Самые надежные SSD: результаты эксперимента продолжительностью в полтора года. На долгой дистанции лидером по надежности остается диск HDD

В рамках материала «Разные SSD: а есть ли разница? », в котором было протестировано несколько моделей SSD и HDD различного класса, мы на примере реальных пользовательских операций продемонстрировали отличия между этими устройствами. С момента публикации прошло почти полтора года – срок по меркам компьютерной индустрии немалый.

Что изменилось за это время? Да практически все. Цены – ушли вниз. Ассортимент – перетрясен производителями почти полностью, по причине снижения цен и необходимости адекватного (новой ценовой политике) сокращения себестоимости. Под понятием «бюджетный класс» теперь подразумевается конфигурации на TLC NAND, а найти в начальных строчках прайс-листов магазинов что-то на основе памяти MLC NAND является самой настоящей проблемой. Класс решений флагманского уровня, тот, которым мы его видели еще года полтора назад – на грани вымирания. Теперь под «флагманским» понимается решение не форм-фактора 2.5" с интерфейсом SATA 6 Гбит/с, а форм-фактора M.2 с интерфейсом PCI-Express 3.0 x4.

Хорошим примером этого может служить череда действий Toshiba OCZ в последние месяцы: OCZ Vector 180 (2.5" SATA) снят с производства, флагманом теперь выступает Toshiba OCZ RD400 (PCI-E 3.0 x4), OCZ Vertex 460A на 19 нм памяти заменен на Vertex 500 (Toshiba OCZ VT500) на более дешевой 15 нм памяти, а под нижним ценовым сегментом теперь понимается не относительно новый Trion 150 (у которого оставлены объемы 480 Гбайт и более), а недавно анонсированный TL100 , в основе которого лежит еще более упрощенная платформа, нежели Phison S10.

Иначе говоря, если раньше производители лавировали в относительно узких рамках одного типа памяти MLC NAND и одного форм-фактора, то в 2016 году простор для их маневров стал больше, а «шаг в массы» интерфейсов PCI-Express 3.0 и NVMe дополнительно расширил ассортимент решений.

Но есть ли разница между ними на практике? Как показывает практический опыт пользователей, ситуация с работой и полноценной загрузкой нынешних мощностей и сегодня довольно унылая. Благодаря нашим постоянным партнерам – магазину Регард и компаниям-производителям, мы вновь проясним ситуацию, сравнив разные модели накопителей между собой.


Обзор и тестирование SSD-накопителя SmartBuy Splash 120 Гбайт (SB120GB-SPLH-25SAT3)

Торговая марка SmartBuy продолжает удивлять. Совсем недавно мы протестировали SmartBuy S11-2280T, аналогов которого вообще нет (это единственное решение на контроллере Phison PS3111-S11), а теперь в ее ассортименте появился еще один оригинальный накопитель, получивший название SmartBuy Splash. И в его основе также лежит экзотичный контроллер – на сей раз Marvell 88NV1120, который среди представленных в отечественной рознице моделей более не встречается.

Немного суровой реальности, пинающей маркетинг, или матчасть тоже надо знать

Гонка за экстремальной скоростью

«Ребята, без обид, но я понимаю, почему Россия в тупике – из-за таких экспертов, как вы».
Реакция пользователя на совет участников форума не пытаться
собирать RAID-массив из двух Samsung SM951 на LGA 1151.

Данную цитату я привел из своего личного опыта общения. Увы, именно так: люди додумываются ваять чудесные конструкции, совершенно не утруждаясь разбором технической сути. Затем различными «шаманскими плясками» пытаются заставить работать этого «Франкенштейна», споря с окружающими и не веря их словам о том, что подобный замысел даже технически (не говоря уже о финансовой стороне вопроса) является глупостью. И заставив-таки эту конструкцию подавать признаки жизни, пользователи с удивлением узнают, что результат не соответствует их ожиданиям и… снова начинают поиск виноватых.

Конкретно тот пользователь пытался собрать RAID-массив «нулевого» уровня из двух твердотельных накопителей с интерфейсом PCI-E 3.0 x4 на материнской плате, основанной на наборе системной логики Intel Z170. Суть в том, что оба SSD он хотел установить в разъемы, подключенные именно к Intel Z170. Изучение блок-диаграммы этого чипсета покажет несбыточность мечты о возможности получения скоростей чтения в районе 4.2 Гбайт/с (суммирование возможностей двух SM951 на линейных операциях).

Дело в том, что сам набор системной логики сообщается с процессором посредством третьей версии шины Direct Media Interface (DMI), которая технически является модифицированным объединением четырех линий PCI-Express 3.0 с соответствующей пропускной способностью около 3.93 Гбайт в секунду. Мало того, часть этой пропускной способности задействуется для потребностей периферии – сетевого контроллера, SATA- и USB-портов и прочего.

Единственный выход в случае LGA 1151 – установка микросхемы-коммутатора типа PLX, которая подключается к CPU и задействует линии от него, но такие платы из-за себестоимости подобного инженерного решения очень дороги. По величинам цифр на ценниках они фактически уже начинают пересекаться с платформой LGA 2011-v3, где подобной проблемы нет просто в силу того, что на ней от процессора отходит больше линий PCI-Express (от 28 до 40, в зависимости от модели ЦП, против 16 у LGA 1151).

Так для чего же производители устанавливают по два (а то и больше) разъема M.2 на системных платах с процессорным разъемом LGA 1151? Ответ прост: подобное отлично подходит для раздельной эксплуатации накопителей, когда обращение идет только к одному SSD, а не всем одновременно; для установки иных плат расширения (уже можно приобрести, например, Wi-Fi-адаптеры). Никто не отменял и факта существования таких SSD, как, например, недавно представленный Intel SSD 600p, модификация которого объемом 128 Гбайт обеспечивает лишь до 770 Мбайт/с на чтении и 450 Мбайт/с – на записи. Что, между прочим, сопоставимо с двухлетней давности Plextor M6e с двумя линиями интерфейса PCI-E (причем еще версии 2.0).

Причем помимо собственно нагрузки существует и так называемый «служебный трафик», который есть всегда, в результате чего реальная пропускная способность оказывается ниже. И, как показывает практика, в реальности на LGA 1151 удается получить не больше 3.4-3.5 Гбайт в секунду, да и те практически в «лабораторных условиях» – при минимизации нагрузки на все остальные элементы системы и аккуратном подборе конфигурации тестовой системы. Наиболее реальными же оказываются и вовсе 3.1-3.2 Гбайт.

Но один вариант для систем LGA 1151 все-таки есть: устанавливать PCI-E SSD так, чтобы они были подключены раздельно к процессору и к набору системной логики. В этом случае будет доступен лишь вариант программной сборки средствами самой операционной системы, но это на самом деле непринципиально по одной простой причине: на материнских платах потребительского класса в принципе нет RAID-контроллеров.

Да, именно так: все операции на «бытовых» системных платах выполняются драйвером на программном уровне с использованием ресурсов центрального процессора. Подобный тип программных массивов даже носит неофициальное название «FakeRAID». Настоящий же RAID-контроллер включает собственный микропроцессор (зачастую с немалым тепловыделением), кэш-память, цепь питания для защиты данных в случае незапланированного отключения питания и еще ряд элементов обвязки.

Суммарная стоимость такого устройства выше, чем у большинства материнских плат, не говоря уже про сам набор системной логики, а потому модели вроде ASRock Z87 Extreme11/ac , где применены LSI SAS 3008 и LSI SAS 3x24R вкупе с флеш-памятью, являются своего рода эксклюзивом.

В погоне за копейкой

Вторая половина 2015 – начало 2016 года ознаменовались тем, что память TLC NAND стала в твердотельных накопителях поистине массовым явлением. Компания Samsung лишилась своей «монополии», причем практически сразу выделилось два дуэта, противостоящих друг другу: память Toshiba с контроллерами Phison и память SK Hynix с контроллерами Silicon Motion.

