнительно дешевы по сравнению с другими видами памяти и их часто используют для хранения резервных копий и для обмена информацией из рук в руки между пользователями.

Третичная память

Третичная память включает в себя запоминающие устройства большого объема. Доступ к данным на таких устройствах происходит очень медленно. Обычно они используются для архивации информации в специальных библиотеках. По запросу пользователей механическая «рука» находит и помещает в считывающее устройство носитель с запрошенными данными. Носители в такой библиотеке могут быть разные, например оптические или магнитные.

Виды носителей

Оптические носители

Информацию с оптических носителей считывают в оптическом приводе с помощью лазера. Во время написания этой статьи (весна 2013 года) самые распространенные оптические носители - оптические диски CD, DVD, Blu-ray и Ultra Density Optical (UDO). Накопитель может быть один, или их может быть несколько, объединенных в одном устройстве, как например в оптических библиотеках. Некоторые оптические диски позволяют осуществлять повторную запись.

Полупроводниковые носители

Полупроводниковая память - одна из наиболее часто используемых видов памяти. Это вид памяти параллельного действия, позволяющий одновременный доступ к любым данным, независимо в какой последовательности эти данные были записаны.

Почти все первичные устройства памяти, а также устройства флеш-памяти - полупроводниковые. В последнее время в качестве альтернативы жестким дискам становятся более популярными твердотельные накопители SSD (от английского solid-state drives). Во время написания этой статьи эти накопители стоили намного дороже жестких дисков, но скорость записи и считывания информации на них значительно выше. При падениях и ударах они повреждаются намного меньше, чем магнитные жесткие диски, и работают практически безшумно. Кроме высокой цены, твердотельные накопители, по сравнению с магнитными жесткими дисками, со временем начинают работать хуже, и потерянные данные на них очень сложно восстановить, по сравнению с жесткими дисками. Гибридные жесткие диски совмещают твердотельный накопитель и магнитный жесткий диск, увеличивая тем самым скорость и срок эксплуатации, и уменьшая цену, по сравнению с твердотельными накопителями.

Магнитные носители

Поверхности для записи на магнитных носителях намагничиваются в определенной последовательности. Магнитная головка считывает и записывает на них данные. Примерами магнитных носителей являются накопители на жестких магнитных дисках и дискеты, которые уже почти полностью вышли из употребления. Аудио и видео также можно хранить на магнитных носителях - кассетах. Пластиковые карты часто хранят информацию на магнитных полосах. Это могут быть дебетовые и кредитные карты, карты-ключи в гостиницах, водительские права, и так далее. В последнее время в некоторые карты встраивают микросхемы. Такие карты обычно содержат микропроцессор и могут выполнять криптографические вычисления. Их называют смарт-картами.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее “длиной” (или “объемом”), которая выражается в битах. Бит- минимальная единица измерения информации (от английского BInary digiT -- двоичная цифра). Каждый бит может принимать значение 0 или 1. Битом также называют разряд ячейки памяти ЭВМ. Для измерения объема хранимой информации используются следующие единицы:

1 байт= 8 бит;

1 Кбайт= 1024 байт (Кбайт читается как килобайт);

1 Мбайт= 1024 Кбайт (Мбайт читается как мегабайт);

1 Гбайт= 1024 Мбайт (Гбайт читается как гигабайт).

Бит (от англ. binary digit ; также игра слов: англ. bit - немного)

По Шеннону бит - это двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях.

Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено/выключено, и т.п.

Базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос). В одном двоичном разряде содержится один бит информации.

В вычислительной технике и сетях передачи данных обычно значения 0 и 1 передаются различными уровнями напряжения либо тока. Например, в микросхемах на основе TTL 0 представляется напряжением в диапазоне от +0 до + 3 В , а 1 в диапазоне от 4,5 до 5,0 В.

Скорость передачи данных в сети обычно измеряется битами в секунду. Примечательно, что с ростом скорости передачи данных, бит приобрёл также ещё одно метрическое выражение: длину. Так, в современной гигабитной сети (1 Гигабит/сек) на один бит приходится примерно 30 метров провода. Из-за этого сложность сетевых адаптеров существенно возросла. Раньше, например, в одно-мегабитных сетях длина бита в 30 км была почти всегда заведомо больше длины кабеля между двумя устройствами.

В вычислительной технике, особенно в документации и стандартах, слово «бит» часто применяется в значении двоичный разряд. Например: первый бит - первый двоичный разряд байта или слова, о котором идёт речь.

В настоящее время бит - это наименьшая возможная единица измерения информации в вычислительной технике, но интенсивные исследования в области квантовых компьютеров предполагают наличие q-битов.

Байт (англ. byte ) - единица измерения количества информации, равная обычно восьми битам, может принимать 256 (2 8) различных значений.

Вообще, байт- это последовательность битов, число которых фиксировано, минимальный адресуемый объём памяти в компьютере. В современных компьютерах общего назначения байт равен 8 битам. Для того, чтобы подчеркнуть, что имеется в виду восьмибитный байт, в описании сетевых протоколов используется термин «октет» (англ. octet ).