На первый дуэт ставку сделали более именитые бренды вроде Kingston, Toshiba OCZ, Corsair и ряда других. Второй в решениях более-менее популярных брендов оказался только в ассортименте ADATA, все остальное – множество китайских и малоизвестных у нас (да и не только у нас) компаний.

Недавно состоялся выход на сцену флеш-памяти с вертикальной компоновкой, разработанной концерном Micron и Intel (IMFT), фактически более-менее полноценно присутствует на рынке только один накопитель на ней – Crucial MX300, но, судя по всему, сложившаяся расстановка в целом не поменяется и тут – Toshiba и Western Digital (SanDisk) готовят свою 3D V-NAND.

Несмотря на явное противостояние, эти платформы очень близки как по маркетинговой составляющей, так и по аппаратной идеологии. Накопители на их основе позиционируются на данный момент как решения начального и среднего уровня, а суть работы их фактически идентична.

При том, что TLC NAND обладает меньшей себестоимостью в производстве, она также обладает и своими недостатками. В частности это достаточно медленная память, и на операциях записи уровень ее быстродействия не выдерживает никакой критики. Чтобы такие накопители все же могли предложить достойные показатели, применяется ухищрение: часть массива памяти работает в «ускоренном» режиме записи (иногда его называют «псевдоSLC»).

В итоге современные модели на TLC NAND, за редким исключением, даже будучи небольшого объема (~120-128 Гбайт) несут в своих официальных спецификациях указание скоростей записи примерно 400-550 Мбайт/с – именно благодаря SLC-режиму.

Но объем данных, который накопитель способен записать на такой высокой скорости, обычно невелик и в зависимости от объема SSD может начинаться с приблизительно 2 Гбайт у самых младших модификаций.

Другое дело, что подобное поведение отнюдь не всегда бросается в глаза просто из-за того, что копирование действительно больших объемов данных – ситуация, возникающая не так часто. Не совсем приятно наблюдать скорость копирования чуть ли не на уровне совсем уже старых моделей HDD.

Первая «ступенька» – кэширование Windows. Вторая – SLC-кэш. Нижняя «полка» – реальная скорость работы Zenith R3 120 Гбайт за пределами SLC-кэша.

На самом деле вполне реален еще один сценарий, при котором могут себя проявлять нехватка SLC-буфера и низкая скорость записи вне него: установка игр с большим объемом занимаемого места.

Вообще, твердотельные накопители на TLC NAND наиболее оптимально смотрятся именно в больших объемах: и ресурс чисто за счет объема становится избыточным, и размер SLC-буфера (который обычно задается в процентах от объема SSD) достаточно велик. Да и сам массив памяти набирается таким количеством кристаллов NAND, что скорость записи и вне SLC-буфера вырастает до достойных значений. К примеру, емкость кристаллов планарной TLC NAND производства Toshiba, SK Hynix и Micron сейчас составляет 128 Гбит, несложно подсчитать, что для построения массива 128 Гбайт нужно 8 кристаллов, а массив 512 Гбайт набирается уже 32-мя кристаллами.

Кстати о ресурсе. Это еще один краеугольный камень знания матчасти. На самом деле, вопреки распространенному мнению, ресурс выражается не только численным показателем (сколько именно данных может быть записано на накопитель до первых сбоев), но еще и сохранностью этих данных. Как сохраняются данные во флеш-памяти? Хранятся они в ячейках в виде заряда, и существует такой физический процесс, как «перетекание заряда» в соседние ячейки. В конце концов ячейка памяти просто перестает корректно считываться. И чем сильнее изношены ячейки памяти, тем активнее и быстрее протекает этот процесс. Только что записанные данные могут отлично читаться, а вот через некоторое время уже начинаются проблемы.

Для решения этой задачи инженерами активно разрабатываются новые алгоритмы коррекции ошибок, но это лишь отодвигает планку, когда считанное из ячейки памяти становится недешифруемым, иначе говоря, «мусором». В какой-то момент микропрограмма контроллера может принять решение о перезаписи трудночитаемых данных для «освежения» заряда, но «благодаря» алгоритмам «выравнивания износа» с большой долей вероятности новые ячейки, куда данные будут перенесены, окажутся ничуть не лучше. И в какой-то момент по мере износа процесс потери ячейками заряда станет просто лавинообразным.

Ключевое здесь: время. Именно в этом кроется ошибочность подавляющего большинства тестов на износ, которые проводятся различными изданиями и отдельными энтузиастами: только что записанные данные могут читаться отлично, но через некоторое время (неделю, две, три) может оказаться иное, особенно если массив памяти уже изношен. И в этом основная сложность: полноценный правильный тест будет длиться слишком долго. Не говоря уже про классику статистики, понятие «репрезентативность выборки»: как правило, тестируется один-два образца, а не разные из нескольких партий. Иначе говоря, можно наткнуться как на экземпляры с флеш-памятью из неудачной партии, так и на накопители, в которые попала отменно удачная партия флеш-памяти. Ещё раз подчеркнём, что под понятием «время» имеется в виду действительно заметный срок, а не несколько дней (как поднимали панику некоторые интернет-ресурсы). Вопрос сроков рассмотрен в этом материале .

Да и сам тип памяти – это еще не приговор. На самом деле немалое влияние на ресурс накопителя оказывают специфические особенности отдельных контроллеров и платформ в целом. Наиболее известный пример из последних – контроллер Silicon Motion SM2246XT. У него есть такое свойство: он хорошо ведет себя только в том случае, если на накопителе есть хотя бы 10% свободного места, иначе резко увеличивается WA (Write amplification, причем у отдельных образцов мне доводилось наблюдать WA ~1300-1500) и накопитель в прямом смысле умирает через несколько месяцев эксплуатации. И от того, что в паре с этим контроллером используется MLC NAND (TLC не поддерживается SM2246XT), легче не становится. Зато нелюбимые многими контроллеры SandForce, благодаря реализованной в них компрессии данных, в некоторых условиях (например, при офисной работе) могут обеспечить себе двукратное превосходство в ресурсе по сравнению с другими контроллерами с той же флеш-памятью.

Именно поэтому тесты на износ в том виде, в каком их сейчас проводят, являются не абсолютной истиной, а лишь косвенным показателем возможностей накопителей и не более. Хотя за неимением лучшего приходиться довольствоваться и этим.

Всем привет!

Твердотельные накопители (SSD – Solid State Drive) становятся все популярней, но у многих с ними все еще ассоциируются некоторые мифы и предрассудки. Дело в том, что на заре своего выхода на рынок компьютерных комплектующих SSD проявили себя как дорогие, но весьма недолговечные устройства. Первые модели дисков при среднестатистическом использовании умирали уже через 1-2 года их использования, что с учетом их стоимости было явным расточительством. С тех времен прошло много времени и технологии получили существенное развитие, диски SSD стали надежней, долговечней и еще быстрее. Стоимость гигабайта устройства с каждым днем становится все более привлекательной.

Кратко о преимуществах SSD перед традиционными HDD:

  • отсутствие механических частей и шума от них;
  • по той же причине – высокая устойчивость к механическим воздействиям и перегрузкам, чего не скажешь про HDD, которые часто выходят из строя даже при незначительных ударах или падениях;
  • высокая скорость считывая данных и стабильность скоростных характеристик независимо от расположения файлов и их фрагментации;
  • на порядок более высокие значения показателей случайных операций ввода/вывода IOPS, что наиболее критично для работы операционной системы и приложений;
  • более низкое среднее энергопотребление, т.к. при простоях энергия не тратится на вращение шпинделя или перемещение головок, как это происходит в HDD;
  • малый вес и габариты.