Иногда байтом называют последовательность битов, которые составляют подполе слова. На некоторых компьютерах возможна адресация байтов разной длины. Это предусмотрено инструкциями извлечения полей ассемблеров LDB и DPB на PDP-10 и в языке Common Lisp.

В IBM-1401 байт был равен 6 битам так же, как и в Минск-32, а в БЭСМ - 7 битам, в некоторых моделях ЭВМ производства Burroughs Computer Corporation (ныне - Unisys) - 9 битам. Во многих современных цифровых сигнальных процессорах используется байт длиной 16 бит и больше.

Название было впервые использовано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера IBM 7030 для пучка одновременно передаваемых в устройствах ввода-вывода битов (шести штук), позже в рамках того же проекта расширили байт до восьми (2 3) бит.

Кратные приставки для образования производных единиц для байта применяются не как обычно: во-первых, уменьшительные приставки не используются совсем, а единицы измерения информации меньшие чем байт называются специальными словами (ниббл и бит); во-вторых, увеличительные приставки означают за каждую тысячу 1024=2 10 (килобайт равен 1024 байтам, мегабайт равен 1024 килобайтам или 1 048 576 байтам, и т. д. с гигабайтами, терабайтами и петабайтами (больше пока не употребляются)). Разница возрастает с ростом веса приставки. Более правильно использовать двоичные приставки, но на практике они пока не применяются, возможно, из-за неблагозвучности - кибибайт, мебибайт и т. п.

Иногда десятичные приставки используются и в прямом смысле, например при указании ёмкости жёстких дисков: у них гигабайт может обозначать миллион кибибайт, т. е. 1 024 000 000 байт, а то и просто миллиард байт, а не 1 073 741 824 байт, как, например, в модулях памяти.

Килобайт (кбайт, кБ) м., скл. - единица измерения количества информации, равная (2 10) стандартным (8-битным) байтам или 1024 байтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «килобайт» общепринято, но формально неверно, так как приставка кило -, означает умножение на 1 000, а не 1 024. Правильной для 2 10 является двоичная приставка киби- .

Таблица 1.2- Кратные приставки для образования производных единиц

Мегабайт (Мбайт, М) м., скл. - единица измерения количества информации, равная 1048576 (2 20) стандартным (8-битным) байтам или 1024 килобайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «Мегабайт» общепринято, но формально неверно, так как приставка мега- , означает умножение на 1 000 000, а не 1 048 576. Правильной для 2 20 является двоичная приставка меби- . Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт.

Самую оригинальную трактовку термина мегабайт используют производители компьютерных дискет, которые понимают под ним 1 024 000 байта. Таким образом, дискета, на которой указан объём 1,44 Мбайт на самом деле вмещает лишь 1440 Кбайт, то есть 1,41 Мбайт в обычном понимании.

В связи с этим получилось, что мегабайт бывает коротким, средним и длинным:

короткий - 1 000 000 байт

средний - 1 024 000 байт

длинный - 1 048 576 байт

Гигабайт - кратная единица измерения количества информации, равная 1 073 741 824 (2 30) стандартным (8-битным) байтам или 1 024 мегабайтам.

Приставка СИ гига- используется ошибочно, так как она обозначает умножение на 10 9 . Для 2 30 же следует употреблять двоичную приставку гиби-. Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт

Машинное слово- машинно-зависимая и платформозависимая величина, измеряемая в битах или байтах, равная разрядности регистров процессора и/или разрядности шины данных (обычно некоторая степень двойки). Размер слова совпадает, также, с минимальным размером адресуемой информации (разрядностью данных, расположенных по одному адресу). Машинное слово определяет следующие характеристики машины:

разрядность данных, обрабатываемых процессором;

разрядность адресуемых данных (разрядность шины данных);

максимальное значение беззнакового целого типа, напрямую поддерживаемого процессором: если результат арифметической операции превосходит это значение, то происходит переполнение;

максимальный объём оперативной памяти, напрямую адресуемой процессором.

Максимальное значение слова длинной n бит можно легко рассчитать по формуле 2 n −1

Таблица 1.3 - Размер машинного слова на различных платформах

Мы постоянно что-то измеряем — время, длину, скорость, массу. И для каждой величины есть своя единица измерения, а зачастую несколько. Метры и километры, килограммы и тонны, секунды и часы — все это нам знакомо. А как же измерить информацию? Для информации тоже придумали единицу измерения и назвали ее бит .

Бит — это минимальная единица измерения информации.

В одном бите содержится очень мало информации. Он может принимать только одно из двух значений (1 или 0, да или нет, истина или ложь). Измерять информацию в битах очень неудобно — числа получаются огромные. Ведь не измеряют же массу автомобиля в граммах.