Дегтя в “бочку мёда” в отношении SSD подливает самый основной недостаток – ограниченный ресурс. Данное ограничение связано с ограниченным количеством циклов перезаписи ячеек применяемой в SSD flash-памяти. В современных носителях данный показатель зависит от используемого типа памяти и составляет в среднем 3000 циклов для MLC и 1000 циклов для TLC ячеек. Много это или мало разберемся немного позже, а пока пару слов о типах ячеек и какие лучше выбрать при покупке.

Наибольшее распространение получили сегодня 2 типа ячеек, о которых я только что упомянул – MLC (Multi-level cell , многоуровневые ячейки памяти) и TLC (Tripple-level cell , трёхуровневые ячейки памяти). TLC более новый тип памяти и фактически их тоже можно назвать многоуровневыми, т.е. MLC, но ввиду существенного отличия в характеристиках используется название TLC, т.к. MLC началось применяться ранее для двухуровневых ячеек. Существует еще SLC (Single-level cell , одноуровневые ячейки памяти) с ресурсом от 100 тыс. циклов и более, но в виду сложности производства и, следовательно, большой стоимости, в чистом виде применяются мало, преимущественно для промышленного применения. Некоторые производители используют небольшой объём SLC в качестве кэша совместно с основной TLC-памятью для продления ресурса последней.

Почему более новый тип памяти TLC имеет меньший ресурс и как это коррелируется с “мифом о долговечности”?

В ответе на поставленный вопрос есть две основных составляющих – экономическая и технологическая. Обе эти составляющих взаимосвязаны. Желание производителей сделать более ёмкие устройства по более доступным ценам приводит к снижению ресурса ячеек флэш-памяти. Открыв любой сайт с предложениями по SSD не трудно заметить, что самые дешевые устройства оснащены именно этим типом памяти.

Выходит, что раньше SSD оснащались более дорогими и долговечными модулями памяти, но почему же тогда они служили мало? Но тут дело не только в используемом типе памяти. Важную роль играет применяемый контроллер и микропрограмма, зашитая в него. Дело в том, что запись данных во флэш память имеет свои особенности и нюансы. Простое количество циклов перезаписи ячеек еще не говорит о надежности и долговечности SSD. Существует понятие мультипликатора записи, который в среднем может составлять 2-3, хотя это величина непостоянная и мало предсказуема, т.к. зависит от типа данных, их размера и частоты их записи. Наличие мультипликатора вызвано наличием служебных функций контроллера диска, призванные обеспечивать стабильность рабочих характеристик и равномерность износа ячеек диска.

Что такое SSD Endurance (TBW)?

В технических описаниях современных SSD можно встретить информацию о количестве информации, которую физически можно записать на диск. Такая информация часто представляется числом суммарно записываемой информации в ТБ (терабайтах) или же в объеме дневной записи на диск в течении определенного срока, как правило, срока гарантии, предоставляемого производителем на данный диск. К примеру, для моего текущего диска Transcend 256GMTS800 производитель заявляет 280 TBW, что говорит о том, что диск можно полностью перезаписать примерно 1000-1100 раз. Где же тут 3000 циклов для ячеек памяти? От того и 1000 вместо 3000, что при расчетах производитель учел какой-то свой раcчетный показатель усиления записи, который составил примерно 2,75.

На самом же деле, декларируемая производителем величина – это всего лишь теоретически гарантированная величина, которую выдержит диск в течении действия гарантии производителя. У большинства производителей гарантия, помимо времени, привязывается к величине Endurance (TDW) и при ее превышении гарантия прекращает свое действие, даже если не прошел установленный гарантийный срок. Это дает основание ожидать, что реальный объем данных может быть выше, что неоднократно подтверждалось реальными эксплуатационными тестами и отчеты о которых есть на просторах Интернета. Хотя в конечном виде во многом зависит от условий и типа записываемых данных.

При этом, даже отталкиваясь от предложенных производителем TDW давайте прикинем, как долго может прослужить диск. Вернусь к своему диску и определю объем текущей перезаписанной на него информации, воспользовавшись фирменной утилитой SSD Scope и данными SMART с устройства.

Выделенный показатель показывает объем записанных данных кратно 32 Мб, т.е. чтобы получить реально записанный объем на диск данных необходимо значение 70052 умножить на 32 Мб. Полученное значение 2241664 Мб = 2241б6 Гб = 2,24 Тб. Срок службы примерно 3 месяца, т.е. порядка 700 Гб в месяц, 23 Гб в день. Специальных оптимизаций под SSD, которые считаю вредными, не проводил, файл подкачки и гибернации не отключал. К тому же последний используется постоянно, т.к. выключаю ноутбук исключительно в гибернацию. Единственно, что выбрал размер файла гибернации на минимальные 40% от ОЗУ, объем которого у меня 12 Гб, следовательно файл гибернации более 5 Гб. В работе использую традиционный офисный набор программ, а так же графические и видео редакторы, которые любят создавать немаленькие временные файлы на системном диске, хотя для хранения медиа файлов используется второй диск HDD.

На сколько хватит диска SSD?

При упомянутых 700 Гб в месяц несложно посчитать сколько таких месяцев может быть. Разделив декларируемые TBW 280 Тб на 0,7 Тб, получим 400 месяцев, что эквивалентно 33+ годам. Вы уверены, что через такой срок данный диск будет востребован даже если он будет рабочим?

Думаю, что через пару тройку лет наверняка возникнет заменить его на что-то более ёмкое и более производительное.

Для полноты картины, давайте подойдем с другой стороны и оценим сколько мы можем записать информации на диск, даже если он у нас единственный в системе и на него пишутся в том числе и объемные медиа-файлы. Для этого прикинем, что мы планируем использовать диск в течении максимум 5 лет, что при TBW 280 Tb будет эквивалентно 150 Гб в день. Что такое 150 Гб? Это более 12 часов видео FullHD в максимальном качестве, т.е. 6 полнометражных фильмов слитых с Bluray дисков. Вы часто записываете такие массивы данных? А тут каждый день в течении пяти лет.

И это речь о бюджетном носителе, который хоть и имеет не самый маленький ресурс и основан на MLC памяти, все же значительно уступает профессиональным решениям, имеющим куда более внушительные характеристики. Основным же недостатком SSD остается достаточно высокая цена за Гб объема. При этом технологии не стоят на месте и постепенно цена снижается, что делает диски SSD все популярнее с каждым днем. С каждым днем все больше HDD отправляются на полки или во внешние карманы для резервного копирования данных на них.

Какие напрашиваются выводы?

А такие, что ресурс современных SSD далеко не самый актуальный параметр, который должен вас смущать. С большой вероятностью вы захотите его заменить на более быстрое и ёмкое решение прежде, чем исчерпается его ресурс. Для тех же, кто пишет очень много информации на SSD, а это явно не бытовой признак, существуют профессиональные решения, имеющие в разы больший ресурс за несколько большую стоимость.

В наши дни все большей популярности набирают SSD диски. Они работают намного быстрее чем привычные традиционные HDD, а их надежность и цена становятся оптимальными для обычных пользователей. SSD используются для хранения данных в персональных компьютерах, ноутбуках и даже планшетах.

Но на рынке существуют различные производители и различные устройства. Начинающему пользователю может быть сложно выбрать нужное устройство. В этой статье мы собрали несколько советов касательно того какой SSD диск выбрать в 2018, а также обзор лучших устройств.

Флеш память вытесняет хрупкий и громоздкий традиционный диск везде. Намного проще использовать бесшумный SSD, который выглядит как обычная микросхема, вместо делающего 100 оборотов в секунду жесткого диска. Второй причиной для замены является большая скорость работы SSD. Данные будут прочитаны или записаны со скоростью в сотни раз большей, чем на магнитном жестком диске.

SSD накопители хранят данные в ячейках энергонезависимой флеш памяти. Можно сказать, что это оперативная память, которая сохраняет свое содержимое после перезагрузки. Благодаря высокой скорости компьютер будет реагировать на клики намного быстрее.

Как покупать SSD?

Что касается цены, то сейчас SSD диски стали намного доступнее. Но при выборе нужно обращать внимание не только на цену, но и на скорость и надежность. Для производства SSD используются три технологии флеш памяти: SLC, MLC и TLC. Диски SLT более дорогие, но самые надежные, в одну ячейку памяти записывается один бит информации, технология MLC позволяет записывать уже два бита, это дешевле, но работает не так долго.

Следующая технология, TLC еще дешевле и позволяет записывать три бита информации в одну ячейку, но имеет еще меньший срок службы и еще меньшую производительность. Идеальным решением будет MLC. Нужно найти компромисс между ценой, надежностью и скоростью.

Также существует несколько вариантов подключения SSD дисков. Флеш память имеет очень высокую скорость работы, и все чаще узким местом становится не скорость работы с памятью, а скорость интерфейса подключения. Сейчас популярность набирают диски типа M.2 PCIe, они дают максимальную скорость, но стоят все еще очень дорого, поэтому для большинства пользователей лучшим решением будет подключение SSD через SATA III интерфейс, который способен выдавать скорость до 6 Гбит/с (или 750 Мбайт/сек).

В этой статье мы рассмотрим лучшие SSD диски 2018 типа SATA, поскольку PCIe будут еще очень дорогими для большинства пользователей. Если вы пользователь ноутбука, то вам также необходимо будет обратить внимание на размеры твердотельного накопителя. Все рассмотренные SSD имеют форм фактор 2,5 дюйма и размер 69,9x100,1x7мм. А теперь перейдем к списку лучшие SSD накопители 2018.

Лучшие SSD диски 2018

1. Samsung 850 Evo

Это SSD накопитель распространяется объемом 120, 250, 500 Гб. Это не новое решение на рынке, но он может конкурировать со многими бюджетными накопителями. Версию на 500 Гб можно найти по цене $150.

Здесь используется самая дешевая технология хранения данных - TLC, три бита на ячейку. Но в дополнение к ней применяется оригинальная технология Samsung-V, которая обеспечивает большую надежность и скорость. Носитель отлично показывает себя в тестах и обходит многих конкурентов.

2. Toshiba Q300 480GB

Новый SSD Toshiba Q300 дешевле, чем другие конкуренты, но обеспечивает отличную скорость работы с данными. Здесь тоже используется собственная технология Toshiba, которая объединяет TLC ячейки для хранения и SLC кэш для повышения производительности.

Вы можете выбрать объем 120, 240, 480 и 960 Гб. Вы можете найти версию 480 Гб за $100. Другие накопители, предлагающие такую же скорость стоят немного дороже. Производитель дает три года гарантии нормальной работы. Скорость чтения/записи в тестах: 563.9 Мб/сек.

3. Samsung 960 Pro

Samsung 960 Pro M.2 дает максимальную производительность, но стоит достаточно дорого. Для его подключения вам понадобиться современная материнская плата с поддержкой PCIe. Вы можете приобрести SAMSUNG 960 PRO 512 Гб в версии M2 за $329 и $149 за SATA версию.

Для хранения данных используется технология Samsung"s V-NAND вместе с технологией упаковки ячеек MLC что обеспечивает высокую надежность и производительность. В тестах этот носитель способен выдавать до 1984.1 MB/сек.

4. Samsung 960 Evo

Это диск форм фактора M2 обеспечивает очень высокую скорость чтения и записи, даже высшую чем у версии Pro и он более доступный, чем его аналог. Для хранения информации используется та же технология, Samsung-V-NAND и ячейки MLC.

Из дополнительных возможностей здесь поддерживается шифрование AES 256 и TCG-Opal 2.0. Вы можете приобрести Samsung 960 Evo 1 Гб за $400. Скорость чтения/записи достигает 2457.4 Мб/сек. Это лучший ssd 2018.

5. SanDisk Extreme Pro 480 GB

Это один из самых надежных SSD. SanDisk Extreme Pro поставляется с гарантией работы на 10 лет и дает отличную производительность.

Память устройства разделена на две части, одна из них это высокопроизводительный динамический кэш на основе ячеек типа SLC и постоянное хранилище типа MLC. Это обеспечивает максимальную скорость. Доступны диски трех объемов: 120, 240 и 960 Гб, все в традиционном форм-факторе SATA. Цена SanDisk Extreme Pro 480 GB составляет около $200, а скорость работы 525 Мб/сек.

6. Kingston KC400 SSDNow

Это отличный SSD позволяющий получить максимальную скорость. Он доступен в вариантах на 128, 256, 512 Гб и 1 Тб. Вы можете найти SSD размером 512 Гб за $153.

Здесь используется контроллер Phison 3110 с защитой от ошибок чтения/записи, а также дополнительные технологии для продления срока службы. Диск способен выдавать скорость чтения/записи до 557 Мб/сек.

7. WD Blue SSD 1TB

Очень быстрый, но дорогой SSD. Доступны варианты емкости 250, 500 Гб и 1 Тб. Диск размером 1 Тб стоит $320. Также можно выбрать форм-фактор SATA III или M2.

Для хранения данных используется тип ячеек TLC с записью трех бит в одну ячейку. Но кроме TLC здесь применяется высокоскоростной кэш SLC ячеек. Такое сочетание дает высокую надежность и скорость. Скорость чтения/записи для диска колеблется в рамках 508.3 Мбит/сек.

8. PNY CS2211 240GB

PNY CS2211 - это более доступный SSD для тех, кто хочет заменить старый жесткий диск. Устройство объемом 240 Гб можно приобрести за $69. Производитель дает гарантию работы на протяжении четырех лет.

Для хранения данных используется технология MLC, позволяющая записывать два бита в одну ячейку. Это идеальное решение для дисков SSD. Скорость чтения/записи этого диска 526.7 Мб/сек.

9. OCZ ARC 100 240 GB

SSD диск от компании OCZ доступен в объемах 100, 120, 240 и 480 Гб. Вы можете приобрести версию 240 Гб за $80. Изначально компания делала очень плохие SSD диски, но потом она была приобретена Thoshiba и все стало намного лучше. На носитель дается гарантия трех лет работы.

Здесь используется контроллер Indilinx Barefoot 3, который имеет 512 Мб DDR3 памяти для быстрого кэша и дает отличную скорость работы. Устройство может выдавать скорость чтения 489 МБ/с и записи до 447 Мбайт/с.

10. Kingston HyperX Savage 480 GB

SSD диски от Kingston способны давать отличную производительность при относительно доступной цене. Здесь используется контроллер Savage, в котором применен четырехъядерный процессор с восемью каналами передачи данных. Техпроцесс изготовления одной ячейки памяти составляет 19 нм. Скорость чтения составляет 358 МБ/с, а скорость записи 370 МБ/c.

Выводы

В этой статье мы рассмотрели лучшие ssd диски 2018. Здесь есть и более дешевые, бюджетные варианты, так и дорогие, но высокопроизводительные. Теперь вы знаете какой ssd лучше выбрать 2018 и если вы собирались обновить свое оборудование, то теперь знаете что делать.

Надёжность SSD: находятся ли ваши данные в безопасности?

Подсистема хранения данных в наши дни является основным «узким местом» компьютера. Именно поэтому столько надежд сегодня связано с SSD, которые могут эффективно умножить производительность накопителей. Если вы установите твёрдотельный накопитель даже в дешёвый нетбук, то его отзывчивость увеличится намного сильнее, чем если бы вы удвоили его оперативную память.