Например, если представить объем флешки в 4Гб в битах мы получим 34 359 738 368 бит. Представьте, пришли вы в компьютерный магазин и просите продавца дать вам флешку объемом 34 359 738 368 бит. Вряд ли он вас поймет

Поэтому в информатике и в жизни используются производные от бита единицы измерения информации. Но у них у всех есть замечательное свойство — они являются степенями двойки с шагом 10.

Итак, возьмем число 2 и возведем его в нулевую степень. Получим 1 (любое число в нулевой степени равно 1). Это будет байт.

В одном байте 8 бит.

Теперь возведем 2 в 10-ю степень — получим 1024. Это килобайт (Кбайт).

В одном килобайте 1024 байт.

Если возвести 2 в 20 степень — получим мегабайт (Мбайт).

1Мбайт = 1024 Кбайт.

Название Символ Степень
байт Б 2 0
килобайт кБ 2 10
мегабайт МБ 2 20
гигабайт ГБ 2 30
терабайт ТБ 2 40
петабайт ПБ 2 50
эксабайт ЭБ 2 60
зеттабайт ЗБ 2 70
йоттабайт ЙБ 2 80

Понимание данной темы позволит успешно и к

В нашей жизни каждый из нас что-то измеряет. Например, в детстве, наши родители измеряли нам высоту нашего тела. Это ведь так увлекательно, когда узнаешь, что всего за один год ты вырос на целых 5 сантиметров! Для этих целей мы использовали линейку и дверной косяк, помечая на нём ежегодно зарубками высоту.

Каждое измерение требует своего прибора и своей единицы измерения.


Так, масса какого-либо тела измеряется весами в килограммах, время при помощи часов в секундах и т.д.

У начинающих , сам собой, возникает вопрос о том, в каких единицах измерять информацию?



Наименьшая единица измерения информации

Для измерения информации в информатике используют свою, особенную единицу измерения. Она получила название - «бит» и образована от словосочетания двух английских слов - «binary digit».


Для того чтобы была возможность измерить информацию необходимо, как вы помните, закодировать информацию в цифровые двоичные данные. Только так, мы сможем узнать размер набора цифровых данных, хранящемся в каком-либо файле.


Бит - наименьшая единица измерения информации.

Это определение означает, что не существует никакой другой единицы измерения информации, которая была бы меньше, по своему значению, чем один бит.


Один бит содержит в себе очень малую часть информации. Ведь он способен принимать только одно из двух определенных значений (1 или 0).




Поэтому, измерять информацию, используя лишь одни биты, крайне неудобно - числа выходят очень большими. Это тоже самое, если бы мы измеряли высоту своего тела в миллиметрах.


Например, для кодирования 1 символа в текст достаточно 8 бит. 8 бит называют байтом.



Крупные единицы измерения информации

В связи с этим, в информатике были придуманы более крупные единицы измерения информации, связь между которыми отражена ниже:




Существуют и более крупные единицы информации:

  • 1 Пб =1024 Тб Петабайт (Пбайт)
  • 1 Эб =1024 Пб Эксабайт (Эбайт)
  • 1 Зб =1024 Эб Зеттабайт (Збайт)
  • 1 Йб =1024 Зб Йоттабайт (Йбайт)

Приведем примеры для сравнения разных объёмов оцифрованной текстовой информации.


Один байт занимает символ, введённый нами с клавиатуры.


100 Кбайт занимает снимок в телефоне с низким разрешением.


1 Мбайт - небольшая художественная книга.


Три гигабайт всего лишь 1 час видеозаписи в хорошем качестве.


Информационный объём текстового сообщения

Как найти, к примеру, информационный объём сообщения «Информатика – главная наука современности ».
Для этого нужно сосчитать общее количество символов в сообщении (заключено в кавычках), учитывая пробелы между словами (пробел в компьютере тоже символ). Итого, получаем 41 символов или 41 байт.




Предлагаем узнать, сколько информации находится в книге из 100 страниц, если на каждой странице умещается 50 строк, а на каждой строке - 60 символов.
100⋅50⋅60=300 000 символов, что составляет 300 000 байт. Переведём всё в килобайты: 300 000 байт /1024=292,97 Кб. В мегабайтах это будет уже 292,97 Кб /1024=0,29 Мб.

Информационный объём мультимедийной информации

Гораздо больше информации включают в себя файлы графических изображений, а ещё больше - видеофайлы.


Мультимедийной информацией называют данные, которые содержат рисунки, фотографии, звук и видео.




К примеру, растровый рисунок, состоит из 1000 на 1000 пикселей.


Каждый пиксель может быть закодирован 24 битами или 3 байтами (так как 24/8=3) и занимает информационный объём равный 1000⋅1000⋅3=3 000 000 байт.


В килобайтах это уже будет 3 000 000 байт/1024= 2929,69 Кбайт. А в мегабайтах - 2929,69 Кбайт /1024=2,86 Мбайт.


В связи с этим, промышленность выпускает большие по объему носители цифровых данных.


Объём современных цифровых носителей (жёстких или твердотельных дисков), уже достигает объёма нескольких терабайт.