IMFP: переход флэш-памяти NAND.

С учётом сказанного, производительность – это далеко ещё не всё. Именно по этой причине мир SSD фокусируется сегодня не столько на том, насколько быстрыми могут быть эти накопители, сколько на их надёжности. Тема надёжности в последнее время стала ещё более важной, в свете перехода с 3x-нм флэш-памяти NAND на флэш-память, производимую по 25-нм техпроцессу. Мы уже не раз общались со специалистами Intel в области SSD, и тема надёжности всплывала постоянно: 25-нм техпроцесс привёл к появлению вызовов, достойно ответить на которые оказалось намного сложнее, чем в случае 34-нм техпроцесса. Но все трудности удалось обойти, так что Intel по-прежнему предлагает лучшую производительность и надёжность по сравнению с продуктами предыдущего поколения. В общем, на меньшем количестве циклов программирования/стирания, которые неразрывно связаны с памятью NAND, производимой по меньшему техпроцессу, сегодня явно акцентируют слишком много внимания.

Честно говоря, вопрос количества циклов программирования/стирания (PE), которые может выдержать SSD, не так должен вас беспокоить. Предыдущие поколения SSD потребительского уровня, которые использовали 3x-нм MLC NAND, обычно были заявлены с 5000 циклов. Это означает, что вы можете записать и стереть данные 5000 раз, прежде чем ячейки NAND начнут терять возможность хранить данные. В случае 80-Гбайт накопителя вам придётся записать 114 Тбайт, прежде чем вы столкнётесь с эффектами износа ячеек. Учитывая, что средний пользователь настольного ПК записывает в день, максимум, 10 Гбайт информации, то ему придётся работать с накопителем примерно 31 год, прежде чем ячейки будут изношены. В случае 25-нм флэш-памяти NAND этот срок уменьшается до 18 лет. Конечно, мы упрощаем сложные расчёты износостойкости накопителей. Нужно учитывать такие проблемы, как усиление записи (WA), сжатие данных и сборку «мусора», которые по-своему влияют на прогнозы износа. Но, в целом, вам незачем следить за количеством циклов программирования/стирания у ячеек накопителя.

Конечно, мы знаем, что SSD выходят из строя, особенно это заметно в различных форумах и отзывах на сайтах популярных производителей, но связано это не с износом ячеек. На первом месте стоят проблемы с «сырой» прошивкой. В зависимости от того, какие данные вы записываете и как вы их записываете, у SSD может «слететь крыша», и накопитель уже не сможет считать данные. Когда происходят подобные печальные события, то фоновые задачи, подобные сборке мусора, перестают выполняться, и вскоре накопитель уже не может считывать или записывать данные вообще. Другие сбои, подобные сгоревшему конденсатору, не такие «изящные», но результат будет таким же – «мёртвый» SSD. Технически любой компонент – электрический или механический – с долей вероятности может выйти из строя в любой момент, да и со временем все компоненты изнашиваются. Но приводит ли отсутствие движущихся частей к более высокой надёжности? Можно ли сказать, что хранить данные на SSD не так опасно, как на жёстком диске?

Поскольку вопрос надёжности сегодня стоит как никогда остро, то мы решили глубже его исследовать, чтобы дать расширенный ответ, прежде чем вы купите себе SSD. В нашей статье мы рассмотрим все аспекты надёжности SSD, а также отделим факты от домыслов.

Что мы знаем о накопителях?

SSD – относительно новая технология (по крайней мере, если сравнивать с жёсткими дисками, которым исполнилось почти 60 лет). Вполне понятно, что мы должны сравнивать SSD с проверенной временем технологией. Но что мы знаем о старых добрых жёстких дисках? Здесь нам хотелось бы привести данные двух важных исследований.

2. Вместе с тем доктор Бианка Шредер (Dr. Bianca Schroeder) и эксперт доктор Гарт Гибсон (Dr. Garth Gibson) рассчитали частоту замены более 100 000 накопителей, которые использовались в одной из крупнейших национальных лабораторий США. Разница в том, что в лаборатории также использовались и жёсткие диски корпоративного класса с интерфейсами SCSI, SATA и FC.

Если вы не читали указанных документов раньше, то мы настоятельно рекомендуем с ними ознакомиться, ниже приведены краткие заключения по ним.

Уровень наработки на отказ (MTTF)

Помните, как рассчитывается показатель MTBF? Что подразумевается под временем безотказной работы? Возьмём в качестве примера жёсткий диск Seagate Barracuda 7200.7. Для него заявлено время наработки на отказ 600 000 часов. Таким образом, в крупном массиве подобных винчестеров, половина жёстких дисков должна выйти из строя за первые 600 000 часов работы. Если сбои будут распределены равномерно, то мы должны получить, например, один вышедший из строя жёсткий диск за час. Мы можем перевести это значение в ежегодную частоту отказов (annualized failure rate, (AFR) 1,44%. Но Google или доктор Шредер обнаружили совсем другое. Обратите внимание, что отказ не всегда соответствует замене жёсткого диска. Именно поэтому доктор Шредер измерял ежегодную частоту замены (annualized replacement rate, ARR). Она основывалась на количестве заменённых жёстких дисков в соответствие с сервисными журналами.

По спецификациям значение AFR указывалось между 0,58% и 0,88%, но полученное значение ежегодной частоты замены ARR составило от 0,5% до целых 13,5%. Таким образом, в зависимости от типа HDD и массива, значение ARR могло быть вплоть до 15 раз выше, чем значение AFR по спецификациям.

Производители жёстких дисков определяют сбои совсем по-другому, чем мы. Поэтому неудивительно, что их оценки надёжности оказываются чересчур оптимистичными. Как правило, значение MTBF высчитывается на основе ускоренных циклов тестирования, информации о возврате винчестеров или на основе результата краткосрочных тестов крупного массива накопителей. Конечно, информация о возвратах, полученная от производителя, продолжает оставаться довольно подозрительной. Как указывает Google, «мы сталкивались… с ситуациями, когда тестер накопителей постоянно давал «зелёный свет» модели, которая неизбежно отказывала на практике».

Выход из строя жёстких дисков со временем

Большинство пользователей считают, что кривая выхода из строя жёстких дисков напоминает ванную (см. первую иллюстрацию). То есть поначалу мы должны получить выход из строя значительного количества жёстких дисков из-за так называемой «детской смертности». Затем, после начального периода, уровень выхода из строя жёстких дисков должен быть низким. А в конце расчётного срока службы, по мере изнашивания накопителей, кривая выхода из строя должна резко поползти вверх. Но данное предположение не подтвердилось в обоих исследованиях. В целом, как обнаружили исследователи, частота сбоя жёстких дисков стабильно увеличивается со временем (см. вторую иллюстрацию).

Надёжность накопителей корпоративного класса

Если сравнивать два исследования, то 1 000 000 часов MTBF у накопителя Cheetah оказывается намного ближе к MTBF 300 000 часов. То есть у «корпоративных» и «потребительских» жёстких дисков мы получаем примерно одинаковый ежегодный выход из строя AFR, особенно если сравнивать схожие ёмкости. По информации, директора по технической стратегии NetApp (самый быстро растущий производитель систем хранения), «…то, как массивы накопителей справляются с соответствующими сбоями жёстких дисков, извечно продолжает убеждать потребителей, что более дорогие жёсткие диски работают более надёжно. Один из тщательно оберегаемых «грязных» секретов индустрии заключается в том, что большинство корпоративных и потребительских жёстких дисков состоят, по большей части, из одинаковых компонентов. Но их внешние интерфейсы (FC, SCSI, SAS и SATA) и, что более важно, приоритеты и цели при разработке дизайна прошивки, играют наиболее важную роль в определении поведения корпоративных или потребительских жёстких дисков в реальных условиях».

Безопасность данных и RAID

Исследование доктора Шредера охватывает использование корпоративных жёстких дисков в крупных массивах RAID в одной из крупнейших лабораторий по высокопроизводительным вычислениям. Как правило, мы ожидаем, что данные будут безопасность храниться в правильно подобранных режимах RAID, но результаты исследования оказались удивительными.

Распределение времени между заменами дисков показывает снижение интенсивности отказов, то есть предполагаемое время до замены следующего диска увеличивается вместе со временем, которое прошло с момента последней замены диска.

Это означает, что сбой одного накопителя в массиве повышает вероятность сбоя другого накопителя. Чем больше времени пройдёт с момента последнего сбоя, тем больше времени должно пройти до следующего. Конечно, всё это приводит к последствиям по реконструкции массива RAID. После первого сбоя вероятность того, что ещё один жёсткий диск выйдет из строя в пределах часа увеличивается в четыре раза. В течение же 10 часов вероятность последующего сбоя увеличивается только в два раза.

Температура

Из документа Google мы получили весьма странное заключение. Исследователи брали измерения температуры SMART, технологии мониторинга, которая встроена в большинство жёстких дисков, и обнаружили, что более высокая температура не коррелирует с более высокой частотой отказов. Температура оказывает определённое влияние на старые накопители, но оно не такое значительное.

Насколько умна SMART?

Если дать краткий ответ, то SMART не умна. Технология SMART была предназначена для сообщения об ошибках на раннем этапе, чтобы пользователь мог заблаговременно зарезервировать свои данные, но, по информации Google, более трети сбойных жёстких дисков не включали тревогу SMART. В принципе, это неудивительно, поскольку многие специалисты говорили об этом многие годы. Технология SMART оптимизирована на обнаружение механических сбоев, но большую часть жёсткого диска составляет электроника. Именно поэтому проблемы с поведением HDD и различные ситуации, подобные сбою электропитания, остаются незамеченными, пока не возникают проблемы с целостностью данных. Если вы надеетесь, что SMART предскажет вам сбой, то вам всё равно необходимо добавить ещё один уровень избыточности для гарантии защиты данных.

Теперь давайте перейдём к тому, как SSD показывают себя по сравнению с жёсткими дисками.

Взгляд на надёжность SSD

К сожалению, ни один производитель жёстких дисков не публикует данных о возврате, то же самое касается и производителей SSD. Но в декабре 2010 сайт Hardware.fr представил информацию о частоте сбоев SSD, полученную от своей родительской компании LDLC, являющейся одной из ведущих розничных сетей во Франции. На сайте были даны следующие пояснения по поводу расчёта представленных показателей.

Частота возврата касается продуктов, проданных между 1 октября 2009 и первым апрелем 2010, возвраты были осуществлены до октября 2010, то есть после периода эксплуатации от 6 месяцев до года. Статистика по производителям бралась при условии минимальных продаж в 500 экземпляров, а по моделям – при минимальной продаже ста экземпляров.

Обратим внимание, что представлена статистика частоты возврата, а не частоты сбоев.

Продажа между 1 октября 2009 и 1 апрелем 2010, возвраты осуществлены до 1 октября 2010
Жёсткие диски 1 Тбайт Частота возврата Жёсткие диски 2 Тбайт Частота возврата SSD Частота возврата
Hitachi Deskstar 7K1000.B 5,76% WD Caviar Black WD2001FASS 9,71% Intel 0,59%
Hitachi Deskstar 7K1000.C 5,20% Hitachi Deskstar 7K2000 6,87% Corsair 2,17%
Seagate Barracuda 7200.11 3,68% WD Caviar Green WD20EARS 4,83% Crucial 2,25%
Samsung SpinPoint F1 3,37% Seagate Barracuda LP 4,35% Kingston 2,39%
Seagate Barracuda 7200.12 2,51% Samsung EcoGreen F3 4,17% OCZ 2,93%
WD Caviar Green WD10EARS 2,37% WD Caviar Green WD20EADS 2.90% - -
Seagate Barracuda LP 2,10% - - - -
Samsung SpinPoint F3 1,57% - - - -
WD Caviar Green WD10EADS 1,55% - - - -
WD Caviar Black WD1001FALS 1,35% - - - -
Maxtor DiamondMax 23 1,24% - - - -
Жёсткие диски 1 Тбайт Частота возврата Жёсткие диски 2 Тбайт Частота возврата SSD Частота возврата
Samsung SpinPoint F1 5,2% Hitachi Deskstar 7K2000 5,7% Intel 0,3%
WD Caviar Green (WD10EADS) 4,8% WD Caviar Green WD20EADS 3,7% Kingston 1,2%
Hitachi Deskstar 7K1000.C 4,4% Seagate Barracuda LP 3,7% Crucial 1,9%
Seagate Barracuda LP 4,1% WD Caviar Black WD2001FALS 3,0% Corsair 2,7%
WD Caviar RE3 WD1002FBYS 2,9% WD Caviar Green WD20EARS 2,6% OCZ 3,5%
Seagate Barracuda 7200.12 2,2% WD Caviar RE4-GP WD2002FYPS 1,6% - -
WD Caviar Black WD1002FAEX 1,5% Samsung EcoGreen F3 1,4% - -
Samsung SpinPoint F3 1,4% - - - -
WD Caviar Black WD1001FALS 1,3% - - - -
WD Caviar Blue WD10EALS 1,3% - - - -
WD Caviar Green WD10EARS 1,2% - - - -

Ещё раз отметим, что сбой накопителя означает выход из строя. Но возврат потребитель может выполнять по различным причинам. И с этим возникают проблемы, поскольку у нас нет дополнительной информации по возвращенным накопителям – получил ли потребитель их уже «мёртвыми», или они вышли из строя со временем, либо возврат был произведён по причине несовместимости продукта.

Продажа между 1 октября 2009 и 1 апреля 2010, возвраты осуществлены до 1 октября 2010
Три ведущие позиции SSD Частота возврата Три ведущие позиции HDD Частота возврата
OCZ Vertex 2 90 Гбайт 2,8% 8,62%
OCZ Agility 2 120 Гбайт 2,66% Samsung SpinPoint F1 1 Тбайт 4,48%
OCZ Agility 2 90 Гбайт 1,83% Hitachi Deskstar 7K2000 3,41%
Продажа между 1 апреля 2010 и 1 октября 2010, возвраты осуществлены до 1 апреля 2011
Три ведущие позиции SSD Частота возврата Три ведущие позиции HDD Частота возврата
OCZ Agility 2 120 Гбайт 6,7% Seagate Barracuda 7200.11 160 Гбайт 16,0%
OCZ Agility 2 60 Гбайт 3,7% Hitachi Deskstar 7K2000 2 Тбайт 4,2%
OCZ Agility 2 40 Гбайт 3,6% WD Caviar Black WD2001FASS 4,0%

Приобретались ли SSD Intel оптом? Представленная информация приводит к новым вопросам. Если большую часть продаж жёстких дисков составляет Интернет, то плохая упаковка и порча во время доставки могут заметно сказаться на частоте возврата. Более того, не мешает провести нормализацию по сценариям, в которых потребители используют жёсткие диски. И существенный разброс возвратов жёстких дисков только подчёркивает эту проблему. Например, частота возврата Seagate Barracuda LP увеличилась с 2,1% до 4,1%, а для Western Digital Caviar Green WD10EARS она упала с 2,4% до 1,2%.

Вместе с тем, приведённые данные не позволяют судить о надёжности. Какие же выводы можно по ним сделать? О том, что во Франции больше клиентов оказались удовлетворены покупкой SSD Intel, чем приобретением накопителя другого производителя. Удовлетворение потребителя – тема интересная, но она имеет мало отношения к частоте сбоев. Поэтому идём дальше.

Статистика дата-центров: меньше 100 SSD

Цены за гигабайт продолжают оставаться основным барьером, не позволяющим даже крупным организациям использовать тысячи SSD одновременно. Но даже то, что у нас не было доступа к массивным инфраструктурам, отнюдь не означает, что мы не сможем сделать выводов по поводу надёжности SSD в реальных условиях на основе менее крупных структур. Мы попытались связаться со всеми нашими знакомыми в сфере ИТ и смогли получить интересную информацию от некоторых дата-центров.

NoSupportLinuxHosting.com

Загрузочный том на «зеркале» из двух X25-V.

Компания «No Support Linux Hosting» не сообщила нам о количестве установленных накопителей, но представитель компании сказал, что она «использует немалое количество» SSD. Мы знаем, что компания использует меньше 100 SSD, и они распределены по следующим сценариям:

  • 40-Гбайт X25-V используются в «зеркале» в качестве загрузочных томов для blade-серверов и серверов ZFS.
  • 160-Гбайт X25-M используются в качестве накопителей для кэширования (L2ARC) в серверах ZFS.
  • 32-Гбайт X25-E используются в «зеркале» в качестве томов ZIL в серверах ZFS.

Все эти накопители использовались не меньше одного года, а некоторые из них отметили свой второй год рождения. И на данный момент компания не столкнулась ни с одним сбоем SSD. Когда мы спросили «Дают ли SSD преимущества, которые нельзя получить на обычных механических жёстких дисках?» компания ответила, что «с ZFS и гибридными системами хранения накопители SSD дают существенный прирост производительности по сравнению с вращающимися пластинами. Мы по-прежнему используем вращающиеся пластины для основного хранилища, поэтому мы смогли сохранить преимущество HDD по цене, и вместе с тем смогли получить преимущества SSD по скорости. Рано или поздно мы планируем перевести все наши SAN на системы хранения, использующие только SSD. Но для 2011 года мы будем придерживаться гибридного хранилища с помощью ZFS.»

InterServer.net

Компания InterServer использует в своих серверах баз данных только SSD. В частности, компания оснащает свои серверы Xeon накопителями Intel X25-E (SSDSA2SH032G1GN), чтобы в полной мере задействовать преимущества по высокой пропускной способности данных. Но какой прирост производительности это даёт? InterServer сообщила нам о получении в среднем 4514,405 запросов MySQL в секунду. На старой системе Xeon, оснащённой накопителями IDE, можно было получить примерно 200-300 запросов MySQL в секунду. Мы знаем, что эти накопители используются компанией с 2009 года, и пока что сбоев не было зафиксировано.

InterServer сообщила нам следующую информацию по поводу использования SSD.

«Intel SSD как небо и земля отличаются по частоте сбоев от некоторых других накопителей. Например, у SSD SuperTalent мы получили очень высокую частоту сбоев, включая модели FTM32GL25H, FTM32G225H и FTM32GX25H. По нашим подсчётам, 2/3 этих накопителей вышли из строя после начала эксплуатации. Причём они выходили из строя так, что информацию считать уже не получалось. То есть накопитель просто полностью исчезал и больше не появлялся. Вращающиеся пластины умирают более «благородно», восстановить с них информацию намного легче. Я не могу сравнить данную статистику с накопителями Intel, поскольку мы пока не сталкивались с их сбоями».

Steadfast Networks: более 100 SSD

Steadfast Networks использует около 150 SSD Intel, то есть опирается на более крупную базу накопителей, чем две предыдущие компании. В Steadfast Networks используются модели X25-E (32 Гбайт и 64 Гбайт) и X25-M (80 Гбайт и 160 Гбайт). В меньшей степени компания задействует 40-Гбайт X25-V, да и некоторые клиенты использовали/запросили накопители OCZ Vertex 2, SuperTalent и MTron Pro. Независимо от марки, все SSD используются только в серверах баз данных или в качестве кэша.

На протяжении двух лет компания столкнулась только с двумя случаями, потребовавшими замены накопителей. Восстановление данных с вышедшего из строя SSD зависит от взаимодействия между контроллером и прошивкой. Опыт InterServer с накопителями SuperTalent является сценарием худшего случая, когда данные восстановить не получилось. Но специалисты Steadfast Networks сообщили нам, что смогли восстановить все данные с SSD Intel.

С более крупным массивом SSD мы, наконец, столкнулись с выходом накопителей из строя. Но по сравнению с жёсткими дисками частота выхода из строя намного ниже. Но президент Steadfast Networks Карл Зиммерман (Karl Zimmerman) считает, что это всё равно преуменьшает преимущества SSD. Он дал следующее объяснение.

«Мы просто получаем существенно более высокую производительность ввода/вывода [с SSD] по меньшей цене, чем мы можем достичь со стандартными жёсткими дисками. Многим нашим клиентам требуется большая производительность ввода/вывода, чем могут дать 4x накопителя SAS на 15 000 об/мин в массиве RAID 10, и данный апгрейд приводит к переходу на сервер с большим шасси, поддерживающим более 4 накопителей, крупной карте RAID и так далее. Другим конфигурациям требуется больше 16 жёстких дисков на 15 000 об/мин, чтобы получить требуемый уровень операций ввода/вывода. Переход на один SSD (или на пару SSD в RAID) значительно упрощает конфигурацию, да и удешевляет в целом.

Всё это дополняется тем, что вам, как правило, нужно использовать 1 SSD для замены 4+ стандартных жёстких дисков в среднем, при этом вы получите частоту сбоя AFR у жёстких дисков 20% и выше, а у SSD она составляет 1,6%.

Softlayer: около 5000 SSD!

В Softlayer у нас работает много друзей, при этом они организовали самую крупную компанию по web-хостингу в мире. Поэтому о накопителях они знают немало. В компании используется почти 5000 SSD, так что мы получили более впечатляющий массив данных для анализа. Вот, что сообщила нам Softlayer.

Компания получила схожую частоту выхода из строя накопителей SAS и SATA, что и в исследовании Google. Если не вдаваться в детали, то частота выхода из строя увеличивается пропорционально возрасту накопителя, и на практике она довольно близка к результатам двух исследований, которые мы привели раньше. В первый год частота выхода из строя AFR составляет 0,5-1%, она увеличивается до 5-7% в пятый год.

Частота сбоя жёстких дисков нас не удивила, но частота AFR для SSD шокировала. Если судить по числам, то частота сбоя SSD близка к жёстким дискам. Конечно, накопители эксплуатируются всего два года. Нам нужно подождать, пока SSD не завершат третий и четвёртый год своей эксплуатации, после чего мы посмотрим, будет ли разница.

Softlayer почти полностью использует SSD на основе SLC-памяти из-за опасений с износом при выполнении операций записи. Если верить сценариям использования компании, то ни один из сбоев не был связан с износом ячеек памяти при записи, но многие SSD вышли из строя без раннего предупреждения SMART. Мы уже неоднократно слышали об этом от разных дата-центров. Как указали специалисты InterServer, жёсткие диски «умирают» более «благородно». SSD часто «умирают» внезапно, возможно из-за некорректной работы прошивки. Опыт Softlayer более разнообразный, некоторые накопители восстановить удалось, другие нет. Ни один из 11 накопителей X25-M у компании не вышел из строя, но количество образцов мизерное. Да и в работе они находятся с июня 2010.

Так ли важна надёжность?

Несмотря на то, что SLC-накопители составляют всего часть рынка NAND, мы собрали намного больше данных по SLC-накопителям SSD, чем по моделям с MLC-технологией. Конечно, наш набор исследуемых накопителей составляет 1/20 от набора предыдущих исследований жёстких дисков, но по имеющейся информации SLC-накопители SSD нельзя назвать более надёжными, чем жёсткие диски SATA и SAS. Если флэш-память SLC является самой лучшей из NAND, тогда SSD с MLC-памятью должны демонстрировать более высокую частоту выхода из строя.

Если вы являетесь потребителем, то подобный факт наверняка вызовет замешательство. Производители SSD пытаются подчеркнуть, что они предоставляют два существенных преимущества: производительность и надёжность. Но если данные на SSD хранить не безопаснее, чем на жёстком диске, то основной причиной выбора твёрдотельных накопителей является производительность.

Мы не утверждаем, что производительность не важна (или не впечатляет), но большинство SSD находятся в узком разбросе по производительности. Например, если вы отобразите на графике скорость жёстких дисков по сравнению с SSD, то low-end SSD работают примерно на 85% быстрее, чем жёсткие диски. А high-end SSD дают только 88% преимущество по производительности в среднем.

Именно поэтому Intel пытается всех убедить, что предлагает самые надёжные SSD. Недавно на пресс-конференции по поводу выхода SSD 320 компания попыталась акцентировать эту точку зрения. Конечно, репутация Intel повлияла на то, что мы получили столь много информации по поводу SSD этой компании, но результаты эксплуатации, похоже, не соответствуют тому, что мы слышим от Intel.

Производительность SSD будет продолжать увеличиваться, а цены будут одновременно с этим снижаться. Такова природа новой технологии. Однако это также означает, что производителям SSD потребуется найти другие способы дифференциации своих продуктов. Сегодня мы как раз начинаем это видеть. По мере того, как относительный зазор по производительности между SSD начинает сужаться, надёжность становится всё более важной.

Заключение

Конечно, получилось так, что наш опрос дата-центров охватывает только частоту выхода из строя SSD Intel, поскольку накопители именно этого производителя используются сегодня в большинстве крупных компаний. Маркетинг Intel работает на самом деле, поскольку компанию считают одной из самых надёжных марок. Мы не подразумеваем этим, что другие марки более или менее надёжны. Исследователи Google по поводу жёстких дисков написали следующее: «частоту сбоев тесно связывают с моделями накопителей, производителями и возрастом. Наши исследования этому не противоречат. Но большинство результатов, связанных с возрастом накопителя, связаны именно с возрастом».

По информации, представленной нам дата-центрами, то же самое верно и для SSD. Один из управляющих крупной компании сообщил, что OCZ даёт замечательные цены, но по его информации у накопителя Vertex 2 ужасная надёжность. Примерно два месяца назад компания заказала новое оборудование, но после вскрытия коробки оказалось, что из 200 накопителей Vertex 2 Pro примерно 20 были уже «мёртвыми». Да и один из дата-центров сообщил нам, что регулярно сбрасывает клиентские серверы с накопителями Vertex 2.

Что это значит для SSD?

Но позвольте оценить всё с перспективы. Вот, что мы узнали о жёстких дисках из двух приведённых исследований.

  • Заявленное время наработки на отказ MTBF ничего не говорит о надёжности.
  • Ежегодная частота выхода из строя (AFR) в несколько раз выше, чем заявляют производители.
  • Для накопителей не характерна заметная тенденция выходить из строя после года использования. Частота выхода из строя стабильно повышается вместе с возрастом жёстких дисков.
  • SMART не является надёжной системой оповещения о грядущих сбоях жёсткого диска.
  • Частота выхода из строя «корпоративных» и «потребительских» жёстких дисков примерно одинаковая.
  • Выход из строя одного накопителя в массиве повышает вероятность выхода из строя другого накопителя.
  • Температура оказывает пренебрежимо малое или незначительное влияние на частоту сбоев.

Благодаря Softlayer мы знаем, что первые четыре пункта также относятся и к SSD. Помните, что разница между корпоративными и потребительскими жёсткими дисками, влияющая на частоту сбоев, кроется в контроллере, прошивке и интерфейсе (SAS против SATA). Что касается SSD, то разница сужается до контроллера и прошивки. Если качество производства MLC-памяти NAND такое же, как и SLC-памяти, то корпоративные SSD не надёжнее потребительских SSD (помните, что износ при записи/программировании не имеет ничего общего со случайными сбоями накопителей).

Конечно, корпоративный рынок интересует не только надёжность. Свою роль играет и производительность. Чтобы получить высокую производительность ввода/вывода с жёсткими дисками, нужно использовать не меньше четырёх накопителей SAS на 15 000 об/мин в RAID 10. Если такого уровня всё равно мало, то придётся выполнить апгрейд на более крупный сервер с большим количеством накопителей и более ёмкой картой RAID. Если производительность вас интересует больше, чем ёмкость, то выбор нескольких SSD в RAID упрощает конфигурацию, её развёртывание и поддержка обходятся дешевле. Поскольку вы используете один SSD для замены нескольких жёстких дисков, то частота сбоя каждого жёсткого диска влияет на эффективную частоту сбоя. И с этой точки зрения намного лучше использовать четыре SSD для замены шестнадцати жёстких дисков. Конечно, конфигурация из одного SSD не даёт избыточности хранения данных. Но, как указано в исследовании доктора Шредера, сбой жёсткого диска в массиве RAID увеличивает вероятность ещё одного сбоя. Для профессионалов ИТ, внедряющих SSD, наши новости прольются как бальзам на душу. Как написал Робин Харрис (Robin Harris) на StorageMojo , «Забудьте о RAID, просто копируйте данные три раза». Избыточность хранения данных c SSD не приводит к дополнительным расходам. Скажем, в ИТ-инфраструктуре информация с одного SSD будет постоянно копироваться на несколько жёстких дисков. А идея траты меньшего количества денег на получение существенного прироста производительности должна быть очень привлекательной. Собственно, в этом нет ничего нового. Google уже многие годы использует подобный подход (дешёвой избыточности) со своими серверами на жёстких дисках, но перенос данной концепции на SSD приводит к очень высокой пропускной способности ввода/вывода, высокой надёжности и избыточности данных – всё это при дешёвом и простом способе дублирования файлов подобно кластеру.

К сожалению, всё это касается профессионалов в области ИТ. Что касается потребителей, то не стоит доверять SSD больше, чем вы доверяете жёсткому диску. В конце концов, электрическая деталь остаётся электрической, независимо от того, движется она или нет. (Конечно, мы не имеем в виду, что вы будете трясти жёсткий диск во время работы.) Данные от Softlayer подтверждают нашу точку зрения, поскольку у более ёмкой модели X25-E частота выхода из строя выше (у неё используется больше чипов памяти). Возможно, именно по этой причине мы не были шокированы тем, что SSD имеют схожую частоту выхода из строя, что и накопители с вращающимися пластинами. Конечно, у нас нет полных данных для SSD старше двух лет, поэтому, возможно, в будущем ситуация изменится, но пока мы эти данные не получим, лучше следовать давно известной пословице «бережёного Бог бережёт».

Самое обидное во всём этом исследовании заключается в том, что мы не должны сами собирать все эти данные. Производители знают об истинной надёжности своих продуктов, поскольку они выпускают миллионы SSD в год (IDC: 11 млн. SSD в 2009) и отслеживают возвраты. Если SSD Intel на MLC-памяти являются «золотым стандартом», то лучшие SSD кажутся не более надёжными, чем лучшие жёсткие диски. Получается, что худшие SSD такие же надёжные, что и худшие жёсткие диски?

В заключении мы оставляем открытым приглашение Intel, OCZ, Micron, Crucial, Kingston, Corsair, Mushkin, SandForce и Marvell, чтобы предоставить нам информацию о частоте выхода из строя своих продуктов, либо опубликовать список крупных клиентов, у которых можно будет получить дополнительную информацию.

Примечание. Мы выражаем благодарность компании Softlayer и всем дата-центрам, предоставившим нам данные. Всё это позволило оценить надёжность SSD.